Copyright © Indian Institute of Technology

(Banaras Hindu University),

Varanasi - 221005, India.

All rights reserved

2021

CERTIFICATE

It is certified that the work contained in the thesis titled **"Development of Anode Electrocatalysts for Proton Exchange Membrane Based Direct Ethanol Fuel Cell"** by **"Abhay Kumar Choudhary"** has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

(Prof. Hiralal Pramanik)

Supervisor

Department of Chemical Engineering & Technology

Indian Institute of Technology

(Banaras Hindu University)

Varanasi – 221005, India

DECLARATION BY THE CANDIDATE

I, "Abhay Kumar Choudhary", certify that the work embodied in this thesis is my own bona fide work and carried out by me under the supervision of "Prof. Hiralal Pramanik" from "July 2015 to January 2021" at the "Department of Chemical Engineering & Technology", Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date:

Place:

(ABHAY KUMAR CHOUDHARY)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my knowledge.

(**Prof. Hiralal Pramanik**) Supervisor Department of Chemical Engineering & Technology Indian Institute of Technology (Banaras Hindu University) Varanasi -221005

Signature of Head of Department

(Prof. V. L. Yadav)

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: "Development of Anode Electrocatalysts for Proton Exchange Membrane Based Direct Ethanol Fuel Cell"

Name of the student: Mr. ABHAY KUMAR CHOUDHARY

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "**Ph.D.**" **Degree**.

Date:

Place:

(Abhay Kumar Choudhary)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Dedicated to My Beloved

Parents, wife 🕲

Family Members

ACKNOWLEDGEMENT

I take this opportunity to express my deep sense of gratitude through my heart to my esteemed supervisor **Prof. Hiralal Pramanik** who has helped enormously and always inspired me by his indispensable guidance and encouragement during the whole long research work. He has always supported and strengthened me in many direct and indirect ways. His thoughtful and valuable reviews, constructive criticism, and tireless review of the manuscript has immensely helped me to improve the work. I gratify him a lot of gratitude for showing confidence in my work and he gave me the freedom.

I also express my heartiest thanks to **Prof. V. L. Yadav**, Head of the Department, Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) for providing essential research facilities and encouragement during the research work.

I would especially thank **Prof. P. K. Mishra** and **Prof. Y. C. Sharma** (Department of Chemistry), Indian Institute of Technology, Banaras Hindu University. Without the help of them, my project may not be completed. I am very thankful for their valuable advice & guidance, **RPEC**, **DPGC members** of the Chemical Engineering & Technology Department for their useful suggestions during my research work at the institute. The instrumental facilities from CIFC (IIT-BHU) Varanasi, are gratefully acknowledged.

Also, I express my sincere thanks to all faculty members of the Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University) for their continued help and co-operation in the completion of this research work. My thanks to technical and nontechnical staffs especially Mr. Vinay of Energy Resource Lab, Department of Chemical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University for their help.

I am very thankful to all technical and non-technical staff of the Department of Chemical Engineering & Technology, Institute of Technology, and Banaras Hindu University.

I also owe my sincerest thanks to my seniors and friends; Mr. Amit Kumar Rathoure, Mr. Pramendra Gaurh, Mr. Uday Guta, Mr. Deoashish Panjiara, Mr. Goutam Kishore Gupta, Mr. Abhay Pratap Singh, Ms. Anjali Verma, Mr. Neeraj Yadav, and Ms. Saraswati Sonkar for their valuable help and support in the experiment, data analysis and presentation in the thesis as well as papers over the years.

In the end, I must put on record my gratitude to my parents, my wife and family for their support and encouragement for this endeavor.

Finally, I wish to extend warm thanks to all those who could not find a separate name but have helped directly or indirectly.

Above all, I am especially thankful to the Almighty God from whom I gathered the strength and perseverance during my research work.

Date:

Place: Varanasi

(Abhay Kumar Choudhary)

TABLE OF CONTENTS

List of Figures

List of Table	S	
Nomenclatur	e	
Preface		
1	INTRODUCTION	1-15
2	LITERATURE REVIEW AND OBJECTIVES	16-71
2.1	Literature review	16
2.1.1	Major components of direct ethanol fuel cell (DEFC)	16
2.1.1.1	Polymeric membrane electrolyte	17
2.1.1.2	Electrode materials	22
2.1.1.2.1	Anode electrocatalysts	23
2.1.1.2.1.1	Electrocatalysts supports	34
2.1.1.2.1.2	Anode electrocatalyst synthesis routes	37
2.1.1.2.2	Cathode electrocatalysts	41
2.1.1.2.3	Physical characterization of anode electrocatalysts	43
2.1.1.2.4	Electrochemical characterization of electrodes	48
2.1.1.2.4.1	Electrochemical characterization of anode	48
2.1.1.2.4.2	Electrochemical characterization of cathode	59
2.1.2	Performance of Pt-based anode electrocatalysts in single DEFC	63
	study	
2.2	Objectives	70
3	EXPERIMENTAL	72-98
3.1	Materials	72
3.2	Experimental setup	78
3.2.1	Half cell studies	78
3.2.2	Direct ethanol fuel cell (DEFC)	79
3.3	Methods	81
3.3.1	Functionalization of support materials	81
3.3.2	Electrocatalyst synthesis	82
3.3.2.1	Formic acid reduction method (FAM)	83

3.3.2.2	Polyol reduction method (PLM)	83
3.3.2.2.1	Reaction mechanism of the modified polyol reduction process	88
3.3.3	Physicochemical characterization of support and electrocatalyst	89
3.3.3.1	Fourier transform infrared spectroscopy (FTIR)	89
3.3.3.2	pH-meter	90
3.3.3.3	X-ray diffraction (XRD)	90
3.3.3.4	Field-emission scanning electron microscopy (FESEM)	91
3.3.3.5	Transmission electron microscopy (TEM)	92
3.3.3.6	X-ray photoelectron spectroscopy (XPS)	93
3.3.4	Preparation of anode, cathode and membrane electrode	93
	assembly (MEA)	
3.3.5	Electrochemical measurements in half cell	96
3.3.6	DEFC study	98
3.3.7	Stability test of DEFC	98
4	MODELING AND OPTIMIZATION	99-106
4.1	Introduction	99
4.2	Experimental design methodology	103
5	RESULTS AND DISCUSSION	107-239
5.1	Performance evaluation of bi-metallic electrocatalysts	108
	supported on C _{AB} : Part-I	
5.1.1	Bi-metallic electrocatalysts without post treatment: Part-Ia	108
5.1.1.1	Physical characterization of the acetylene black carbon support	108
5.1.1.1.1	pH analysis	108
5.1.1.1.2	X-ray diffraction (XRD) analysis	109
5.1.1.1.3	Fourier transform infrared spectroscopy (FTIR) analysis	110
5.1.1.1.4	Field-emission scanning electron microscopy (FESEM)	112
	analysis	
5.1.1.2	Physical Characterization of electrocatalysts	114
5.1.1.2.1	X-ray diffraction (XRD) analysis	114
5.1.1.2.2	Field-emission scanning electron microscopy (FESEM)	118
	analysis	
5.1.1.2.3	Transmission electron microscopy (TEM) analysis	121

5.1.1.2.4	X-ray photoelectron spectroscopy (XPS) analysis	126
5.1.1.2.5	Energy dispersive X-ray (EDX) analysis	132
5.1.1.3	Electrochemical characterization of anode	136
5.1.1.3.1	Cyclic voltammetry (CV) analysis	136
5.1.1.3.2	Chronoamperometry (CA) analysis	139
5.1.1.4	Electrochemical characterization of cathode electrocatalysts	141
5.1.1.5	DEFC study	143
5.1.1.5.1	Effect of electrocatalyst type	143
5.1.1.5.2	Effect of ethanol concentration	145
5.1.1.5.3	Effect of cell temperature	147
5.1.2	Post treated bi-metallic electrocatalysts supported on C_{AB} :	150
	Part-1b	
5.1.2.1	Physical characterization of electrocatalysts	150
5.1.2.1.1	X-ray diffraction (XRD) analysis	150
5.1.2.1.2	FESEM-EDX analysis	154
5.1.2.1.3	Transmission electron microscopy (TEM) analysis	158
5.1.2.2	Electrochemical characterization of anode electrocatalysts	162
5.1.2.2.1	Cyclic voltammetry (CV) analysis	162
5.1.2.2.2	Chronoamperometry (CA) analysis	165
5.1.2.3	DEFC study	168
5.1.2.3.1	Effect of electrocatalyst type	168
5.1.2.3.2	Effect of ethanol concentration	170
5.1.2.3.3	Effect of cell temperature	172
5.2	Performance evaluation of Pt-based bi-metallic and tri-	174
	metallic electrocatalysts supported on f-MWCNT: Part-II	
5.2.1	Physical characterization of MWCNT support material	174
5.2.1.1	X-ray diffraction (XRD) analysis	174
5.2.1.2	Fourier transform infrared spectroscopy (FTIR) analysis	175
5.2.2	Physicochemical characterization of electrocatalysts	178
5.2.2.1	X-ray diffraction (XRD) analysis	178
5.2.2.2	Transmission electron microscopy (TEM) analysis	181
5.2.2.3	FESEM-EDX analysis	185

5.2.3	Electrochemical characterization of anode electrocatalysts	189
5.2.3.1	Hydrogen adsorption/desorption study	189
5.2.3.2	Cyclic voltammetry (CV) measurements of electrodes with	192
	ethanol	
5.2.3.3	Chronoamperometry (CA) analysis	195
5.2.4	FESEM observation of electrode	198
5.2.4.1	FESEM of anode	198
5.2.4.2	FESEM of cathode	201
5.2.5	DEFC study	203
5.2.5.1	Effect of support functionalization	203
5.2.5.2	Effect of anode electrocatalysts type	205
5.2.5.3	Effect of ethanol concentration	208
5.2.5.4	Effect of anode electrocatalyst loading	210
5.2.5.5	Effect of cathode electrocatalyst loading	211
5.2.5.6	Effect of cell temperature on DEFC performance	213
5.2.6	Stability test of DEFC	215
5.2.7	Comparison of the performance for synthesized and	217
	commercial electrocatalysts	
5.2.8	Efficiency of the direct ethanol fuel cell	220
5.3	Optimization and validation of process parameters using	224
	RSM: Part-III	
5.3.1	Statistical analysis and model development	224
5.3.2	Effect of ethanol concentration	230
5.3.3	Effect of operating cell temperature	232
5.3.4	Effect of electrocatalyst loading at the anode electrode	235
5.3.5	Verification of the model	237
6	CONCLUSIONS	240-252
6.1	Direct ethanol fuel cell (DEFC) components and construction	240
6.2	Physical characterization of support and electrocatalyst	241
6.3	Electrode characterization	244
6.4	Performance of DEFC	246

6.5	Process parameters optimization using response surface	249
	methodology (RSM)	
6.6	Future scope	251
	References	253
	Appendix A	275
	Appendix B	276
	Appendix C	279
	Appendix D	281
	Appendix E	282
	Appendix F	283
	Appendix G	285

LIST OF FIGURES

Figure 1.1	Schematic of a direct ethanol fuel cell	3
Figure 2.1	Chemical structure of Nafion [®] membrane	18
Figure 2.2	The basic diagram of the hopping mechanism of proton in	19
	PEM	
Figure 2.3	The schematic presentation of the Vehicular Mechanism as	20
	proton conduction in Nafion [®] membranes	
Figure 2.4	Cyclic voltammograms (CVs) of Pt-Ru/MCN, Pt-Ru/t-	51
	MWCNT, Pt-Ru/MWCNT and Pt-Ru/Vulcan XC	
	electrocatalysts in 0.5 M H_2SO_4 and 1 M ethanol solution with	
	a scan rate 20 mV/s and at room temperature of 25 °C	
Figure 2.5	Cyclic voltammograms (CVs) of (a) Pt/C cathode in 0.5 M	61
	HClO ₄ saturated with oxygen and nitrogen gas and (b) PtRu/C,	
	Pt-black HSA and Pt/C cathode in the presence of oxygen in	
	0.5 M HClO ₄ solution with scan rate of 10 mV/s at a	
	temperature of 42 °C	
Figure 3.1	Schematic of the three-electrode half-cell experimental set-up	78
	to study single electrode performance	
Figure 3.2	Schematic of single direct ethanol fuel cell (DEFC) set-up	80
Figure 3.3	Photographic view of the flow channel	81
Figure 3.4	Scheme of post-treated conditions of the $Pt-Ru/C_{AB}$ -syn	86
	electrocatalyst by modified polyol method	
Figure 3.5	Three layers composite of the fabricated electrode	94
Figure 3.6	Schematic of the clamped MEA	96
Figure 3.7	Working electrode for electrochemical characterization.	97
Figure 5.1	XRD patterns of (a) pristine acetylene black carbon (C_{PAB}) and	110
	(b) functionalized acetylene black carbon (C_{AB}) support	
Figure 5.2	FTIR spectra of (a) pristine acetylene black carbon (C_{PAB}) and	111
	(b) functionalized acetylene black carbon (C_{AB}) support	
Figure 5.3a	FESEM image of pristine acetylene black carbon (CPAB)	113

Figure 5.3b	FESEM image of functionalized acetylene black carbon (C_{AB})	113
Figure 5.4	XRD patterns of (a) Pt-Ru/C _{PAB} -PLM, (b) Pt-Ru/C _{PAB} -FAM,	115
	(c) Pt-Ru/C _{AB} -PLM, (d) Pt-Ru/C _{AB} -FAM, (e) commercial Pt-	
	Ru/C and (f) Pt/CAB-PLM electrocatalysts	
Figure 5.5a	FESEM image of Pt-Ru/C _{PAB} -PLM electrocatalyst	119
Figure 5.5b	FESEM image of Pt-Ru/CPAB-FAM electrocatalyst	119
Figure 5.5c	FESEM image of Pt-Ru/C _{AB} -PLM electrocatalyst	120
Figure 5.5d	FESEM image of Pt-Ru/CAB-FAM electrocatalyst	120
Figure 5.5e	FESEM image of commercial Pt-Ru/C electrocatalyst	121
Figure 5.6a	TEM image and histogram of metal particle size distribution of	122
	Pt-Ru/C _{PAB} -PLM electrocatalyst	
Figure 5.6b	TEM image and histogram of metal particle size distribution of	123
	Pt-Ru/C _{PAB} -FAM electrocatalyst	
Figure 5.6c	TEM image and histogram of metal particle size distribution of	123
	Pt-Ru/C _{AB} -PLM electrocatalyst	
Figure 5.6d	TEM image and histogram of metal particle size distribution of	124
	Pt-Ru/C _{AB} -FAM electrocatalyst	
Figure 5.6e	TEM image and histogram of metal particle size distribution of	124
	commercial Pt-Ru/C electrocatalyst	
Figure 5.7a	XPS spectra in Pt 4f region of Pt-Ru/C _{PAB} -PLM	127
	electrocatalyst. The solid line represents the XPS fitted spectra	
	and the broken line represents the peaks due to different Pt	
	oxidation state corresponds to Pt^0 , Pt^{2+} and Pt^{4+}	
Figure 5.7b	XPS spectra in Pt 4f region of Pt-Ru/C _{PAB} -FAM	127
	electrocatalyst. The solid line represents the XPS fitted spectra	
	and the broken line represents the peaks due to different Pt	
	oxidation state corresponds to Pt^0 , Pt^{2+} and Pt^{4+}	
Figure 5.7c	XPS spectra in Pt 4f region of Pt-Ru/CAB-PLM electrocatalyst.	128
	The solid line represents the XPS fitted spectra and the broken	
	line represents the peaks due to different Pt oxidation state	
	corresponds to Pt^0 , Pt^{2+} and Pt^{4+}	

Figure 5.7d	XPS spectra in Pt 4f region of Pt-Ru/C _{AB} -FAM electrocatalyst.	128
	The solid line represents the XPS fitted spectra and the broken	
	line represents the peaks due to different Pt oxidation state	
	corresponds to Pt^0 , Pt^{2+} and Pt^{4+}	
Figure 5.7e	XPS spectra in Pt 4f region of commercial Pt-Ru/C	129
	electrocatalyst. The solid line represents the XPS fitted spectra	
	and the broken line represents the peaks due to different Pt	
	oxidation state corresponds to Pt^0 , Pt^{2+} and Pt^{4+}	
Figure 5.8	C(1s) + Ru(3d) region in (a) Pt-Ru/C _{PAB} -PLM, (b) Pt-Ru/C _{PAB} -	131
	FAM, (c) $PtRu/C_{AB}$ -PLM, (d) $Pt-Ru/C_{AB}$ -FAM and (e)	
	commercial Pt-Ru/C electrocatalysts	
Figure 5.9a	EDX pattern of Pt-Ru/C _{PAB} -PLM electrocatalyst	133
Figure 5.9b	EDX pattern of Pt-Ru/C _{PAB} -FAM electrocatalyst	133
Figure 5.9c	EDX pattern of Pt-Ru/CAB-PLM electrocatalyst	134
Figure 5.9d	EDX pattern of Pt-Ru/C _{AB} -FAM electrocatalyst	134
Figure 5.9e	EDX pattern of commercial Pt-Ru/C electrocatalyst	135
Figure 5.10	CV characteristics of the synthesized Pt-Ru/C _{PAB} -PLM, Pt-	136
	Ru/C_{PAB} -FAM, Pt-Ru/C _{AB} -PLM, Pt-Ru/C _{AB} -FAM and	
	commercial Pt-Ru/C electrocatalysts in 0.5 M HClO ₄ and 1 M	
	ethanol solution at a scan rate of 20 mV/s; Temperature 35° C	
Figure 5.11a	CA test of ethanol oxidation in 0.5 M perchloric acid (HClO ₄)	139
	containing 1 M ethanol (C ₂ H ₅ OH) solution on synthesized Pt-	
	$Ru/C_{PAB}\text{-}PLM,\ Pt\text{-}Ru/C_{PAB}\text{-}FAM,\ PtRu/C_{AB}\text{-}PLM,\ Pt\text{-}Ru/C_{AB}\text{-}PLM,\ Pt$	
	FAM and commercial Pt-Ru/C electrocatalysts at 0.45 V vs.	
	Ag/AgCl at room temperature 35 °C	
Figure 5.11b	CA test of ethanol oxidation in 0.5 M perchloric acid (HClO ₄)	140
	containing 1 M ethanol (C ₂ H ₅ OH) solution on synthesized Pt-	
	$Ru/C_{PAB}\text{-}PLM,\ Pt\text{-}Ru/C_{PAB}\text{-}FAM,\ PtRu/C_{AB}\text{-}PLM,\ Pt\text{-}Ru/C_{AB}\text{-}PLM,\ Pt$	
	FAM and commercial Pt-Ru/C electrocatalysts at 0.8 V vs.	
	Ag/AgCl at room temperature 35 °C	

- **Figure 5.12** Cyclic voltammograms for Pt/C_{HiSPEC} cathode in 0.5 M HClO₄ 142 electrolyte solution saturated with pure oxygen or nitrogen gas at a scan rate of 20 mV/s; room temperature of 30 °C
- Figure 5.13 Single cell performance characteristics for different anode 143 electrocatalysts for anode feed of 1 M ethanol. Cathode feed: humidified pure oxygen; $P_{cathode} = 1$ bar (absolute); Solid linepolarization curves; Dotted line-power density curves
- Figure 5.14 Single cell performance characteristics for 146 anode electrocatalyst Pt-Ru/C_{AB}-PLM using varying ethanol concentration as anode feed at a cell temperature of 35 °C. Cathode feed: pure humidified oxygen; $P_{cathode} = 1$ bar (absolute); Dotted line-power density curves; Solid linepolarization curves
- **Figure 5.15** Single cell performance characteristics for varying cell 148 temperatures using an anode feed of 2 M ethanol solution. Cathode feed: pure humidified oxygen; $P_{cathode} = 1$ bar (absolute); Dotted line-power density curves; Solid line-polarization curves
- Figure 5.16 XRD patterns of (a) Pt-Ru/C_{AB}-syn, (b) Pt-Ru/C_{AB}-H₂-RT, (c) 151 Pt-Ru/C_{AB}-Air-160, (d) Ru/C_{AB}-H₂-160 and (e) commercial Pt-Ru/C electrocatalysts.
- **Figure 5.17a** FESEM image and corresponding EDX pattern of Pt-Ru/C_{AB}- 154 syn electrocatalyst
- Figure 5.17b FESEM image and corresponding EDX pattern of Pt-Ru/C_{AB}- 155 H_2 -RT electrocatalyst
- Figure 5.17cFESEM image and corresponding EDX pattern of Pt-Ru/ C_{AB} -155Air-160 electrocatalyst
- **Figure 5.17d** FESEM image and corresponding EDX pattern of Ru/C_{AB}-H₂- 156 160 electrocatalysts
- Figure 5.17e FESEM image and corresponding EDX pattern of commercial 156 Pt-Ru/C electrocatalyst

- Figure 5.18a TEM image and corresponding size distribution histogram of 159 Pt-Ru/C_{AB}-syn electrocatalyst.
- **Figure 5.18b** TEM image and corresponding size distribution histogram of 159 Pt-Ru/C_{AB}-H₂-RT electrocatalyst
- **Figure 5.18c** TEM image and corresponding size distribution histogram of 160 Pt-Ru/C_{AB}-Air-160 electrocatalyst
- **Figure 5.18d** TEM image and corresponding size distribution histogram of 160 Ru/C_{AB}-H₂-160 electrocatalyst
- **Figure 5.18e** TEM image and corresponding size distribution histogram of 161 commercial Pt-Ru/C electrocatalyst
- **Figure 5.19** Cyclic voltammograms of synthesized Pt-Ru/C_{AB}-syn, Pt- 163 Ru/C_{AB}-H₂-RT, PtRu/C_{AB}-Air-160, Ru/C_{AB}-H₂-160 and commercial Pt-Ru/C electrocatalysts in 0.5 M HClO₄ containing 2 M ethanol with a scan rate of 20 mV/s and at a temperature of 40 °C
- Figure 5.20a CA tests of ethanol oxidation in 0.5 M perchloric acid (HClO₄) 166 containing 2 M ethanol solution on synthesized Pt-Ru/C_{AB}-syn, Pt-Ru/C_{AB}-H₂-RT, Pt-Ru/C_{AB}-Air-160, Ru/C_{AB}-H₂-160, and commercial Pt-Ru/C electrocatalysts at 0.45 V vs. Ag/AgCl at room temperature of 40 °C
- Figure 5.20b CA tests of ethanol oxidation in 0.5 M perchloric acid (HClO₄) 167 containing 2 M ethanol solution on synthesized Pt-Ru/C_{AB}-syn, Pt-Ru/C_{AB}-H₂-RT, Pt-Ru/C_{AB}-Air-160, Ru/C_{AB}-H₂-160, and commercial Pt-Ru/C electrocatalysts at 0.8 V vs. Ag/AgCl at room temperature of 40 °C
- Figure 5.21 Polarization and power density curves for different synthesized 168 electrocatalysts as anode with 1 mg/cm² electrocatalyst loading and the cathode (commercial Pt/C_{HiSPEC}) with 1 mg/cm² electrocatalyst loading at a cell temperature of 40 °C. Anode: 2 M C₂H₅OH, 1.2 ml/min. Cathode: humidified oxygen, 60 ml/min. Solid electrolyte: Nafion[®] 117 membranes

- **Figure 5.22** Single cell performance characteristics for anode 171 electrocatalyst Pt-Ru/C_{AB}-H₂-RT using varying ethanol concentration as anode feed at a cell temperature of 40 °C. Cathode feed: pure humidified oxygen; $P_{cathode} = 1$ bar (absolute); Dotted line-power density curves; Solid line-polarization curves
- Figure 5.23 Performance curves of the synthesized Pt–Ru/C_{AB}-H₂-RT 173 electrocatalyst with 1 mg/cm² electrocatalyst loading in anode side and the commercial Pt/C_{HiSPEC} electrocatalyst as a cathode with 1 mg/cm² electrocatalyst loading at various temperatures. Anode: 2 M ethanol, 1.2 ml/min flow rate. Cathode: humidified oxygen, 60 ml/min. Solid electrolyte: Nafion[®] 117 membranes
- Figure 5.24 XRD patterns of (a) p-MWCNT and (b) f-MWCNT support 174 material
- Figure 5.25 FTIR spectra of (a) p-MWCNT and (b) f-MWCNT support 176 material
- Figure 5.26 XRD patterns of (a) Pt-Ru (1:1)/f-MWCNT, (b) Pt-Re (1:1)/f- 179 MWCNT, (c) Pt-Ru-Re (1:1:1)/f-MWCNT, (d) Pt-Ru-Re (1:1:0.5)/f-MWCNT and (e) Pt-Ru-Re (1:1:0.25)/f-MWCNT electrocatalysts
- Figure 5.27a TEM micrograph and the corresponding particle size 182 distribution histogram of Pt-Ru (1:1)/f-MWCNT electrocatalyst.
- **Figure 5.27b** TEM micrograph and the corresponding particle size 182 distribution histogram of Pt-Re (1:1)/f-MWCNT electrocatalyst
- Figure 5.27c TEM micrograph and the corresponding particle size 183 distribution histogram of Pt-Ru-Re (1:1:1)/f-MWCNT electrocatalyst

Figure 5.27d	TEM micrograph and the corresponding particle size	183
	distribution histogram of Pt-Ru-Re (1:1:0.5)/f-MWCNT	
	electrocatalyst	
Figure 5.27e	TEM micrograph and the corresponding particle size	184
	distribution histogram of Pt-Ru-Re (1:1:0.25/f-MWCNT)	
	electrocatalyst	
Figure 5.28a	FESEM image and corresponding color mapping of Pt-Ru	186
	(1:1)/f-MWCNT electrocatalyst	
Figure 5.28b	FESEM image and corresponding color mapping of Pt-Re	186
	(1:1)/f-MWCNT electrocatalyst	
Figure 5.28c	FESEM image and corresponding color mapping of Pt-Ru-Re	187
	(1:1:1)/f-MWCNT electrocatalyst	
Figure 5.28d	FESEM image and corresponding color mapping of Pt-Ru-Re	187
	(1:1:0.5)/f-MWCNT electrocatalyst	
Figure 5.28e	FESEM image and corresponding color mapping of Pt-Ru-Re	188
	(1:1:0.25)/f-MWCNT electrocatalyst	
Figure 5.29	Cyclic voltammetry curves of Pt-Ru (1:1)/f-MWCNT, Pt-Re	190
	(1:1)/f-MWCNT, Pt-Ru-Re (1:1:1)/f-MWCNT, Pt-Ru-Re	
	(1:1:0.5)/f-MWCNT and Pt-Ru-Re (1:1:0.25)/f-MWCNT	
	electrocatalysts in 0.5 M HClO ₄ at room temperature of 30 $^\circ\text{C}$	
	with a scan rate of 50 mV/s	
Figure 5.30	CVs characteristics for ethanol electrooxidation on Pt-Ru	192
	(1:1)/f-MWCNT, Pt-Re (1:1)/f-MWCNT, Pt-Ru-Re (1:1:1) /f-	
	MWCNT, Pt-Ru-Re (1:1:0.5)/f-MWCNT and Pt-Ru-Re	
	(1:1:0.25)/f-MWCNT electrocatalysts in 2 M ethanol + 0.5 M	

Figure 5.31a CA curves of Pt-Ru (1:1)/f-MWCNT, Pt-Re (1:1)/f-MWCNT, 196 Pt-Ru-Re (1:1:1) /f-MWCNT, Pt-Ru-Re (1:1:0.5)/f-MWCNT and Pt-Ru Re (1:1:0.25)/f-MWCNT electrocatalysts recorded in 2 M ethanol + 0.5 M HClO₄ solution at fixed potential of 0.55 V vs. Ag/AgCl at room temperature of 30 °C

HClO₄ solution at room temperature of 30 °C with a scan rate

of 5 mV/s

Figure 5.31b	CA curves of Pt-Ru (1:1)/f-MWCNT, Pt-Re (1:1)/f-MWCNT,	197
	Pt-Ru-Re (1:1:1) /f-MWCNT, Pt-Ru-Re (1:1:0.5)/f-MWCNT	
	and Pt-Ru-Re (1:1:0.25)/f-MWCNT electrocatalysts recorded	
	in 2 M ethanol + 0.5 M HClO ₄ solution at fixed potential of 0.8	
	V vs. Ag/AgCl at room temperature of 30 °C	
Figure 5.32a	FESEM image of blank GDL/carbon paper	199
Figure 5.32b	FESEM image of anode electrocatalyst Pt-Ru-Re (1:1:0.5)/f-	199
	MWCNT loading of 0.5 mg/cm^2	
Figure 5.32c	FESEM image of anode electrocatalyst Pt-Ru-Re (1:1:0.5)/f-	200
	MWCNT loading of 1 mg/cm ²	
Figure 5.32d	FESEM image of anode electrocatalyst Pt-Ru-Re (1:1:0.5)/f-	200
	MWCNT loading of 1.5 mg/cm ²	
Figure 5.33a	FESEM image of cathode electrocatalyst commercial	202
	Pt/C _{HiSPEC} loading of 0.5 mg/cm ²	
Figure 5.33b	FESEM image of cathode electrocatalyst commercial	202
	Pt/C _{HiSPEC} loading of 1 mg/cm ²	
Figure 5.33c	FESEM image of cathode electrocatalyst commercial	203
	Pt/C _{HiSPEC} loading of 1.5 mg/cm ²	
Figure 5.34	Single cell performance characteristics for anode	204
	electrocatalysts Pt-Ru (1:1)/p-MWCNT and Pt-Ru (1:1)/f-	
	MWCNT using anode feed of 2 M ethanol solution. Cathode	
	feed: humidified pure oxygen; $P_{cathode} = 1$ bar (absolute); Solid	
	line-polarization curves; Dotted line-power density curves	
Figure 5.35	Single cell performance characteristics for different anode	205
	electrocatalysts using anode feed of 2 M ethanol solution.	
	Cathode feed: humidified pure oxygen; $P_{cathode} = 1$ bar	
	(absolute); Solid line-polarization curves; Dotted line-power	
	density curves	

- Figure 5.36 Single cell performance characteristics for anode 209 electrocatalyst Pt-Ru-Re (1:1:0.5)/f-MWCNT using varying anode feed ethanol concentration as at a cell temperature of 30 °C. Cathode feed: pure humidified oxygen; $P_{cathode} = 1$ bar (absolute); Dotted line-power density curves; Solid line-polarization curves
- **Figure 5.37** Single cell performance characteristics for anode 211 electrocatalyst Pt-Ru-Re (1:1:0.5)/f-MWCNT at different electrocatalyst loading using an anode feed of 2 M ethanol solution. Cathode feed: pure humidified oxygen; $P_{cathode} = 1$ bar (absolute); Dotted line-power density curves; Solid line- polarization curves
- Figure 5.38Single cell performance characteristics for commercial cathode212electrocatalyst Pt/C_{HiSPEC} at different electrocatalyst loading
using an anode feed of 2 M ethanol solution. Cathode feed:
pure humidified oxygen; $P_{cathode} = 1$ bar (absolute); Dotted line-
power density curves; Solid line- polarization curves
- **Figure 5.39** Single cell performance characteristics for anode 214 electrocatalyst Pt-Ru-Re (1:1:0.5)/f-MWCNT at varying cell temperatures using an anode feed of 2 M ethanol solution. Cathode feed: pure humidified oxygen; $P_{cathode} = 1$ bar (absolute); Dotted line power density curves; Solid linepolarization curves
- **Figure 5.40** Stability test of the DEFC using synthesized bi-metallic Pt- 216 Ru/C_{AB}-PLM (without post treated), Pt-Ru/C_{AB}-H₂-RT (with post treated), commercial Pt-Ru/C and trimetallic Pt-Ru-Re (1:1:0.5)/f-MWCNT as anode electrocatalysts with 2 M ethanol at constant load of 20 mA at a temperature of 30 °C
- Figure 5.41
 Response surface plot of the model predicted versus actual
 229

 power density of DEFC
 229
- Figure 5.42
 Response surface plot of the residuals versus model predicted
 230

 power density of DEFC
 230

- **Figure 5.43a** Two-dimensional contour plot showing the effect of ethanol 231 concentration, anode electrocatalyst loading and their mutual interaction on the power density at an operating temperature of 79.48 °C
- **Figure 5.43b** Three-dimensional response plot showing the effect of ethanol 232 concentration, anode electrocatalyst loading and their mutual interaction on the power density at an operating temperature of 79.48 °C
- Figure 5.44a Two-dimensional contour plot showing the effect of operating 233 temperature, ethanol concentration and their mutual interaction on the power density at an electrocatalyst loading of 1.14 mg/cm²
- Figure 5.44b Three-dimensional response plot showing the effect of 234 operating temperature, ethanol concentration and their mutual interaction on the power density at an electrocatalyst loading of 1.14 mg/cm^2
- **Figure 5.45a** Two-dimensional contour plot showing the effect of 235 electrocatalyst loading, operating temperature and their mutual interaction on the power density at an ethanol concentration of 2.03 M
- **Figure 5.45b** Three-dimensional response plot showing the effect of 236 electrocatalyst loading, operating temperature and their mutual interaction on the power density at an ethanol concentration of 2.03 M
- Figure 5.46Optimum point detection for the maximum power density of237DEFC from the perturbation curve
- Figure 5.47Polarization curves of three repeated confirmation tests238

LIST OF TABLES

Table 2.1	Properties of commercial Nafion [®] membranes	21
Table 2.2	Fabrication of electrocatalyst employed for ethanol	53
	electrooxidation at the anode in acidic conditions and	
	techniques used for the analysis of the system	
Table 2.3	Synthesis methods of carbon supported Pt-based	66
	electrocatalysts as potential anode materials for direct	
	alcohol fuel cell (DEFC)	
Table 3.1	Typical properties of the commercial Nafion [®] 117	73
	membranes (Alfa Aesar, USA)	
Table 3.2	Typical properties of Toray carbon paper (TGP-H-60, Alfa	74
	Aesar, USA)	
Table 3.3	Composition and properties of Nafion [®] ionomer solution	75
	(Grade: D-520, Alfa Aesar, USA)	
Table 3.4	Properties of PTFE dispersion (Sigma Aldrich, USA)	75
Table 3.5	Typical properties of ethanol fuel at 1.01 bar and 298 K	76
Table 3.6	Cost analysis and comparison of properties of the carbon	77
	support acetylene black with Vulcan XC-72R	
Table 3.7	Metal compositions of various synthesized bi-metallic and	87
	tri-metallic electrocatalysts supported on f-MWCNT	
Table 4.1	Experimental ranges and levels of independent test variables	105
	studied in the BBD model	
Table 5.1	Physical properties of acetylene black support material	110
	derived from XRD patterns	
Table 5.2	Comparison and shifting of bands data of pristine (C_{PAB}) and	112
	functionalized acetylene black carbon (C_{AB}) support in FTIR	
	analysis	
Table 5.3	Data calculated from XRD patterns of electrocatalysts by the	117
	Debye Scherrer's equation and Vegard's law	
Table 5.4	The average particle size and specific area of electrocatalysts	125
	from TEM analysis and comparison with XRD results	

Table 5.5	Different oxidation states of Pt species and their relative	130
	intensities obtained from binding energies (BE) of the Pt	
	4f7/2 component of XPS spectra for Pt-Ru/CPAB-PLM, Pt-	
	Ru/C _{PAB} -FAM, Pt-Ru/C _{AB} -PLM, Pt-Ru/C _{AB} -FAM and	
	commercial Pt-Ru/C electrocatalysts	
Table 5.6	EDX results of the synthesized Pt-Ru/CPAB-PLM, Pt-	135
	Ru/C _{PAB} -FAM, PtRu/C _{AB} -PLM, Pt-Ru/C _{AB} -FAM and	
	commercial Pt-Ru/C electrocatalysts.	
Table 5.7	CV results of the synthesized Pt-Ru/C _{PAB} -PLM, Pt-Ru/C _{PAB} -	138
	FAM, Pt-Ru/CAB-PLM, Pt-Ru/CAB-FAM, and commercial	
	Pt-Ru/C electrocatalysts at 20 mV/s sweep rate	
	for ethanol electrooxidation	
Table 5.8	Data obtained from XRD patterns of electrocatalysts	152
	analyses by the Debye Scherrer's equation and Vegard's law	
Table 5.9	EDX compositions of synthesized Pt-Ru/CAB-syn, Pt-	157
	Ru/C _{AB} -H ₂ -RT, Pt–Ru/C _{AB} -Air-160, Pt–Ru/C _{AB} -H ₂ -160 and	
	commercial Pt-Ru/C electrocatalysts	
Table 5.10	The average particle size of electrocatalysts from TEM	162
	analysis and comparison with XRD results.	
Table 5.11	CV results of synthesized Pt-Ru/C _{AB} -syn, Pt-Ru/C _{AB} -H ₂ -RT,	164
	Pt-Ru/CAB-Air-160, Ru/CAB-H2-160, and commercial Pt-	
	Ru/C electrocatalysts at 20 mV/s sweep rate for ethanol	
	electrooxidation	
Table 5.12	Summary of performance of synthesized Pt-Ru/CAB-syn, Pt-	169
	Ru/C _{AB} -H ₂ -RT), Pt-Ru/C _{AB} -Air-160, Pt- Ru/C _{AB} -H ₂ -160 and	
	commercial Pt-Ru/C electrocatalysts in single fuel cell tests	
	for 2 M ethanol at a cell temperature of 40 $^{\circ}C$	
Table 5.13	Summary of performance of synthesized Pt-Ru/C_{AB}-H_2-RT	173
	electrocatalysts in single fuel cell tests for 2 M ethanol at	
	different operating cell temperature.	
Table 5.14	Comparison and shifting of bands data of p-MWCNT and f-	177
	MWCNT support using FTIR analysis	

Table 5.15	The Pt (220) peak, lattice parameters, and crystallographic	181
	properties of the electrocatalysts from XRD analysis	
Table 5.16	The average particle size of electrocatalysts evaluated from	185
	TEM analysis and comparison with XRD results	
Table 5.17	Atomic composition of the synthesized bi-metallic and tri-	189
	metallic electrocatalysts evaluated from FESEM-EDX	
	results	
Table 5.18	Results of hydrogen desorption charge and its	191
	electrochemical active surface area (ECSA) of electrode	
	electrocatalysts from CVs analysis	
Table 5.19	Summary of electrocatalytic performance of electrocatalysts	193
	towards ethanol electrooxidation	
Table 5.20	Summary of performance of different anode electrocatalysts	206
	in single cell DEFC tests for 2 M ethanol at a cell	
	temperature of 30 °C	
Table 5.21	Summary of performance of synthesized Pt-Ru-Re	215
	(1:1:0.5)/f-MWCNT electrocatalyst in single fuel cell tests	
	for 2 M ethanol at various operating cell temperature	
Table 5.22	Performance comparison of synthesized best bi-metallic and	219
	tri-metallic PtRu/C _{AB} -PLM, Pt-Ru/C _{AB} -H ₂ RT, commercial	
	Pt-Ru/C (30%:15%) and tri-metallic Pt-RuRe (1:1:0.5)/f-	
	MWCNT electrocatalysts as anode using optimum	
	conditions	
Table 5.23	Individual efficiencies for ethanol fuel used in direct ethanol	223
	fuel cell using best bi-metallic Pt-Ru/C _{AB} -PLM. Pt-Ru/C _{AB} -	_
	H ₂ -RT and commercial Pt-Ru/C and trimetallic Pt-Ru-Re	
	(1:1:0.5)/f-MWCNT as anode electrocatalysts at room	
	temperature	
Table 5.24	Box-Behnken design (BBD) matrix for three independent	224
	variables with response values, i.e. the DEFC power density	

Table 5.25	Comparison of the ANOVA model results for ethanol	225
	concentration, anode electrocatalyst loading and cell	
	temperature	
Table 5.26	ANOVA results of the quadratic model for the response	227
Table 5.27	Developed quadratic model validation	239

LIST OF ABBREVIATIONS

Alphabetic symbols: Meaning

А	Parameter related to ethanol concentration
a	lattice parameter
В	Parameter related to Anode electrocatalyst loading
С	Parameter related to cell temperature
C _{PAB}	Pristine acetylene black
C _{AB}	Functionalized acetylene black
c _p	Central points
d_c	average crystallite size
d_{hkl}	interplanar distance between two planes of Miller index (hkl)
d_p	average particle size
2FI	Two factor interaction
FAM	Formic acid reduction method
k	number of factors studied in the experiment
Ν	Total number of experiments to be performed
n	total number of counted electrocatalyst nanoparticles
PLM	Polyol reduction method
p-value	Probability value
p-MWCNT	Pristine Multi-walled carbon nanotubes
f-MWCNT	Functionalized Multi-walled carbon nanotubes
R^2	Coefficient of determination
S _{BET}	Specific surface area calculated by multi-points Brunauer-Emmet-Teller
	method, m ² /g
X_i and X_j	Independent variables for the studied factor
Y	Predicted response

Abbreviations: Meaning

AFC	Alkaline Fuel Cell
ANOVA	Analysis of variance
BBD	Box-Behnken Design

CA	Chronoamperometry
CCD	Central composite design
CNTs	Carbon nanotubes
ССМ	Catalyst-coated membrane
CV	Cyclic Voltammetry
3D	Three-dimensional
2D	Two-dimensional
DEFC	Direct Ethanol Fuel Cell
DEMS	Differential electrochemical mass spectrometry
DF	Degree of freedom
ECSA	Electrochemically active surface area
EDX	Energy dispersive X-ray spectroscopy
EOR	Ethanol Oxidation Reaction
FESEM	Field Emission Scanning Electron Microscopy
FLG	Few layered graphene
FTIR	Fourier Transformed Infrared Spectroscopy
FWHM	Full width at half maximum
GC	Gas chromatography
GDL	Gas Diffusion Layer
HPLC	High Performance Liquid Chromatography
MEA	Membrane Electrode Assembly
MWCNTs	Multi-walled carbon nanotubes
MCFC	Molten Carbonate Fuel Cell
NPs	Nanoparticles
OCV	Open circuit voltage
ORR	Oxygen Reduction Reaction
PEM	Proton exchange membrane
PEMFC	Proton Exchange Membrane Fuel Cell
PAFC	Phosphoric Acid Fuel Cell
PTFE	Polytetrafluoroethylene
PRESS	Predicted residual error sum of squares
RSM	Response surface methodology
SOFC	Solid Oxide Fuel Cell

SEM	Scanning Electron Microscope
SWNTs	Single-walled carbon nanotubes
TEM	Transmission Electron Microscopy
XRD	X-Ray Diffraction
XPS	X-ray photoelectron spectroscopy

Greek Symbols: Meaning

α_o	Model intercept coefficient
$lpha_i$	Linear effect regression coefficients
$lpha_{ii}$	Quadratic effect regression coefficients
$lpha_{ij}$	Interaction effect regression coefficients
μ	Micro
β	width of the peak (in radians) at its half-height
К	Scherrer constant (0.90 for spherical crystallite)
λ	X-ray wavelength used (1.54056 Å for Cu-K $_{\alpha 1}$ radiation)

PREFACE

Global demand for energy consumption is growing dramatically day by day due to the exponential growth of the population, human development of modern society and industrialization. So far, fossil fuel reserves have met the world's current major energy requirements, which are limited in supply and rapidly depleting. Furthermore, the production and use of fossil fuels release a significant amount of contaminants e.g., CO₂, SO_X, NO_X, dust, soot and smoke into our atmosphere, which raises serious environmental concerns such as environmental pollution and global warming which adversely affect human health. A growing awareness of the environmental crisis is driving world scientists and researchers to develop an interest in alternative energy sources that are cost-effective with fossil fuels, as well as cleaner, sustainable, renewable and environmentally friendly. The direct ethanol fuel cells (DEFC) is considered to be one of the most promising technologies for powering portable electronic devices and stationary equipment due to its low emission levels, high efficiency, simplicity, the convenience of storage and handling, and high energy density of liquid ethanol.

However, the critical issues in DEFC are the major problems like breaking the C-C bond of the ethanol molecule and slow reaction kinetics at low temperatures using current Ptbased electrocatalysts. Moreover, the surface of Pt active sites gets poisoned quickly by strongly adsorbed intermediate species e.g., CH_X and CO generated during the dissociative adsorption of ethanol. Hence, tremendous efforts have been made to develop advanced electrocatalysts and support materials with high electrocatalytic activity for ethanol electrooxidation and durability. To address these issues, coupling Pt with other less expensive metals such as Ru, Sn, Pd, W or Rh to form bi-metallic electrocatalysts has been extensively investigated for ethanol electrooxidation.

The appropriate electrocatalyst for ethanol electrooxidation is still in the developing stage. Thus, it is difficult to suggest the most suitable electrocatalyst which could split the C-C bond of ethanol molecule. This C-C bond reduces the probability of molecule to cross energy hills thereby lowering the anode kinetics. Although, many efforts have been given to synthesize suitable electrocatalyst for ethanol electrooxidation, in most of the studies the single cell DEFC performance is not optimistic. It is also seen from literature that almost no work on Pt-based bi-metallic and tri-metallic electrocatalysts supported on functionalized black acetylene (C_{AB}) and functionalized multi-walled carbon nanotubes (f-MWCNTs) have been found in the open literature for DEFC applications. No detailed studies on direct ethanol fuel cell (DEFC) in acidic medium have been performed using tri-metallic Pt-Ru-Re/f-MWCNT electrocatalysts of different metal combinations as anode. Thus, in the present study development of highly efficient carbon supported Ptbased anode electrocatalysts has been considered for ethanol electrooxidation. It is evident that electrocatalyst is most active and key component of any fuel cell, thus special emphasis was given in the present work to synthesize different types of Pt-based bimetallic and tri-metallic electrocatalysts supported on functionalized acetylene black carbon (C_{AB}) or functionalized multi-walled carbon nanotubes (f-MWCNT) via adopting the two different synthesis routes such as the polyol reduction method (PLM) and the formic acid reduction method (FAM). The physicochemical properties of synthesized electrocatalysts were evaluated using the X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analyses.

The laboratory synthesized different carbon supported Pt-based bi-metallic and trimetallic electrocatalysts were assigned as anodic electrocatalysts, while the commercial Pt/C_{HiSPEC} (40 % wt.) electrocatalyst was used as cathodic electrocatalyst. To fabricate the electrodes, the electrocatalyst ink was made by ultrasonically mixing the required amount of electrocatalyst powder in a mixture of acetylene black carbon, isopropyl alcohol, Nafion[®] ionomer, and PTFE dispersion to form uniform ink. Nafion[®] ionomer and PTFE function as binders and assist in the creation of pores and channels. The ink was coated onto the porous carbon paper/GDL of area 6.25 cm² using a thin brush. The coated electrodes were sintered at a high temperature. The electrocatalytic activities of the electrodes were evaluated by cyclic voltammetry (CV) and chronoamperometry (CA) techniques using a three electrode cell assembly at room temperature.

The post-treated bi-metallic electrocatalyst Pt-Ru/C_{AB}-H₂-RT under H₂ flow at room temperature electrocatalyst showed the improved surface morphology with the highest alloying degree of about 40.84 % Ru with Pt noble metal than that of without post treated bi-metallic Pt-Ru/C_{AB}-PLM. The TEM and SEM analysis of electrocatalyst indicate that the metal nanoparticles are homogeneously dispersed with a size range of 1.5-6 nm on the surface of functionalized carbon nano support for the Pt-Ru/C_{AB}-H₂-RT electrocatalyst and were very similar to commercial Pt-Ru/C (1.5-5.5 nm) electrocatalyst.

Tri-metallic electrocatalyst by addition of Re to Pt-Ru/C showed improved electrocatalytic activity in half cell and single DEFC. The synthesized tri-metallic Pt-Ru-Re (1:1:0.5)/f-MWCNT showed excellent electrocatalytic activity for ethanol electrooxidation among all synthesized bi-metallic and tri-metallic electrocatalysts. The TEM analyses of tri-metallic Pt-Ru-Re (1:1:0.5)/f-MWCNT reveals that the electrocatalyst nanoparticles were well dispersed on the surface of f-MWCNT, with spherical shapes and small average particle sizes (2.68-3.53 nm). The XRD analysis and FE-SEM element mapping showed the formation of a homogeneous alloy structure of Pt, Ru, and Re in tri-metallic Pt-Ru-Re (1:1:0.5)/f-MWCNT electrocatalyst with an average crystallite size of 2.11 nm. It was noted the desired elements composition obtained from EDX analysis was nearly in good agreement with the nominal ones for all the electrocatalysts.

The performances of synthesized electrocatalysts as anode in single cell DEFC were evaluated using ethanol as fuel. The commercial Nafion[®] 117 membranes were used as solid electrolyte for MEA fabrication. In a single cell DEFC experiments, using synthesized Pt-Ru/C_{AB}-PLM electrocatalyst as the anode, the maximum OCV of 0.71 V and power density of 6.02 mW/cm² at a current density of 19.52 mA/cm² were achieved at room temperature of 35 °C for fuel ethanol concentration of 1 M. Whereas, the maximum OCV of 0.717 and the maximum power density of 5.13 mW/cm² at a current density of 18.70 mA/cm² were generated using the commercial Pt-Ru/C electrocatalyst as an anode under the same conditions. The peak power density of Pt-Ru/C_{AB}-PLM (6.02 mW/cm²) electrocatalyst was superior to that of Pt-Ru/C_{PAB}-PLM (5.47 mW/cm²), Pt-Ru/C_{PAB}-FAM (3.85 mW/cm²), Pt-Ru/C_{AB}-FAM (4.54 mW/cm²) and commercial Pt-Ru/C (5.13 mW/cm²) electrocatalysts. Moreover, it was also noted that electrocatalysts supported on functionalized carbon support (C_{AB}) when adopted the same synthesis process.

Similarly, when the most active post-treated Pt-Ru/C_{AB}-H₂-RT was used as anode electrocatalyst for the operation of DEFC, OCV of 0.718 V and maximum power density of 9.15 mW/cm² were obtained, and these results are better than that of Pt-Ru/C_{AB}-syn (0.658 V, 4.97 mW/cm²), Pt-Ru/C_{AB}-Air-160 (0.68 V, 5.79 mW/cm²), Pt-Ru/C_{AB}-H₂-160

(0.712 V, 6.84 mW/cm²) and commercial Pt-Ru/C (0.72 V, 7.86 mW/cm²) electrocatalysts at room temperature of 40 °C with same anode loading of 1 mg/cm² and 2 M ethanol fuel. The single cell DEFC adopting Pt-Ru/C_{AB}-H₂-RT as anode electrocatalyst yielded the maximum OCV of 0.737 V and peak power density of 16.23 mW/cm² at a cell temperature of 80 °C.

The tri-metallic Pt-Ru-Re (1:1:0.5)/f-MWCNT as anode electrocatalyst exhibited the highest electrocatalytic performance in terms of power density than the bi-metallic Pt-Ru (1:1)/f-MWCNT and Pt-Re (1:1)/f-MWCNT and tri-metallic Pt-Ru-Re (1:1:1)/f-MWCNT and Pt-Ru-Re (1:1:0.25)/f-MWCNT electrocatalysts. The highest peak power density of 9.52 mW/cm² was obtained for Pt-Ru-Re (1:1:0.5)/f-MWCNT at a room temperature of 30 °C. Whereas, at the same operating temperature of 30 °C, bi-metallic Pt-Re (1:1)/f-MWCNT and Pt-Ru (1:1)/f-MWCNT resulted in lower power density of 4.74 mW/cm² and 7.48 mW/cm², respectively. The peak power density of the cell increased significantly from 9.52 mW/cm² to 23.2 mW/cm² i.e., 2.44 times higher when cell temperature was raised from 30 °C to 80 °C for Pt-Ru-Re (1:1:0.5)/f-MWCNT as anode electrocatalyst.

The results obtained are discussed and presented in this thesis. For ease of understanding to the readers, the subject matter contained in the thesis has been broadly divided into six different chapters.

Chapter 1 provides a general introduction to the energy scenario, the basic concept of the fuel cell, ethanol as fuel along with its advantages over methanol, anode electrocatalysts, supporting materials and electrocatalyst synthesis methods. **Chapter 2** describes the literature on important DEFC components like electrocatalyst materials, electrocatalyst

characterizations and membrane electrolytes. In particular, the progress made in the development of anode electrocatalyst materials for ethanol electrooxidation has been addressed extensively. It includes the summary of single cell DEFC performances using various anode electrocatalysts along with the investigated operating parameters of the process. At the end of this chapter, the scope of further study on the basis of the literature review and specific objectives of the present work are presented. Chapter 3 explains the materials used in the experiment and the experimental specifics related to the formulation of anode electrocatalysts such as the functionalization of supporting materials, the synthesis of supported nano-electrocatalysts, fabrication of working electrodes cyclic voltammetry and chronoamperometry for electrochemical measurements, the manufacture of anode, cathode and membrane electrode assembly, the fabrication of single cell set-up to evaluate the DEFC cell performance. Chapter 4 elaborates the descriptions of the surface response methodology technique that was also used to optimize the DEFC process parameters and validated with experimental data for the same process parameter actual DEFC set-up. Chapter 5 presents the findings and discussions on physicochemical characterization of synthesized electrocatalysts, surface morphology, crystal structure, particle size and dispersion of the metal nano-particles on the supporting materials. The electrochemical characterization of synthesized electrocatalysts using cyclic voltammetry and chronoamperometry is also discussed. The experimental results of a manufactured single cell using a synthesized electrocatalyst as an anode material are also discussed in detail. Finally, Chapter 6 summarizes the main findings and discussions of the present work, as well as some significant suggestions for further work in this field. At the end of the thesis, the future scope of research work, the appendices and the references are given.