
Chapter 4

Multifeatures Analysis Based Link

Prediction in Dynamic Social

Networks

This chapter focus on the second objective of this thesis, i.e. Multifeatures Analysis Based

Link Prediction in Dynamic Social Networks. We give an introduction of the considered

problem in section 4.1. Section 4.2 gives the preliminaries and problem statement. Section

4.3 explains the proposed framework as the solution to the defined problem. Experimental

details are given in section 4.4 and their outcomes are discussed in section 4.5. Section 4.6

concludes the overall outcome of the chapter.

4.1 Introduction

Link prediction [27] is a fundamental problem in social network analysis [28] and knowledge

graph completion [29]. Real social networks/knowledge graphs are dynamic in nature that

evolve over time, either by adding/deleting nodes or links between nodes. Data mining

and machine learning algorithms have been used to predict the future or missing links in

the network with the knowledge of existing links and nodes [43, 32, 44]. This has many ap-

plications, such as friend recommendation in social networks [31], click-through prediction
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for target marketing [32], academic recommender systems [33, 34], electric grid network

[35], finding new connections in protein-protein interaction networks [36], metabolic net-

work reconstruction [37] and missing link completion in the knowledge graph [38]. Most of

the previous attempts [44] to solve the link prediction problem consider the static network.

However, almost all real-world networks are dynamic in nature, and they evolve with time

either in terms of change in structure (addition or deletion of nodes or edges) or in terms

of change in attributes of nodes or edges.

A large category of link prediction methods is based on some heuristics such as Common

Neighbours, Jaccard coefficient, Adamic-Adar [31], Preferential Attachment [39], Katz

coefficient [40], PageRank [41], SimAttri [42] and their numerous variants. However, a

major limitation of these heuristics is that they can not deal with high non-linearity in

networks. To tackle this, many advanced models like probabilistic matrix factorization

[45, 46], network embedding based models [47, 48], graph neural network (GNN) models

[49], and stochastic block models [50] have been developed. These methods are powerful

but still lack the ability to analyze the evolution of networks. The typical reason behind

this may be the ignorance of nodes’ individual behaviour, which may be predicted by

considering various factors. Recent studies indicate that the network structure evolution

highly depends on the dynamics of the structure as well as the attributes of the nodes

[51, 52, 53, 24]. Incorporating the node attributes for link prediction proves to be helpful

in achieving better performance in link prediction, especially for sparse graphs. In evolving

networks, as the structure of the network changes with time, the respective attributes of

the nodes also change with time [54, 55, 56]; few common examples include modification

of posts/comments/reviews, updating educational qualification, job organization, political

party, relationship status, and age [57, 58]. Including attributes information with struc-

tural information improves the accuracy of link prediction in dynamic networks; however,

there is still a lot of scopes to improve it further. Many other factors, like location-based

information of nodes and popularity of nodes can also play a major role in tracing the evo-

lution pattern of dynamic attributed networks. Studies [172, 173] shows that the change

in geographical location (mobility factor) affects the evolution of social networks. Some

paper [100, 101, 102] use location-based analysis to find the social communities in the
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networks; we use it here as one factor for link prediction. Another important factor we

consider for link prediction is the popularity of nodes [103]; as we see in our society, most

people want to connect with the popular faces of society.

In this chapter of the thesis, we added mobility, popularity, and similar interests of the

nodes as additional factors along with the structure and attributes to predict the network

evolution pattern and the upcoming links in the evolving social networks. Here, we use

an improved LDA topic model [174, 175] and Hidden Naive Bayesian algorithm [176] to

propose Popularity, interests, location used hidden Naive Bayesian-based model (PILHNB)

model for link prediction in dynamic social networks. See Appendix A for our research

paper supporting this work.

4.2 Problem Description

4.2.1 Data Model

We consider nt number of users as a set of vertices denoted as V t = {v1, . . . , vnt} at times-

tamp t and the set of edges among these users as Et = eij , where each edge eij indicates a

link (e.g., friendship) between vi and vj at timestamp t. Each node vi has a d-dimensional

set of attributes ai ∈ Rd at each timestamp. The node’s geographical location information

is given by Lt = [l1, l2, . . . , lnt ]
t, where li ∈ RM , denotes the checked-in information of

ith user at M different locations. The common interest (interest similarity) vector for

user vi is given by Itvi = [I1, I2, . . . , Ij , . . . , Int ], where Ij denotes the number of common

interests among user vi and vj . The interaction frequency vector for user vi is given

by Atvi = [A1, A2, . . . , Aj , . . . , Ant ], where Aj gives the frequency of interaction between

ith and jth user. The popularity vector is given by Pt = [Pv1 ,Pv2 , . . . ,Pvj , . . . ,Pvnt
],

where Pvj gives the popularity of jth node at timestamp t. The attribute similarity vector

is given by S t
vi = [Sv1 ,Sv2 , . . . ,Svnt

], where S t
vi represents the similarity vector of ith

node with all other nodes in the network.
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For evaluating the popularity of a user, we consider the assumption that, if a user became

popular in social networks, then in the recent past, many users have been added as a

friend/follower to that user. To compute the popularity of a user, we can divide the

friends/followers added to him/her into the fresh set and the old set. If the degree of node

vi at timestamp t is denoted as dvi(t). The number of new edges added with node vi in

the next t′ time span is given by equation 4.1.

∆dvi(t, t
′) = dvi(t+ t′)− dvi(t). (4.1)

For a dataset spans starting from timestamp tx to tz, we divide its edges into the fresh set

and the old set according to a boundary ty ∈ [tx, tz]. If an edge was constructed in [tx, ty)

it belongs to the old set; otherwise, the fresh set.

Popularity: The popularity of a node vi is defined as the fraction of freshly added edges

to the overall edges connected to it. Mathematically it can be represented by the following

equation:

Pvi =
∆dvi(ty, tz − ty)
∆dvi(tx, tz − tx)

=
dvi,fresher
dvi,all

, (4.2)

where dvi,all and dvi,fresher denotes the overall degree and fresher degree of the node vi,

respectively. The value of popularity Pvi lies in [0, 1], and a higher value of Pvi means

higher popularity of node vi. The popularity vector Pt = [Pv1 ,Pv2 , . . . ,Pvnt
] gives the

popularity of nodes at timestamp t. The total number of users at time t is denoted by nt.

The user behaviour pattern distribution for link prediction is denoted as Ω∗ = [θ∗1, θ
∗
2, . . . , θ

∗
nt ]

and it will be mined through our proposed method, where θx is the behaviour pattern dis-

tribution of user vx. The links which will be predicted using our method are represented as

E∗, where E∗ ⊆ (V t×V t)\Et. The problem of link prediction on dynamic social networks

can be formally defined as follows:

Problem Definition: Given, G = {G1, G2, G3, . . . , Gt} as a series of snapshots of
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location-aware dynamic attributed network with evolving edges, change in geographical lo-

cation and node’s attributes during timestamps T = {1, 2, 3, . . . , t}. The link prediction

problem’s objective is to use the key factors to capture the evolution pattern of the net-

work and predict the future links that may appear in Gt+1 as new links E∗. We can make

our model learn users link behaviour pattern distribution Ω∗ till the present snapshot and

predict the new links E∗ in the upcoming snapshot Gt+1. Formally, the problem definition

can be represented as Gt+1 ⇒ f(G, I,A, L,P,S )→ Ω∗, E∗.

4.3 Proposed Framework

To solve the problem of dynamic link prediction defined in the previous section, we pro-

pose a Hidden Naive Bayesian-based link prediction model employing users’ relationships

and behaviour patterns derived from attributes, geographical location, popularity, and

interests of the users. The proposed model has three submodules: controlling elements

quantification, user behaviour pattern modelling, and link prediction module, as shown in

Figure 5.4. In the first module, methods to represent and quantify the various controlling

elements are proposed. In the second module, the user behaviour pattern learning model

for link prediction using topic modelling with modified LDA and HNB is constructed. In

the third module, the trained model is used to determine the user’s link behaviour pattern

distribution and perform a link prediction task.

Series of graph snapshots

Gt = G1, G2, . . . , Gnt with user

attributes and information re-

garding Location check-ins, and

other important activities of users.

PILHNB

Link predic-

tion model

User behaviour

pattern distri-

bution, Pre-

dicted Links

and upcoming

snapshot Gnt+1 .

Figure 4.1: PILHNB Model
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4.3.1 Controlling Elements Quantification

In the first module, for link prediction in dynamic social networks, we identify the de-

pendency of link formation on network evolution pattern, which is governed by some

controlling factors. The controlling factors can be categorized into behavioural elements

and structural elements.

1. Behavioural Elements: To predict the upcoming links, we extract the users’

attributes and activities performed by them to analyze the user behaviour and their

evolution pattern. The considered behavioural elements are defined and represented

as follows:

(a) Common Interests: Link formation between a pair of users is also affected by

their common interests [177]. If two users have many common interests, then

they have fair chances to become friends on social networks. The interest may

be in education, politics, sports, film, media, research, fashion, and technology.

This factor is calculated by analyzing the messages posted or liked by the user

in the recent past. The common interest (interest similarity) vector for user vi

is defined as follows:

Itvi = [I1, I2, . . . , Ij , . . . , Int ], (4.3)

where nt gives the total number of users at time t and Ij denotes the number

of common interests (similarity in interest) among user vi and vj .

(b) Interaction Frequency behaviour : Link prediction is affected by the users’

activeness on social networks. Here, we measure the user activeness by an-

alyzing the frequency of interactions [178] with other users. The interaction

may be in the form of message posting, comments, like/dislike. The interaction

frequency vector for user vi is defined as follows:

Atvi = [A1, A2, . . . , Aj , . . . , Ant ], (4.4)
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where, Aj gives the frequency of interaction between user vi and user vj . nt

gives the total number of users at time t.

(c) Location Check-ins Behaviour : We consider if two people share a common

geographical location repeatedly; then, they may become friends on the social

network platform. The geographical location can be a gym, institute, club,

workplace, seminar, workshop, conference, tourist place. The node’s geograph-

ical location information at time t is given by location vector:

Lt = [l1, l2, . . . , lj , . . . , lnt ], (4.5)

where lj ∈ RM , denotes the checked-in information of user vj at M different

locations and nt gives the total number of users at time t.

(d) Popularity : The popularity of a node vj is defined as the fraction of freshly

added edges to the overall edges connected to it. Mathematically it can be

represented by equation 4.2. The popularity vector is given as:

Pt = [Pv1 ,Pv2 , . . . ,Pvj , . . . ,Pvnt
], (4.6)

where Pvj gives the popularity of node vj at timestamp t and nt gives the total

number of users at time t. From the real-life scenario, we consider a hypothesis

which says that mostly the people want to make friendship with the popular

faces of their society, so the user with a high value of popularity (considering

recent snapshots for evaluation) have great chance to add friends in the social

networks.

(e) Attribute similarity : The extent of similarity of attributes between two users

increases the chance of being friends on social networks if they are a few hops

away in the networks. The attributes of users may include age, education,

workplace, school, current city, and common groups. The attribute similarity
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vector is defined as follows:

S t
vi = [Sv1 ,Sv2 , . . . ,Svnt

], (4.7)

where S t
vi represents the similarity vector of node vi with all other nodes in the

network, and nt, gives the total number of nodes in the network.

2. Structural Elements:

(a) Common neighbours: In a real-life scenario, friendship/link formation be-

tween unknown persons in social networks also depends on the common neigh-

bours/friends. Here, we consider common neighbours as one of the important

controlling elements used for link prediction. The common neighbour informa-

tion of each user is stored in a vector represented as:

Cvi,vj = cij = [c1, c2, . . . , cNij ], (4.8)

where cij ∈ V t represents the common neighbours of user vi and vj . Nij denotes

the number of common neighbours for the pair of the user.

(b) Individual Dependency : In social networks, common neighbours are not

totally independent; there exists certain dependence among them. Individ-

ual dependence can be defined as the individual dependence of each common

neighbour of a pair of nodes. To represent individual dependence, we can use

conditional mutual information defined as follows:

αxy =
JT (vx, vy|k)

∑Nij
y=1,y 6=x JT (vx, vy|k)

, (4.9)

where, αxy is the value of individual dependence between common neighbour

vx and vy. JT (vx, vy|k) gives the conditional mutual information among them

in case of link existence.
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Figure 4.2: PILHNB Model Details.

(c) Combined Dependency : The collective influence of all common neighbours

of a pair of nodes is defined as a combined dependency. It can be represented

as conditional mutual information weighted summation given as follows:

βxyz =
JT (vx, [vy, vz]|k)

∑Nij
y=1,y 6=x

∑Nij
z=1,z 6=x JT (vx, [vy, vz]|k)

, (4.10)

where βxyz is the value of combined dependence between common neighbour

vx and pair of common neighbour [vy, vz]. In the case of link existence, the

conditional mutual information among them is given by JT (vx, [vy, vz]|k).

4.3.2 Learning User Behaviour Pattern Distribution

We consider two basic controlling elements: behavioural and structural elements, which

influence the link formation pattern in dynamic social networks. In this module, we de-

scribe the learning of user behaviour patterns and provide the detail of the PILHNB model

proposed to solve the given link prediction problem. Figure 5.5 shows the block diagram

for our proposed framework.

To track user behaviour patterns, we extract the behaviour controlling elements like com-

mon interests, interaction frequency, location check-ins, popularity, and attribute similarity
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from the given users’ information. Then, we use the popularity vector, common location

sharing pattern of users, and frequency of interaction vector, according to the definitions

given in section 4.3.1. To extract the relevant information regarding the users’ common

interests and the common attributes of the users, we apply the technique of text mining

to get user behaviour based on them.

Common interest and attribute similarity between a pair of users can be obtained by

applying an improved topic modelling technique. Here, we use LDA topic modelling im-

proved with the Gaussian weighting method for text mining and use it as a tool for user

behaviour modelling. In this module, the user is represented as a document, and user

behaviour is represented as vocabulary. By assuming interest as a topic, we can mine the

user behaviour pattern distribution.

Assume that the set of users is V t = {v1, v2, . . . , vnt}. Each user’s behaviour can be

inferred as the component of its behavioural controlling element vectors, which can also

be represented as the superposition of its component vectors. The superposition is defined

as follows:

Vx = Bvx = Ivx ⊕Avx ⊕ Lvx ⊕Pvx ⊕Svx , (4.11)

where “⊕” represents the superposition operator. Each user vx is referred to as a be-

havioural user vx,nt . Each behavioural user obeys a multinomial distribution of interest

zx.nt , and each interest zx,nt follows a multinomial distribution of user vx,nt .

Due to the power-law characteristics of user behaviour, the user behaviour pattern dis-

tribution will be tending toward high-frequency users. To remove the noise, the basic

LDA is improved by the Gaussian weighting method, which provides weight to each user

behaviour. Giving the parameters k1, k2, k3, k4 and k5 as the number of interests, num-

ber of interactions, number of shared locations, number of popular nodes within 2 hops

distance, and the number of common attributes, respectively. The joint distribution of all
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the observed and hidden variables can be computed as follows:

R(Ω|I, A, L,P, S) =

k1∏

x=1

R(θ1|I) ·
k2∏

x=1

R(θ2|A) ·
k3∏

x=1

R(θ3|L)

·
k4∏

x=1

R(θ4|P) ·
k4∏

x=1

R(θ5|S ),

(4.12)

here, the goal of user behaviour modelling is to get the behaviour distributions θ1, θ2,

θ3, θ4, and θ5 for each user. Owing to the coupling of these distributions, we cannot

compute them directly, so the Gibbs sampling will be applied to extract the Ω and when

the sampling converges, the convergent distribution Ω∗ can be obtained.

4.3.3 Link Prediction

Let K = {k, k̄} be the set of classified edges, where k represent the existence of links, and

k̄ represents the absence of links. In this chapter, we have taken two types of dependence:

individual dependency and combined dependency. Here, we use the controlling element α

to represent the summation of individual dependency and β to represent the summation

of combined dependency. For the variables α and β, the joint probability distribution is

defined as follows:

P (cij , k) = P (k)

Nij∏

y=1

P (cy|αy, k)P (cy|βy, k),

P (cij , k̄) = P (k̄)

Nij∏

y=1

P (cy|αy, k̄)P (cy|βy, k̄).

(4.13)

Proceeding with the common neighbour as an important condition, the probability of link

establishment can be evaluated as follows:

P (k|cij) =
P (k)

P (cij)

Nij∏

y=1

P (cy|αy, k)P (cy|βy, k),

P (k̄|cij) =
P (k̄)

P (cij)

Nij∏

y=1

P (cy|αy, k̄)P (cy|βy, k̄).

(4.14)
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We take the probability of link formation as the ratio of conditional probabilities from

equation 4.13 and 4.14, and can be represented as follows:

PL = log2

P (k|cij)
P (k̄|cij)

,

= log2

P (k)

P (k̄)

Nij∏

y=1

P (cy|αy, k)P (cy|βy, k)

P (cy|αy, k̄)P (cy|βy, k̄)
.

(4.15)

Here, P (k) and P (k̄) denotes the probability of link existence and link absence, and it can

be evaluated as follows:

P (k) =
2L t

nt(nt − 1)
,

P (k̄) = 1− 2L t

nt(nt − 1)
,

(4.16)

where L t represents the total number of links present in the networks, P (cy|αy, k),

P (cy|αy, k̄), P (cy|βy, k) and P (cy|βy, k̄) denotes the corresponding dependencies in case of

link presence and link absence.

The probability P (cy|αy, k) and P (cy|βy, k) can be evaluated as follows:

P (cy|αy, k) =

Nij∑

m=1,m6=y
αym × P (cy|cm, k),

P (cy|βy, k) =

Nij∑

m=1,m 6=y

Nij∑

n=1,n6=m,n 6=y
βymn × P (cy|[cm, cn], k).

(4.17)

In equation 4.17, P (cy|cm, k) and P (cy|[cm, cn], k) denotes the additional factor added by

user cm or pair of user [cm, cn], and they can be defined as the reciprocal of node degree

as:

P (cy|cm, k) =
1

dcm
,

P (cy|[cm, cn], k) =
1

dcmdcn
,

(4.18)

where dcm and dcn denotes the degree of common neighbour nodes cm and cn.
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The calculation of conditional mutual information for individual dependence is as follows:

JT (cy, cm|k) = P (cy, cm|k) log2

P (cy, cm|k)

P (cy|k)P (cm|k)
,

=
P (cy, cm, k)

P (k)
log2

P (cy, cm|k)

P (cy|k)P (cm|k)P (k)
.

(4.19)

Here, the conditional probability of common neighbour cy and cm is given by P (cy|k) and

P (cm|k), respectively.

The conditional probability P (cy|k) and P (cm|k) can be computed as:

P (cy|k) =
2dcy

nt(nt − 1)
,

P (cm|k) =
2dcm

nt(nt − 1)
.

(4.20)

The similarity of common neighbour cy and cm is given by P (cy, cm, k) and it can be

calculated with cosine similarity, which depends on user behaviour pattern distribution as

given by the following equation:

P (cy, cm, k) = cos(cy, cm) =

∑W
r=1 θyr × θmr√

(
∑W

r=1 θ
2
yr)(

∑W
r=1 θ

2
mr)

. (4.21)

In case of cmbined dependence, the conditional mutual information can be calculated as

follows:

JT (cy, [cm, cn]|k) = P (cy, [cm, cn]|k) log2

P (cy, [cm, cn]|k)

P (cy|k)P ([cm, cn]|k)
,

=
P (cy, [cm, cn], k)

P (k)
log2

P (cy, [cm, cn]|k)

P (cy|k)P ([cm, cn]|k)P (k)
.

(4.22)

Here, the conditional probability for the pair of common neighbour [cm, cn] is given by

P ([cm, cn]|k) and it can be calculated as:

P ([cm, cn]|k) =
2(dcm + dcn −∆mn)

nt(nt − 1)
, (4.23)
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START

Graph snapshot set: G = {G1, G2, G3, . . . , Gt};
Vectors: I, A, L,P,S ; Parameters:α, β

Evaluate users behaviour controlling element
vectors I, A, L,P,S using Eq. 4.3 - 4.11

Sample user behaviour using Gibbs
Sampling with Gaussian Weight.

If Converged?

Compute Convergent User Behaviour Pattern
Distribution Ω∗ = argmaxR(Ω|G, I,A, L,P,S )

Compute Conditional Mutual In-
formation using Eq. 4.19, 4.22

Compute Conditional Proba-
bility using Eq. 4.17, 4.21, 4.24

If each CN has
been calculated?

Missing Link E∗ =
argmaxRα,β(Et+1|G, I,A, L,P,S )

User Behaviour Pattern Distribution Ω∗ =
argmaxR(Ω|G, I,A, L,P,S ); Predicted Links
E∗ = argmaxRα,β(Et+1|G, I,A, L,P,S )

END

Yes

No

Yes

No

Figure 4.3: Flowchart Showing Steps of PILHNB Model

where, ∆mn is the presence (∆mn = 1) and absence (∆mn = 0) of links between pair of

common neighbour [cm, cn].

The probability P (cy, [cm, cn], k) can be represented as the similarity of common neighbour

cy and the pair of users [cm, cn]. Based on user behaviour pattern distribution and cosine

similarity, the probability P (cy, [cm, cn], k) is defined as:

P (cy, [cm, cn], k) = cos(cy, [cm, cn]),

=

∑W
r=1 θyr × (θmr + θnr)√

(
∑W

r=1 θ
2
yr)(

∑W
r=1 (θmr + θnr)

2)
.

(4.24)
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The probabilities P (cy|αy, k̄) and P (cy|βy, k̄) can also be calculated using a similar method,

as mentioned above.

The computational complexity of conditional mutual information can be reduced by using

the selection rule given as follows:

JT (cy, [cm, cn]|k) > max{JT (cy, cm|k), JT (cy, cn|k)}. (4.25)

If the effect of the influence factor β is larger than the effect of influence factor α, then we

use the joint influence of α and β. Otherwise, we use the influence of factor α as:

QL =





log2
P (k)

P (k̄)

∏Nij
y=1

P (cy |αy ,k)P (cy |βy ,k)

P (cy |αy ,k̄)P (cy |βy ,k̄)
, if Jymn > max{Jym, Jyn},

log2
P (k)

P (k̄)

∏Nij
y=1

P (cy |αy ,k)

P (cy |αy ,k̄)
, Otherwise.

(4.26)

Here, QL gives the probability of new link formation between pair of nodes. Now, the link

prediction task can be performed using this probability. Here, we use a specific threshold

value ρ for link prediction. If the value of QL is greater than the threshold value, the link

will form; otherwise, the link will not form. For each missing link e∗, we can define the

rule of link prediction as follows:

e∗ =





1, if QL ≥ ρ,

0, Otherwise.

(4.27)

4.3.4 PILHNB Learning Algorithm

We mine user behaviour pattern distribution by utilizing user behaviour controlling el-

ements and using it for link prediction. Here, the steps used for mining user behaviour

pattern distribution come under the training process, and the task of link prediction comes

under the testing process. Figure 4.11 shows the flowchart for the overall model, where

blue blocks represent the training process steps, red blocks represent the steps involved

in the testing process, and green blocks represent the input and output of the proposed
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Algorithm 5 The PILHNB Algorithm

Input: Graph snapshot set: G = {G1, G2, G3, . . . , Gt}; Vectors: I, A, L,P,S ;
Parameters:α, β; No. of nodes in Gt: nt

Output: User behaviour Pattern Distribution Ω∗ = argmaxR(Ω|G, I,A, L,P,S ); Miss-
ing Link E∗ = argmaxRα,β(Et+1|G, I,A, L,P,S ); Predicted upcoming Graph snap-
shot Gt+1;

1: //initialization
2: Get Graph Snapshot Set G = {G1, G2, G3, . . . , Gt};
3: Compute User Behaviour controlling element vectors I, A, L,P,S for each snapshot

by using Eq. 4.3 - 4.11;
4: //model training
5: do
6: for User k ← 1 to nt do
7: Sample User Interest zi using Gibbs Sampling;

8: end for
9: while Converged;

10: Obtain Convergent User Behaviour Pattern distribution Ω∗ =
argmaxR(Ω|G, I,A, L,P,S );

11: //model testing(link prediction);
12: for each user pair (vi, vj) of V do
13: for common neighbour cx ← 1 to Nij do
14: Evaluate conditional mutual information using-
15: Eq. 4.19, 4.22;
16: Evaluate conditional probability using-
17: Eq. 4.17, 4.21, 4.24;

18: end for
19: Evaluate link formation probability Qi by Eq. 4.26;

20: end for
21: Predicted links E∗ = argmaxRα,β(Et+1|G, I,A, L,P,S );

model. Algorithm 5 gives the steps involved in the proposed PILHNB model for link pre-

diction.

In the proposed algorithm, the user behaviour controlling vectors I, A, L,P, and S are

used to extract the influencing factors responsible for the prediction of links. Further, the

Gaussian weighting improved LDA is used to extract the user behaviour pattern distribu-

tion. So, the convergent criterion here is the user behaviour pattern distribution i.e., Ω∗.

The Ω∗ gets converged when no further improvement in the performance of the model is

possible after the training and testing process. Combining the user behaviour pattern dis-

tribution and HNB-based common neighbour contribution algorithm, the link prediction
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task is performed by the PILHNB model.

4.4 Experiments

4.4.1 Datasets

We used six real-world network datasets for the performance evaluation of our proposed

model. These datasets are from online social networks and coauthor networks. The con-

sidered datasets are: Facebook, Epinions, Brightkite, DBLP, Gowalla, and Twitter. The

description of these network datasets are given in section 2.5.2.

4.4.2 Baseline Methods

We compare our proposed model with ten state-of-the-art methods using their published

codes or our implementation. The considered baseline methods are introduced in section

2.6.2. Four of these methods used only network structure for link prediction, and the rest

of other methods use structure and attribute both for predicting the interactions.

4.4.3 Evaluation Metrics

We have used four evaluation metrics to compare the performance of the link prediction

of our proposed model with other methods. The four considered metrics are precision,

recall, F1-Measure [148] and the Area Under Receiver Operating Characteristics Curve

(AUROC) [149]. The formal definitions of these metrics are given in section 2.4.1. Better

prediction results have greater precision, recall, F1-measure, and AUROC values.

4.4.4 Experimental Settings

We have formulated the link prediction problem as a supervised binary classification prob-

lem. If the pair of user links exist (k = 1), it forms a positive sample, and if it does not
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exist (k = 0), it forms a negative sample. Supervised learning methods can appropriately

handle the class imbalance problem [179] of datasets (e.g., online social networks). We

have divided each dataset into a series of snapshots G = {G1, G2, G3, . . . , Gt}. The ex-

periments are performed on each snapshot dataset divided from the original dataset into

the proportion of 90% training set and 10% testing set by using the method of hold-out

[180]. The model is trained with a training set and is used to predict the links in the test

set. Five sets of probe links (i.e., percentage of removed links=10, 20, 30, 40, 50) are used

to evaluate each considered performance metric. For training purposes, we removed the

probe links from a snapshot of the graph and used it to train the model and then predict

the probe links in the testing phase. Similarly, we perform this for each fraction of the

removed links on each dataset. Finally, the trained model up to time t is used to predict

the links of the upcoming snapshot of the graph and tested with the actual snapshot graph

at time t + 1. We use their standard parameter settings for all the baseline methods to

implement them on our considered datasets.

To evaluate the common interest vector, we perform preprocessing of text data available

as messages/comments of users. To improve the quality of the text, we processed the raw

content by applying the following normalization steps: (a) removing non-Latin characters

and stop words; (b) removing words with document frequency less than 10; (c) filtering

out messages with length less than 3; (d) removing duplicate messages. For evaluating

location information, we consider only M key locations based on the frequency of visits of

the networks’ users.

The latent interest distribution gives the interest vector of each user. This vector quantifies

and evaluates the interest distribution of each user for T number of topics. Examples of

topics can be sports, movies, politics, fashion, study, travelling, and so on. Each topic can

be denoted with an interest ID such as 1, 2, 3, . . . ,T .
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4.5 Results and Discussions

In this section, the results of the experiments performed are presented. Firstly, the result

of user latent interest distribution is analyzed. We select the representative users from

Facebook, DBLP, and Twitter datasets to show their latent interest distribution. In Fig.

4.4 (a)-(f), the graphs show the interest ID (latent interest number T =10, and T =20)

on the x-axis and the probability of latent interest on the y-axis. As shown in Fig. 4.4

(a), (c), and (e), when T =10, user u1 from the Facebook dataset has interest mainly

concentrated in Interest ID=2, 6; for user u3 from DBLP has an interest in Interest ID=8,

and user u5 from the Twitter dataset has an interest in Interest ID=4, 7. We can observe

that users u1, u4, and u5 have some prominent interests, and user u3 has a concentrated

interest. Here, the user with many interests has prominent interests and the user with a

few interests has concentrated interests. Similarly, latent interest distribution for users u2

and u6 has a wide range of interests. We can find that each user’s latent interest prefer-

ences are different and because of their differences in latent interests, the impact of this

factor will affect the link prediction task.

The results are shown in Fig.4.5 verify that the latent interest has an effect on the link

prediction task, and it acts as an important factor for link prediction. The x-axis shows the

latent interest number, and the y-axis shows the values of Precision, Recall, F1-Measure

and AUROC. It shows that the values of evaluation metrics first increases and then de-

creases for all the datasets. We observe that the peak of the evaluation metrics reaches

when T = 15 in all the considered datasets. So the value of T in this model should select

the small value preferably, in the range of 10-15. A too-large value of T may make the

model more sensitive to noise information. A too-small value of T may overestimate user

interest and increase the estimation error.

Further, we experimented with checking the effect of popularity on link prediction tasks.

The popularity of nodes is evaluated by considering the window of size ten snapshots and

by varying the value of ty as {1, 2, 3, 4} for fresh links and links formed during the last

ten snapshots as all links in equation 4.6 and keeping all other variables fixed. Figure 4.6
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(d) u4 (T =20)
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(e) u5 (T =10)
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Figure 4.4: User Latent Interest Distribution over T Topics in Different Networks,
(a)-(b) User u1 & u2 from Facebook Dataset, (c)-(d) User u3 & u4 from DBLP Dataset,

(e)-(f) User u5 & u6 from Twitter Dataset.
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(a) Precision
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(b) Recall
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(c) F1-Measure
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(d) AUROC

Figure 4.5: Effect of Latent Interest Number on (a) Precision, (b) Recall, (c) F1-
Measure, and (d) AUROC Values in Considered Datasets.
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Figure 4.6: Precision Values of Link Prediction using PILHNB by Varying the Number
of Recent Snapshots Considered to Evaluate the Popularity of Nodes.

shows that the precision value for link prediction is better when ty = 2. So, for all the

experiments, we take ty = 2 for computation of popularity factor.

Next, we obtain two submodels: Sub-BE and Sub-SE, by extracting the behavioural ele-

ments (BE) as a driving factor for link prediction and the structural elements (SE) as a

driving factor for link prediction separately. We compared the submodels with PILHNB

and show the relations between the proportion of training sets and performance metrics

of the proposed model in Figures 4.7 and 4.8. Here, the x-axis represents the proportion

of the training sets, and the y-axis shows the values of considered metrics. The results

clearly show that the combined effect of both the structural and behavioural elements

improves the performance of link prediction significantly. Similar results are obtained for

other datasets also.

Finally, we evaluate our proposed method’s performance by comparing it with other base-

line methods. The value of T is taken as 15 for these experiments. The value of the
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(a) Precision in Facebook dataset
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(b) Recall in Facebook dataset
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(c) F1-Measure in Facebook dataset
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(d) AUROC in Facebook dataset

Figure 4.7: Comparison of Prediction Results Between Submodels and PILHNB, (a)-(d)
Comparison of Prediction Results in Facebook Dataset.
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(a) Precision in Twitter dataset
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(b) Recall in Twitter dataset
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(c) F1-Measure in Twitter dataset
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(d) AUROC in Twitter dataset

Figure 4.8: Comparison of Prediction Results Between Submodels and PILHNB, (a)-(d)
Comparison of Prediction Results in Twitter Dataset.
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threshold for interaction frequency behaviour to find the active users is taken as ten in-

teractions. So, if a user has interacted more than or equal to 10 times after the previous

snapshot, it will be considered as an active user. Similarly, we consider the location as

a factor for link prediction when the users shared the same geographical location more

than five times after the previous snapshot. The proposed method is abbreviated as “PIL-

HNB”, and other baseline methods are also abbreviated as with the abbreviation given

in their introduction in section 4.4.2. Our method is tested on four well-known accuracy

measures of link prediction, namely precision, recall, F1-Measure, and AUROC. For each

method (proposed + baseline) on considered datasets, Tables 4.1, 4.2, 4.3, and 4.4 repre-

sents the average values of precision, recall, F1-Measure, and AUROC, respectively. The

average is taken over the different fraction of removed links (percentage of link removed for

testing, i.e., 10, 20, 30, 40, 50 ). The result shows that the proposed method’s evaluation

metrics are better than the baseline methods for all the considered datasets except the

Epinions dataset; however, it is comparable with the baseline methods for this dataset.

Improvement by the proposed method in comparison with baseline methods lies up to

13.4% percent for AUROC value and between 8%− 12.3% for other considered metrics.

Table 4.1: The Comparison of Algorithms based on the Precision Value.

Algorithms Facebook Epinions Brightkite DBLP Gowalla Twitter

CN .6050 .6422 .6685 .5998 .6558 .6715
AA .6910 .7112 .6915 .6728 .7956 .7090
JC .7024 .7236 .7448 .6956 .7248 .7319
RP .6989 .7122 .7846 .6918 .7214 .7278
AR .7004 .8110 .7392 .7210 .8317 .8144
SLIDE .7972 .8122 .7097 .7227 .8211 .8006
LNBC .8192 .8198 .7968 .7477 .7814 .7442
SG .8080 .7850 .7868 .7461 .7685 .7849
SEAL .8628 .7789 .8066 .7839 .8142 .8078
3HBP .8304 .8110 .8156 .7787 .7526 .8315
PILHNB .8898 .8214 .8294 .8098 .8511 .8714

In Figures 4.9, 4.10 and 4.11 the fraction of removed links are represented on the x-

axis, and the AUROC values are represented on the y-axis. The graph shows that the

performance of the proposed method is optimal in comparison to other baseline methods

in terms of link prediction. It also shows a slight decrease in the value of AUROC when

the fraction of removed links increased. It may be due to an increase in the sparseness
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Figure 4.9: AUROC Values on Changing the Fraction of Removed Links for Facebook
and Epinions Datasets.
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(a) Brightkite
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Figure 4.10: AUROC Values on Changing the Fraction of Removed Links for Brightkite
and DBLP Datasets.
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(a) Gowalla
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Figure 4.11: AUROC Values on Changing the Fraction of Removed Links for Gowalla
and Twitter Datasets.
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Table 4.2: The Comparison of Algorithms based on the Recall Value.

Algorithms Facebook Epinions Brightkite DBLP Gowalla Twitter

CN .6148 .6512 .6711 .6094 .6612 .6744
AA .6946 .7134 .6986 .6880 .7972 .7122
JC .7443 .7178 .7346 .6998 .7190 .7278
RP .6947 .7086 .7866 .6824 .7112 .7206
AR .7096 .7990 .7459 .7130 .8006 .8155
SLIDE .7945 .8114 .7198 .7233 .8302 .7986
LNBC .8128 .8361 .8154 .7328 .7884 .7514
SG .8120 .7898 .7909 .7502 .7708 .7892
SEAL .8670 .7815 .8099 .7877 .8189 .8106
3HBP .8354 .8146 .8165 .7810 .7517 .8405
PILHNB .8942 .8422 .8323 .8206 .8632 .8824

Table 4.3: The Comparison of Algorithms based on the F1-Measure.

Algorithms Facebook Epinions Brightkite DBLP Gowalla Twitter

CN .6099 .6467 .6698 .6046 .6585 .6729
AA .6928 .7123 .6950 .6803 .7964 .7106
JC .7227 .7207 .7396 .6976 .7219 .7298
RP .6968 .7104 .7856 .6879 .7163 .7242
AR .7050 .8049 .7390 .7169 .8158 .8149
SLIDE .7958 .8118 .7147 .7230 .8256 .7995
LNBC .8160 .8279 .8060 .7402 .7849 .7478
SG .8108 .7882 .7898 .7488 .7695 .7867
SEAL .8646 .7796 .8084 .7856 .8165 .8087
3HBP .8329 .8128 .8160 .7798 .7522 .8360
PILHNB .8920 .8317 .8308 .8152 .8571 .8767

Table 4.4: The Comparison of Algorithms based on the AUROC Curve.

Algorithms Facebook Epinions Brightkite DBLP Gowalla Twitter

CN .5955 .6342 .6635 .5956 .6448 .6628
AA .6876 .6984 .6845 .6678 .7879 .6990
JC .6980 .7018 .7178 .6820 .7052 .7182
RP .6859 .6904 .7686 .6750 .6998 .7056
AR .6904 .7801 .7232 .6980 .7915 .8010
SLIDE .7882 .7972 .6998 .7085 .8132 .7898
LNBC .8076 .8105 .7898 .7160 .7734 .7352
SG .8035 .7814 .7819 .7442 .7662 .7828
SEAL .8607 .7774 .8063 .7818 .8112 .8059
3HBP .8256 .8032 .7918 .7670 .7428 .8284
PILHNB .8864 .7954 .8136 .7982 .8432 .8620

of the graph. We can also notice that the result of our proposed model PILHNB is much

better in the networks having detailed information about users (user’s attributes) and the

content of interactions between them, such as Facebook, Twitter, and DBLP datasets. In
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Gowalla and Brightkite, location information is in more detail; however, a few other pieces

of information were missing. In the Epinions dataset, maybe the network’s sparseness

restricts our method to outperform the baseline. Overall the result of the PILHNB model

is better than the baseline methods. Therefore, the experimental results show that the

proposed model can effectively improve link prediction performance in dynamic social

networks.

4.5.1 Insightful Discussion

Our proposed model learns the individual nodes’ behaviour pattern with time, making

the model more consistent, robust, and best suited for noisy networks because it con-

siders each users’ importance in the network. Considering the location and popularity

feature makes the model more accurate. Using common interest and attribute similarity

feature makes the model more effective than the considered baseline methods. However,

in the baseline methods based on graph embedding and graph neural networks consider

mainly the structural information of the nodes and their neighbours; they do not consider

the content of communication messages or the other factors which we have considered.

As the proposed model consider many factors together, it makes the model theoretically

complicated and increases the preprocessing overheads for finding different feature vectors.

If the size of the network is n in terms of nodes to be processed, the time complexity of the

algorithm is TPILHNB = TEXTRACT +TPREDICT = O(n). Here,TEXTRACT is the time to

extract the latent interest of the users and TPREDICT is the time to predict the upcoming

links in the network. The dynamic network may change during the meantime; however,

we are neglecting this change, considering this as a very minor change in the network. It

is also a limitation of our proposed model.

4.6 Conclusions

In this chapter, a multifeature analysis-based link prediction model PILHNB is proposed

to predict links among users of the dynamic social networks by utilizing the user behaviour
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and the network structure change pattern of the evolving network. We used the LDA topic

model for user behaviour pattern discovery and to infer the user interest distribution. To

reduce the adverse impact of interest distribution, the LDA is improved by the Gaussian

weighting technique. Then the HNB algorithm is used to analyze the overall effect of all

the considered controlling elements responsible for the prediction of links in the networks.

The performance of link prediction is improved in our proposed model by considering and

combining both the behavioural and structural evolution pattern of the nodes.

We used six real-world datasets for our experiments. The experimental results validate

that the proposed model PILHNB gives better performance in terms of precision, recall,

F1-Measure, and AUROC on almost all the considered datasets compared with other

considered baseline methods. By using our proposed model, we can effectively predict

links among users of social networks. We can learn the user behaviour pattern, which

changes over time, and also the pattern of structural changes in the networks. It can be

applied to understand the evolution pattern of dynamic networks and can be useful in

many applications of link prediction.


