TABLE OF CONTENTS

List of Figures

List of Table	S	
Nomenclatur	e	
Preface		
1	INTRODUCTION	1-15
2	LITERATURE REVIEW AND OBJECTIVES	16-71
2.1	Literature review	16
2.1.1	Major components of direct ethanol fuel cell (DEFC)	16
2.1.1.1	Polymeric membrane electrolyte	17
2.1.1.2	Electrode materials	22
2.1.1.2.1	Anode electrocatalysts	23
2.1.1.2.1.1	Electrocatalysts supports	34
2.1.1.2.1.2	Anode electrocatalyst synthesis routes	37
2.1.1.2.2	Cathode electrocatalysts	41
2.1.1.2.3	Physical characterization of anode electrocatalysts	43
2.1.1.2.4	Electrochemical characterization of electrodes	48
2.1.1.2.4.1	Electrochemical characterization of anode	48
2.1.1.2.4.2	Electrochemical characterization of cathode	59
2.1.2	Performance of Pt-based anode electrocatalysts in single DEFC	63
	study	
2.2	Objectives	70
3	EXPERIMENTAL	72-98
3.1	Materials	72
3.2	Experimental setup	78
3.2.1	Half cell studies	78
3.2.2	Direct ethanol fuel cell (DEFC)	79
3.3	Methods	81
3.3.1	Functionalization of support materials	81
3.3.2	Electrocatalyst synthesis	82
3.3.2.1	Formic acid reduction method (FAM)	83

Indian Institute of Technology (BHU), Varanasi 221005

3.3.2.2	Polyol reduction method (PLM)	83
3.3.2.2.1	Reaction mechanism of the modified polyol reduction process	88
3.3.3	Physicochemical characterization of support and electrocatalyst	89
3.3.3.1	Fourier transform infrared spectroscopy (FTIR)	89
3.3.3.2	pH-meter	90
3.3.3.3	X-ray diffraction (XRD)	90
3.3.3.4	Field-emission scanning electron microscopy (FESEM)	91
3.3.3.5	Transmission electron microscopy (TEM)	92
3.3.3.6	X-ray photoelectron spectroscopy (XPS)	93
3.3.4	Preparation of anode, cathode and membrane electrode	93
	assembly (MEA)	
3.3.5	Electrochemical measurements in half cell	96
3.3.6	DEFC study	98
3.3.7	Stability test of DEFC	98
4	MODELING AND OPTIMIZATION	99-106
4.1	Introduction	99
4.2	Experimental design methodology	103
5	RESULTS AND DISCUSSION	107-239
5.1	Performance evaluation of bi-metallic electrocatalysts	108
	supported on C _{AB} : Part-I	
5.1.1	Bi-metallic electrocatalysts without post treatment: Part-Ia	108
5.1.1.1	Physical characterization of the acetylene black carbon support	108
5.1.1.1.1	pH analysis	108
5.1.1.1.2	X-ray diffraction (XRD) analysis	109
5.1.1.1.3	Fourier transform infrared spectroscopy (FTIR) analysis	110
5.1.1.1.4	Field-emission scanning electron microscopy (FESEM)	112
	analysis	
5.1.1.2	Physical Characterization of electrocatalysts	114
5.1.1.2.1	X-ray diffraction (XRD) analysis	114
5.1.1.2.2	Field-emission scanning electron microscopy (FESEM)	118
	analysis	
5.1.1.2.3	Transmission electron microscopy (TEM) analysis	121

5.1.1.2.4	X-ray photoelectron spectroscopy (XPS) analysis	126
5.1.1.2.5	Energy dispersive X-ray (EDX) analysis	132
5.1.1.3	Electrochemical characterization of anode	136
5.1.1.3.1	Cyclic voltammetry (CV) analysis	136
5.1.1.3.2	Chronoamperometry (CA) analysis	139
5.1.1.4	Electrochemical characterization of cathode electrocatalysts	141
5.1.1.5	DEFC study	143
5.1.1.5.1	Effect of electrocatalyst type	143
5.1.1.5.2	Effect of ethanol concentration	145
5.1.1.5.3	Effect of cell temperature	147
5.1.2	Post treated bi-metallic electrocatalysts supported on C_{AB} :	150
	Part-1b	
5.1.2.1	Physical characterization of electrocatalysts	150
5.1.2.1.1	X-ray diffraction (XRD) analysis	150
5.1.2.1.2	FESEM-EDX analysis	154
5.1.2.1.3	Transmission electron microscopy (TEM) analysis	158
5.1.2.2	Electrochemical characterization of anode electrocatalysts	162
5.1.2.2.1	Cyclic voltammetry (CV) analysis	162
5.1.2.2.2	Chronoamperometry (CA) analysis	165
5.1.2.3	DEFC study	168
5.1.2.3.1	Effect of electrocatalyst type	168
5.1.2.3.2	Effect of ethanol concentration	170
5.1.2.3.3	Effect of cell temperature	172
5.2	Performance evaluation of Pt-based bi-metallic and tri-	174
	metallic electrocatalysts supported on f-MWCNT: Part-II	
5.2.1	Physical characterization of MWCNT support material	174
5.2.1.1	X-ray diffraction (XRD) analysis	174
5.2.1.2	Fourier transform infrared spectroscopy (FTIR) analysis	175
5.2.2	Physicochemical characterization of electrocatalysts	178
5.2.2.1	X-ray diffraction (XRD) analysis	178
5.2.2.2	Transmission electron microscopy (TEM) analysis	181
5.2.2.3	FESEM-EDX analysis	185

5.2.3	Electrochemical characterization of anode electrocatalysts	189
5.2.3.1	Hydrogen adsorption/desorption study	189
5.2.3.2	Cyclic voltammetry (CV) measurements of electrodes with	192
	ethanol	
5.2.3.3	Chronoamperometry (CA) analysis	195
5.2.4	FESEM observation of electrode	198
5.2.4.1	FESEM of anode	198
5.2.4.2	FESEM of cathode	201
5.2.5	DEFC study	203
5.2.5.1	Effect of support functionalization	203
5.2.5.2	Effect of anode electrocatalysts type	205
5.2.5.3	Effect of ethanol concentration	208
5.2.5.4	Effect of anode electrocatalyst loading	210
5.2.5.5	Effect of cathode electrocatalyst loading	211
5.2.5.6	Effect of cell temperature on DEFC performance	213
5.2.6	Stability test of DEFC	215
5.2.7	Comparison of the performance for synthesized and	217
	commercial electrocatalysts	
5.2.8	Efficiency of the direct ethanol fuel cell	220
5.3	Optimization and validation of process parameters using	224
	RSM: Part-III	
5.3.1	Statistical analysis and model development	224
5.3.2	Effect of ethanol concentration	230
5.3.3	Effect of operating cell temperature	232
5.3.4	Effect of electrocatalyst loading at the anode electrode	235
5.3.5	Verification of the model	237
6	CONCLUSIONS	240-252
6.1	Direct ethanol fuel cell (DEFC) components and construction	240
6.2	Physical characterization of support and electrocatalyst	241
6.3	Electrode characterization	244
6.4	Performance of DEFC	246

6.5	Process parameters optimization using response surface	249
	methodology (RSM)	
6.6	Future scope	251
	References	253
	Appendix A	275
	Appendix B	276
	Appendix C	279
	Appendix D	281
	Appendix E	282
	Appendix F	283
	Appendix G	285

LIST OF FIGURES

Figure 1.1	Schematic of a direct ethanol fuel cell	3
Figure 2.1	Chemical structure of Nafion [®] membrane	18
Figure 2.2	The basic diagram of the hopping mechanism of proton in	19
	PEM	
Figure 2.3	The schematic presentation of the Vehicular Mechanism as	20
	proton conduction in Nafion [®] membranes	
Figure 2.4	Cyclic voltammograms (CVs) of Pt-Ru/MCN, Pt-Ru/t-	51
	MWCNT, Pt-Ru/MWCNT and Pt-Ru/Vulcan XC	
	electrocatalysts in 0.5 M H_2SO_4 and 1 M ethanol solution with	
	a scan rate 20 mV/s and at room temperature of 25 °C	
Figure 2.5	Cyclic voltammograms (CVs) of (a) Pt/C cathode in 0.5 M	61
	HClO ₄ saturated with oxygen and nitrogen gas and (b) PtRu/C,	
	Pt-black HSA and Pt/C cathode in the presence of oxygen in	
	0.5 M HClO ₄ solution with scan rate of 10 mV/s at a	
	temperature of 42 °C	
Figure 3.1	Schematic of the three-electrode half-cell experimental set-up	78
	to study single electrode performance	
Figure 3.2	Schematic of single direct ethanol fuel cell (DEFC) set-up	80
Figure 3.3	Photographic view of the flow channel	81
Figure 3.4	Scheme of post-treated conditions of the $Pt-Ru/C_{AB}$ -syn	86
	electrocatalyst by modified polyol method	
Figure 3.5	Three layers composite of the fabricated electrode	94
Figure 3.6	Schematic of the clamped MEA	96
Figure 3.7	Working electrode for electrochemical characterization.	97
Figure 5.1	XRD patterns of (a) pristine acetylene black carbon (C_{PAB}) and	110
	(b) functionalized acetylene black carbon (C_{AB}) support	
Figure 5.2	FTIR spectra of (a) pristine acetylene black carbon (C_{PAB}) and	111
	(b) functionalized acetylene black carbon (C_{AB}) support	
Figure 5.3a	FESEM image of pristine acetylene black carbon (CPAB)	113

Figure 5.3b	FESEM image of functionalized acetylene black carbon (C_{AB})	113
Figure 5.4	XRD patterns of (a) Pt-Ru/C _{PAB} -PLM, (b) Pt-Ru/C _{PAB} -FAM,	115
	(c) Pt-Ru/C _{AB} -PLM, (d) Pt-Ru/C _{AB} -FAM, (e) commercial Pt-	
	Ru/C and (f) Pt/CAB-PLM electrocatalysts	
Figure 5.5a	FESEM image of Pt-Ru/C _{PAB} -PLM electrocatalyst	119
Figure 5.5b	FESEM image of Pt-Ru/CPAB-FAM electrocatalyst	119
Figure 5.5c	FESEM image of Pt-Ru/C _{AB} -PLM electrocatalyst	120
Figure 5.5d	FESEM image of Pt-Ru/CAB-FAM electrocatalyst	120
Figure 5.5e	FESEM image of commercial Pt-Ru/C electrocatalyst	121
Figure 5.6a	TEM image and histogram of metal particle size distribution of	122
	Pt-Ru/C _{PAB} -PLM electrocatalyst	
Figure 5.6b	TEM image and histogram of metal particle size distribution of	123
	Pt-Ru/C _{PAB} -FAM electrocatalyst	
Figure 5.6c	TEM image and histogram of metal particle size distribution of	123
	Pt-Ru/C _{AB} -PLM electrocatalyst	
Figure 5.6d	TEM image and histogram of metal particle size distribution of	124
	Pt-Ru/C _{AB} -FAM electrocatalyst	
Figure 5.6e	TEM image and histogram of metal particle size distribution of	124
	commercial Pt-Ru/C electrocatalyst	
Figure 5.7a	XPS spectra in Pt 4f region of Pt-Ru/C _{PAB} -PLM	127
	electrocatalyst. The solid line represents the XPS fitted spectra	
	and the broken line represents the peaks due to different Pt	
	oxidation state corresponds to Pt^0 , Pt^{2+} and Pt^{4+}	
Figure 5.7b	XPS spectra in Pt 4f region of Pt-Ru/C _{PAB} -FAM	127
	electrocatalyst. The solid line represents the XPS fitted spectra	
	and the broken line represents the peaks due to different Pt	
	oxidation state corresponds to Pt^0 , Pt^{2+} and Pt^{4+}	
Figure 5.7c	XPS spectra in Pt 4f region of Pt-Ru/CAB-PLM electrocatalyst.	128
	The solid line represents the XPS fitted spectra and the broken	
	line represents the peaks due to different Pt oxidation state	
	corresponds to Pt^0 , Pt^{2+} and Pt^{4+}	

Figure 5.7d	XPS spectra in Pt 4f region of Pt-Ru/C _{AB} -FAM electrocatalyst.	128
	The solid line represents the XPS fitted spectra and the broken	
	line represents the peaks due to different Pt oxidation state	
	corresponds to Pt^0 , Pt^{2+} and Pt^{4+}	
Figure 5.7e	XPS spectra in Pt 4f region of commercial Pt-Ru/C	129
	electrocatalyst. The solid line represents the XPS fitted spectra	
	and the broken line represents the peaks due to different Pt	
	oxidation state corresponds to Pt^0 , Pt^{2+} and Pt^{4+}	
Figure 5.8	C(1s) + Ru(3d) region in (a) Pt-Ru/C _{PAB} -PLM, (b) Pt-Ru/C _{PAB} -	131
	FAM, (c) $PtRu/C_{AB}$ -PLM, (d) $Pt-Ru/C_{AB}$ -FAM and (e)	
	commercial Pt-Ru/C electrocatalysts	
Figure 5.9a	EDX pattern of Pt-Ru/C _{PAB} -PLM electrocatalyst	133
Figure 5.9b	EDX pattern of Pt-Ru/C _{PAB} -FAM electrocatalyst	133
Figure 5.9c	EDX pattern of Pt-Ru/CAB-PLM electrocatalyst	134
Figure 5.9d	EDX pattern of Pt-Ru/C _{AB} -FAM electrocatalyst	134
Figure 5.9e	EDX pattern of commercial Pt-Ru/C electrocatalyst	135
Figure 5.10	CV characteristics of the synthesized Pt-Ru/C _{PAB} -PLM, Pt-	136
	Ru/C_{PAB} -FAM, Pt-Ru/C _{AB} -PLM, Pt-Ru/C _{AB} -FAM and	
	commercial Pt-Ru/C electrocatalysts in 0.5 M HClO ₄ and 1 M	
	ethanol solution at a scan rate of 20 mV/s; Temperature 35° C	
Figure 5.11a	CA test of ethanol oxidation in 0.5 M perchloric acid (HClO ₄)	139
	containing 1 M ethanol (C ₂ H ₅ OH) solution on synthesized Pt-	
	$Ru/C_{PAB}\text{-}PLM,\ Pt\text{-}Ru/C_{PAB}\text{-}FAM,\ PtRu/C_{AB}\text{-}PLM,\ Pt\text{-}Ru/C_{AB}\text{-}PLM,\ Pt$	
	FAM and commercial Pt-Ru/C electrocatalysts at 0.45 V vs.	
	Ag/AgCl at room temperature 35 °C	
Figure 5.11b	CA test of ethanol oxidation in 0.5 M perchloric acid (HClO ₄)	140
	containing 1 M ethanol (C ₂ H ₅ OH) solution on synthesized Pt-	
	$Ru/C_{PAB}\text{-}PLM,\ Pt\text{-}Ru/C_{PAB}\text{-}FAM,\ PtRu/C_{AB}\text{-}PLM,\ Pt\text{-}Ru/C_{AB}\text{-}PLM,\ Pt$	
	FAM and commercial Pt-Ru/C electrocatalysts at 0.8 V vs.	
	Ag/AgCl at room temperature 35 °C	

- **Figure 5.12** Cyclic voltammograms for Pt/C_{HiSPEC} cathode in 0.5 M HClO₄ 142 electrolyte solution saturated with pure oxygen or nitrogen gas at a scan rate of 20 mV/s; room temperature of 30 °C
- Figure 5.13 Single cell performance characteristics for different anode 143 electrocatalysts for anode feed of 1 M ethanol. Cathode feed: humidified pure oxygen; $P_{cathode} = 1$ bar (absolute); Solid linepolarization curves; Dotted line-power density curves
- Figure 5.14 Single cell performance characteristics for 146 anode electrocatalyst Pt-Ru/C_{AB}-PLM using varying ethanol concentration as anode feed at a cell temperature of 35 °C. Cathode feed: pure humidified oxygen; $P_{cathode} = 1$ bar (absolute); Dotted line-power density curves; Solid linepolarization curves
- **Figure 5.15** Single cell performance characteristics for varying cell 148 temperatures using an anode feed of 2 M ethanol solution. Cathode feed: pure humidified oxygen; $P_{cathode} = 1$ bar (absolute); Dotted line-power density curves; Solid line-polarization curves
- Figure 5.16 XRD patterns of (a) Pt-Ru/C_{AB}-syn, (b) Pt-Ru/C_{AB}-H₂-RT, (c) 151 Pt-Ru/C_{AB}-Air-160, (d) Ru/C_{AB}-H₂-160 and (e) commercial Pt-Ru/C electrocatalysts.
- **Figure 5.17a** FESEM image and corresponding EDX pattern of Pt-Ru/C_{AB}- 154 syn electrocatalyst
- Figure 5.17b FESEM image and corresponding EDX pattern of Pt-Ru/C_{AB}- 155 H_2 -RT electrocatalyst
- Figure 5.17cFESEM image and corresponding EDX pattern of Pt-Ru/ C_{AB} -155Air-160 electrocatalyst
- **Figure 5.17d** FESEM image and corresponding EDX pattern of Ru/C_{AB}-H₂- 156 160 electrocatalysts
- Figure 5.17e FESEM image and corresponding EDX pattern of commercial 156 Pt-Ru/C electrocatalyst

- Figure 5.18a TEM image and corresponding size distribution histogram of 159 Pt-Ru/C_{AB}-syn electrocatalyst.
- **Figure 5.18b** TEM image and corresponding size distribution histogram of 159 Pt-Ru/C_{AB}-H₂-RT electrocatalyst
- **Figure 5.18c** TEM image and corresponding size distribution histogram of 160 Pt-Ru/C_{AB}-Air-160 electrocatalyst
- **Figure 5.18d** TEM image and corresponding size distribution histogram of 160 Ru/C_{AB}-H₂-160 electrocatalyst
- **Figure 5.18e** TEM image and corresponding size distribution histogram of 161 commercial Pt-Ru/C electrocatalyst
- **Figure 5.19** Cyclic voltammograms of synthesized Pt-Ru/C_{AB}-syn, Pt- 163 Ru/C_{AB}-H₂-RT, PtRu/C_{AB}-Air-160, Ru/C_{AB}-H₂-160 and commercial Pt-Ru/C electrocatalysts in 0.5 M HClO₄ containing 2 M ethanol with a scan rate of 20 mV/s and at a temperature of 40 °C
- Figure 5.20a CA tests of ethanol oxidation in 0.5 M perchloric acid (HClO₄) 166 containing 2 M ethanol solution on synthesized Pt-Ru/C_{AB}-syn, Pt-Ru/C_{AB}-H₂-RT, Pt-Ru/C_{AB}-Air-160, Ru/C_{AB}-H₂-160, and commercial Pt-Ru/C electrocatalysts at 0.45 V vs. Ag/AgCl at room temperature of 40 °C
- Figure 5.20b CA tests of ethanol oxidation in 0.5 M perchloric acid (HClO₄) 167 containing 2 M ethanol solution on synthesized Pt-Ru/C_{AB}-syn, Pt-Ru/C_{AB}-H₂-RT, Pt-Ru/C_{AB}-Air-160, Ru/C_{AB}-H₂-160, and commercial Pt-Ru/C electrocatalysts at 0.8 V vs. Ag/AgCl at room temperature of 40 °C
- Figure 5.21 Polarization and power density curves for different synthesized 168 electrocatalysts as anode with 1 mg/cm² electrocatalyst loading and the cathode (commercial Pt/C_{HiSPEC}) with 1 mg/cm² electrocatalyst loading at a cell temperature of 40 °C. Anode: 2 M C₂H₅OH, 1.2 ml/min. Cathode: humidified oxygen, 60 ml/min. Solid electrolyte: Nafion[®] 117 membranes

- **Figure 5.22** Single cell performance characteristics for anode 171 electrocatalyst Pt-Ru/C_{AB}-H₂-RT using varying ethanol concentration as anode feed at a cell temperature of 40 °C. Cathode feed: pure humidified oxygen; $P_{cathode} = 1$ bar (absolute); Dotted line-power density curves; Solid line-polarization curves
- Figure 5.23 Performance curves of the synthesized Pt–Ru/C_{AB}-H₂-RT 173 electrocatalyst with 1 mg/cm² electrocatalyst loading in anode side and the commercial Pt/C_{HiSPEC} electrocatalyst as a cathode with 1 mg/cm² electrocatalyst loading at various temperatures. Anode: 2 M ethanol, 1.2 ml/min flow rate. Cathode: humidified oxygen, 60 ml/min. Solid electrolyte: Nafion[®] 117 membranes
- Figure 5.24 XRD patterns of (a) p-MWCNT and (b) f-MWCNT support 174 material
- Figure 5.25 FTIR spectra of (a) p-MWCNT and (b) f-MWCNT support 176 material
- Figure 5.26 XRD patterns of (a) Pt-Ru (1:1)/f-MWCNT, (b) Pt-Re (1:1)/f- 179 MWCNT, (c) Pt-Ru-Re (1:1:1)/f-MWCNT, (d) Pt-Ru-Re (1:1:0.5)/f-MWCNT and (e) Pt-Ru-Re (1:1:0.25)/f-MWCNT electrocatalysts
- Figure 5.27a TEM micrograph and the corresponding particle size 182 distribution histogram of Pt-Ru (1:1)/f-MWCNT electrocatalyst.
- **Figure 5.27b** TEM micrograph and the corresponding particle size 182 distribution histogram of Pt-Re (1:1)/f-MWCNT electrocatalyst
- Figure 5.27c TEM micrograph and the corresponding particle size 183 distribution histogram of Pt-Ru-Re (1:1:1)/f-MWCNT electrocatalyst

Figure 5.27d	TEM micrograph and the corresponding particle size	183
	distribution histogram of Pt-Ru-Re (1:1:0.5)/f-MWCNT	
	electrocatalyst	
Figure 5.27e	TEM micrograph and the corresponding particle size	184
	distribution histogram of Pt-Ru-Re (1:1:0.25/f-MWCNT)	
	electrocatalyst	
Figure 5.28a	FESEM image and corresponding color mapping of Pt-Ru	186
	(1:1)/f-MWCNT electrocatalyst	
Figure 5.28b	FESEM image and corresponding color mapping of Pt-Re	186
	(1:1)/f-MWCNT electrocatalyst	
Figure 5.28c	FESEM image and corresponding color mapping of Pt-Ru-Re	187
	(1:1:1)/f-MWCNT electrocatalyst	
Figure 5.28d	FESEM image and corresponding color mapping of Pt-Ru-Re	187
	(1:1:0.5)/f-MWCNT electrocatalyst	
Figure 5.28e	FESEM image and corresponding color mapping of Pt-Ru-Re	188
	(1:1:0.25)/f-MWCNT electrocatalyst	
Figure 5.29	Cyclic voltammetry curves of Pt-Ru (1:1)/f-MWCNT, Pt-Re	190
	(1:1)/f-MWCNT, Pt-Ru-Re (1:1:1)/f-MWCNT, Pt-Ru-Re	
	(1:1:0.5)/f-MWCNT and Pt-Ru-Re (1:1:0.25)/f-MWCNT	
	electrocatalysts in 0.5 M HClO ₄ at room temperature of 30 $^\circ\text{C}$	
	with a scan rate of 50 mV/s	
Figure 5.30	CVs characteristics for ethanol electrooxidation on Pt-Ru	192
	(1:1)/f-MWCNT, Pt-Re (1:1)/f-MWCNT, Pt-Ru-Re (1:1:1) /f-	
	MWCNT, Pt-Ru-Re (1:1:0.5)/f-MWCNT and Pt-Ru-Re	
	(1:1:0.25)/f-MWCNT electrocatalysts in 2 M ethanol + 0.5 M	

Figure 5.31a CA curves of Pt-Ru (1:1)/f-MWCNT, Pt-Re (1:1)/f-MWCNT, 196 Pt-Ru-Re (1:1:1) /f-MWCNT, Pt-Ru-Re (1:1:0.5)/f-MWCNT and Pt-Ru Re (1:1:0.25)/f-MWCNT electrocatalysts recorded in 2 M ethanol + 0.5 M HClO₄ solution at fixed potential of 0.55 V vs. Ag/AgCl at room temperature of 30 °C

HClO₄ solution at room temperature of 30 °C with a scan rate

of 5 mV/s

Figure 5.31b	CA curves of Pt-Ru (1:1)/f-MWCNT, Pt-Re (1:1)/f-MWCNT,	197
	Pt-Ru-Re (1:1:1) /f-MWCNT, Pt-Ru-Re (1:1:0.5)/f-MWCNT	
	and Pt-Ru-Re (1:1:0.25)/f-MWCNT electrocatalysts recorded	
	in 2 M ethanol + 0.5 M HClO ₄ solution at fixed potential of 0.8	
	V vs. Ag/AgCl at room temperature of 30 °C	
Figure 5.32a	FESEM image of blank GDL/carbon paper	199
Figure 5.32b	FESEM image of anode electrocatalyst Pt-Ru-Re (1:1:0.5)/f-	199
	MWCNT loading of 0.5 mg/cm^2	
Figure 5.32c	FESEM image of anode electrocatalyst Pt-Ru-Re (1:1:0.5)/f-	200
	MWCNT loading of 1 mg/cm ²	
Figure 5.32d	FESEM image of anode electrocatalyst Pt-Ru-Re (1:1:0.5)/f-	200
	MWCNT loading of 1.5 mg/cm ²	
Figure 5.33a	FESEM image of cathode electrocatalyst commercial	202
	Pt/C _{HiSPEC} loading of 0.5 mg/cm ²	
Figure 5.33b	FESEM image of cathode electrocatalyst commercial	202
	Pt/C _{HiSPEC} loading of 1 mg/cm ²	
Figure 5.33c	FESEM image of cathode electrocatalyst commercial	203
	Pt/C _{HiSPEC} loading of 1.5 mg/cm ²	
Figure 5.34	Single cell performance characteristics for anode	204
	electrocatalysts Pt-Ru (1:1)/p-MWCNT and Pt-Ru (1:1)/f-	
	MWCNT using anode feed of 2 M ethanol solution. Cathode	
	feed: humidified pure oxygen; $P_{cathode} = 1$ bar (absolute); Solid	
	line-polarization curves; Dotted line-power density curves	
Figure 5.35	Single cell performance characteristics for different anode	205
	electrocatalysts using anode feed of 2 M ethanol solution.	
	Cathode feed: humidified pure oxygen; $P_{cathode} = 1$ bar	
	(absolute); Solid line-polarization curves; Dotted line-power	
	density curves	

- Figure 5.36 Single cell performance characteristics for anode 209 electrocatalyst Pt-Ru-Re (1:1:0.5)/f-MWCNT using varying anode feed ethanol concentration as at a cell temperature of 30 °C. Cathode feed: pure humidified oxygen; $P_{cathode} = 1$ bar (absolute); Dotted line-power density curves; Solid line-polarization curves
- **Figure 5.37** Single cell performance characteristics for anode 211 electrocatalyst Pt-Ru-Re (1:1:0.5)/f-MWCNT at different electrocatalyst loading using an anode feed of 2 M ethanol solution. Cathode feed: pure humidified oxygen; $P_{cathode} = 1$ bar (absolute); Dotted line-power density curves; Solid line- polarization curves
- Figure 5.38Single cell performance characteristics for commercial cathode212electrocatalyst Pt/C_{HiSPEC} at different electrocatalyst loading
using an anode feed of 2 M ethanol solution. Cathode feed:
pure humidified oxygen; $P_{cathode} = 1$ bar (absolute); Dotted line-
power density curves; Solid line- polarization curves
- **Figure 5.39** Single cell performance characteristics for anode 214 electrocatalyst Pt-Ru-Re (1:1:0.5)/f-MWCNT at varying cell temperatures using an anode feed of 2 M ethanol solution. Cathode feed: pure humidified oxygen; $P_{cathode} = 1$ bar (absolute); Dotted line power density curves; Solid linepolarization curves
- **Figure 5.40** Stability test of the DEFC using synthesized bi-metallic Pt- 216 Ru/C_{AB}-PLM (without post treated), Pt-Ru/C_{AB}-H₂-RT (with post treated), commercial Pt-Ru/C and trimetallic Pt-Ru-Re (1:1:0.5)/f-MWCNT as anode electrocatalysts with 2 M ethanol at constant load of 20 mA at a temperature of 30 °C
- Figure 5.41
 Response surface plot of the model predicted versus actual
 229

 power density of DEFC
 229
- Figure 5.42
 Response surface plot of the residuals versus model predicted
 230

 power density of DEFC
 230

- **Figure 5.43a** Two-dimensional contour plot showing the effect of ethanol 231 concentration, anode electrocatalyst loading and their mutual interaction on the power density at an operating temperature of 79.48 °C
- **Figure 5.43b** Three-dimensional response plot showing the effect of ethanol 232 concentration, anode electrocatalyst loading and their mutual interaction on the power density at an operating temperature of 79.48 °C
- Figure 5.44a Two-dimensional contour plot showing the effect of operating 233 temperature, ethanol concentration and their mutual interaction on the power density at an electrocatalyst loading of 1.14 mg/cm²
- Figure 5.44b Three-dimensional response plot showing the effect of 234 operating temperature, ethanol concentration and their mutual interaction on the power density at an electrocatalyst loading of 1.14 mg/cm^2
- **Figure 5.45a** Two-dimensional contour plot showing the effect of 235 electrocatalyst loading, operating temperature and their mutual interaction on the power density at an ethanol concentration of 2.03 M
- **Figure 5.45b** Three-dimensional response plot showing the effect of 236 electrocatalyst loading, operating temperature and their mutual interaction on the power density at an ethanol concentration of 2.03 M
- Figure 5.46Optimum point detection for the maximum power density of237DEFC from the perturbation curve
- Figure 5.47Polarization curves of three repeated confirmation tests238

LIST OF TABLES

Table 2.1	Properties of commercial Nafion [®] membranes	21
Table 2.2	Fabrication of electrocatalyst employed for ethanol	53
	electrooxidation at the anode in acidic conditions and	
	techniques used for the analysis of the system	
Table 2.3	Synthesis methods of carbon supported Pt-based	66
	electrocatalysts as potential anode materials for direct	
	alcohol fuel cell (DEFC)	
Table 3.1	Typical properties of the commercial Nafion [®] 117	73
	membranes (Alfa Aesar, USA)	
Table 3.2	Typical properties of Toray carbon paper (TGP-H-60, Alfa	74
	Aesar, USA)	
Table 3.3	Composition and properties of Nafion® ionomer solution	75
	(Grade: D-520, Alfa Aesar, USA)	
Table 3.4	Properties of PTFE dispersion (Sigma Aldrich, USA)	75
Table 3.5	Typical properties of ethanol fuel at 1.01 bar and 298 K	76
Table 3.6	Cost analysis and comparison of properties of the carbon	77
	support acetylene black with Vulcan XC-72R	
Table 3.7	Metal compositions of various synthesized bi-metallic and	87
	tri-metallic electrocatalysts supported on f-MWCNT	
Table 4.1	Experimental ranges and levels of independent test variables	105
	studied in the BBD model	
Table 5.1	Physical properties of acetylene black support material	110
	derived from XRD patterns	
Table 5.2	Comparison and shifting of bands data of pristine (C_{PAB}) and	112
	functionalized acetylene black carbon (C_{AB}) support in FTIR	
	analysis	
Table 5.3	Data calculated from XRD patterns of electrocatalysts by the	117
	Debye Scherrer's equation and Vegard's law	
Table 5.4	The average particle size and specific area of electrocatalysts	125
	from TEM analysis and comparison with XRD results	

Table 5.5	Different oxidation states of Pt species and their relative	130
	intensities obtained from binding energies (BE) of the Pt	
	4f7/2 component of XPS spectra for Pt-Ru/CPAB-PLM, Pt-	
	Ru/C _{PAB} -FAM, Pt-Ru/C _{AB} -PLM, Pt-Ru/C _{AB} -FAM and	
	commercial Pt-Ru/C electrocatalysts	
Table 5.6	EDX results of the synthesized Pt-Ru/CPAB-PLM, Pt-	135
	Ru/C _{PAB} -FAM, PtRu/C _{AB} -PLM, Pt-Ru/C _{AB} -FAM and	
	commercial Pt-Ru/C electrocatalysts.	
Table 5.7	CV results of the synthesized Pt-Ru/C _{PAB} -PLM, Pt-Ru/C _{PAB} -	138
	FAM, Pt-Ru/CAB-PLM, Pt-Ru/CAB-FAM, and commercial	
	Pt-Ru/C electrocatalysts at 20 mV/s sweep rate	
	for ethanol electrooxidation	
Table 5.8	Data obtained from XRD patterns of electrocatalysts	152
	analyses by the Debye Scherrer's equation and Vegard's law	
Table 5.9	EDX compositions of synthesized Pt-Ru/CAB-syn, Pt-	157
	Ru/C _{AB} -H ₂ -RT, Pt–Ru/C _{AB} -Air-160, Pt–Ru/C _{AB} -H ₂ -160 and	
	commercial Pt-Ru/C electrocatalysts	
Table 5.10	The average particle size of electrocatalysts from TEM	162
	analysis and comparison with XRD results.	
Table 5.11	CV results of synthesized Pt-Ru/C _{AB} -syn, Pt-Ru/C _{AB} -H ₂ -RT,	164
	Pt-Ru/CAB-Air-160, Ru/CAB-H2-160, and commercial Pt-	
	Ru/C electrocatalysts at 20 mV/s sweep rate for ethanol	
	electrooxidation	
Table 5.12	Summary of performance of synthesized Pt-Ru/CAB-syn, Pt-	169
	Ru/C _{AB} -H ₂ -RT), Pt-Ru/C _{AB} -Air-160, Pt- Ru/C _{AB} -H ₂ -160 and	
	commercial Pt-Ru/C electrocatalysts in single fuel cell tests	
	for 2 M ethanol at a cell temperature of 40 $^{\circ}C$	
Table 5.13	Summary of performance of synthesized Pt-Ru/C_{AB}-H_2-RT	173
	electrocatalysts in single fuel cell tests for 2 M ethanol at	
	different operating cell temperature.	
Table 5.14	Comparison and shifting of bands data of p-MWCNT and f-	177
	MWCNT support using FTIR analysis	

Table 5.15	The Pt (220) peak, lattice parameters, and crystallographic	181
	properties of the electrocatalysts from XRD analysis	
Table 5.16	The average particle size of electrocatalysts evaluated from	185
	TEM analysis and comparison with XRD results	
Table 5.17	Atomic composition of the synthesized bi-metallic and tri-	189
	metallic electrocatalysts evaluated from FESEM-EDX	
	results	
Table 5.18	Results of hydrogen desorption charge and its	191
	electrochemical active surface area (ECSA) of electrode	
	electrocatalysts from CVs analysis	
Table 5.19	Summary of electrocatalytic performance of electrocatalysts	193
	towards ethanol electrooxidation	
Table 5.20	Summary of performance of different anode electrocatalysts	206
	in single cell DEFC tests for 2 M ethanol at a cell	
	temperature of 30 °C	
Table 5.21	Summary of performance of synthesized Pt-Ru-Re	215
	(1:1:0.5)/f-MWCNT electrocatalyst in single fuel cell tests	
	for 2 M ethanol at various operating cell temperature	
Table 5.22	Performance comparison of synthesized best bi-metallic and	219
	tri-metallic PtRu/C _{AB} -PLM, Pt-Ru/C _{AB} -H ₂ RT, commercial	
	Pt-Ru/C (30%:15%) and tri-metallic Pt-RuRe (1:1:0.5)/f-	
	MWCNT electrocatalysts as anode using optimum	
	conditions	
Table 5.23	Individual efficiencies for ethanol fuel used in direct ethanol	223
	fuel cell using best bi-metallic Pt-Ru/C _{AB} -PLM. Pt-Ru/C _{AB} -	_
	H ₂ -RT and commercial Pt-Ru/C and trimetallic Pt-Ru-Re	
	(1:1:0.5)/f-MWCNT as anode electrocatalysts at room	
	temperature	
Table 5.24	Box-Behnken design (BBD) matrix for three independent	224
	variables with response values, i.e. the DEFC power density	

Table 5.25	Comparison of the ANOVA model results for ethanol	225
	concentration, anode electrocatalyst loading and cell	
	temperature	
Table 5.26	ANOVA results of the quadratic model for the response	227
Table 5.27	Developed quadratic model validation	239

LIST OF ABBREVIATIONS

Alphabetic symbols: Meaning

А	Parameter related to ethanol concentration
a	lattice parameter
В	Parameter related to Anode electrocatalyst loading
С	Parameter related to cell temperature
C _{PAB}	Pristine acetylene black
C _{AB}	Functionalized acetylene black
c _p	Central points
d_c	average crystallite size
d_{hkl}	interplanar distance between two planes of Miller index (hkl)
d_p	average particle size
2FI	Two factor interaction
FAM	Formic acid reduction method
k	number of factors studied in the experiment
Ν	Total number of experiments to be performed
n	total number of counted electrocatalyst nanoparticles
PLM	Polyol reduction method
p-value	Probability value
p-MWCNT	Pristine Multi-walled carbon nanotubes
f-MWCNT	Functionalized Multi-walled carbon nanotubes
R^2	Coefficient of determination
S _{BET}	Specific surface area calculated by multi-points Brunauer-Emmet-Teller
	method, m ² /g
X_i and X_j	Independent variables for the studied factor
Y	Predicted response

Abbreviations: Meaning

AFC	Alkaline Fuel Cell
ANOVA	Analysis of variance
BBD	Box-Behnken Design

Indian Institute of Technology (BHU), Varanasi 221005

CA	Chronoamperometry
CCD	Central composite design
CNTs	Carbon nanotubes
ССМ	Catalyst-coated membrane
CV	Cyclic Voltammetry
3D	Three-dimensional
2D	Two-dimensional
DEFC	Direct Ethanol Fuel Cell
DEMS	Differential electrochemical mass spectrometry
DF	Degree of freedom
ECSA	Electrochemically active surface area
EDX	Energy dispersive X-ray spectroscopy
EOR	Ethanol Oxidation Reaction
FESEM	Field Emission Scanning Electron Microscopy
FLG	Few layered graphene
FTIR	Fourier Transformed Infrared Spectroscopy
FWHM	Full width at half maximum
GC	Gas chromatography
GDL	Gas Diffusion Layer
HPLC	High Performance Liquid Chromatography
MEA	Membrane Electrode Assembly
MWCNTs	Multi-walled carbon nanotubes
MCFC	Molten Carbonate Fuel Cell
NPs	Nanoparticles
OCV	Open circuit voltage
ORR	Oxygen Reduction Reaction
PEM	Proton exchange membrane
PEMFC	Proton Exchange Membrane Fuel Cell
PAFC	Phosphoric Acid Fuel Cell
PTFE	Polytetrafluoroethylene
PRESS	Predicted residual error sum of squares
RSM	Response surface methodology
SOFC	Solid Oxide Fuel Cell

Indian Institute of Technology (BHU), Varanasi 221005

SEM	Scanning Electron Microscope
SWNTs	Single-walled carbon nanotubes
TEM	Transmission Electron Microscopy
XRD	X-Ray Diffraction
XPS	X-ray photoelectron spectroscopy

Greek Symbols: Meaning

α_o	Model intercept coefficient
$lpha_i$	Linear effect regression coefficients
$lpha_{ii}$	Quadratic effect regression coefficients
$lpha_{ij}$	Interaction effect regression coefficients
μ	Micro
β	width of the peak (in radians) at its half-height
К	Scherrer constant (0.90 for spherical crystallite)
λ	X-ray wavelength used (1.54056 Å for Cu-K $_{\alpha 1}$ radiation)