4. Chapter 4: Plan of study

- 4.1 Extraction of Cashew Nut Shell Liquid (CNSL), and isolation of Anacardic Acid
 - i. Extraction of cashew nut shell liquid (CNSL)
 - ii. Isolation of Anacardic Acid from CNSL
 - iii. Isolation of C15:3 and C15:0 among the Anacardic Acid subtypes
 - iv. HPLC analysis
 - v. Identification of the compounds using FT-IR and ¹H NMR
- 4.2 Development of Ana_{C15:3}/HP- β -CD inclusion complex with enhanced solubility and antimicrobial activity.
 - i. Preparation of Ana_{C15:3}/HP-β-CD inclusion complex
 - ii. Evaluation of Ana_{C15:3}/HP-β-CD inclusion complex
 - a) UV–Vis spectroscopy
 - b) Solubility study
 - c) Phase solubility study
 - d) Fourier transform infrared spectroscopy (FT-IR)
 - e) X-ray diffraction (XRD) study
 - f) Differential scanning calorimetry (DSC)
 - g) Scanning electron microscopy (SEM)
 - h) ¹H NMR
 - iii. Antimicrobial activity
 - a) Effect of Ana_{C15:3} and Ana_{C15:3}-inclusion complex on *Staphylococcus aureus* biofilm.
 - b) Microscopic study of biofilm

- 4.3 Development of Chitosan and DNase coated solid lipid nanoparticles encapsulating Ana_{C15:3} form improving antimicrobial activity
 - i. Preparation of Ana_{C15:3} loaded solid lipid nanoparticles
 - ii. Chitosan and DNase coated SLNs
 - iii. Characterization of Ana_{C15:3}-loaded SLNs
 - a) Dynamic light scattering (DLS) studies for particle size, polydispersity index, and zeta potential
 - b) Entrapment efficiency
 - c) Transmission electron microscopy (TEM)
 - d) FT-IR Spectroscopy
 - e) X-Ray Diffraction analysis (XRD)
 - f) *In-vitro* drug release study
 - iv. Antimicrobial study
 - a) Effect of SLNs on the formation of biofilm (Evaluation of biofilm inhibition potential)
 - b) Effect of SLNs on mature biofilm (Evaluation of biofilm eradication potential)
 - c) Microscopic study of biofilm
 - v. Statistical analysis

- 4.4 Evaluation of therapeutic potential of Ana_{C15:0} encapsulated HP-β-CD nanosponge enriched topical gel against UV-B induced skin photoaging.
 - i. Synthesis of HP- β -Cyclodextrin nanosponge
 - ii. Preparation of Ana_{C15:0} loaded nanosponge
 - iii. Optimization of Ana_{C15:0}-NS formulation using 3-level factorial design
 - iv. Evaluation of Ana_{C15:0}-nanosponge
 - a) Determination of particle size, polydispersity index and zeta potential
 - b) Determination of percentage entrapment efficiency (EE%)
 - c) Solubility study
 - d) Fourier transform infrared spectroscopy (FT-IR)
 - e) X-ray diffraction (XRD) study
 - f) Morphology evaluation of Ana_{C15:0} encapsulated nanopsonge
 - g) In-vitro drug release study
- v. Preparation of Ana_{C15:0}-NS enriched topical gel
- vi. Evaluation of Ana_{C15:0}-NS topical gel
 - a) Texture profile Analysis
 - b) Ex-vivo skin permeation and retention study

vii. Animal Study

- a) Determination of reactive oxygen species (ROS) level
- b) Western blot analysis