
Chapter 3

Link Prediction based Influence

Maximization in Dynamic Social

Networks

This chapter focus on the first objective of this thesis, i.e. link prediction based influence

maximization in dynamic social networks. We give an introduction, motivation, and con-

tributions for the considered problem in section 3.1. Section 3.2 gives the formal problem

definition. Section 3.3 explains the proposed framework as the solution to the defined

problem. Experimental details are given in section 3.4, and their outcomes are discussed

in section 3.5. Section 3.6 concludes the overall outcome of the chapter.

3.1 Introduction

Influence Maximization (IM) is the problem of finding a small set of highly influential

users in the social networks. Most of the present IM solutions neglect the highly dynamic

behaviour of social networks. It can result in either deprived seed qualities or a prolonged

processing time. It is natural and significant to understand that social networks have a con-

tinuous change in structure [166, 167, 168]. These changes in structure often occur in real

applications; for instance, connections appear and disappear when users friend/unfriend
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others on Facebook [169] alternatively, follow/unfollow others on Twitter [170]. With the

change in the structure of social networks, the amount of influence a person can have on

others also keeps changing. People also get more affected by neighbours’ she/he commu-

nicates more often. A neighbours’ impact decreases if he/she does not communicate with

the person for a long time. Thus using one static seed set need not give good performance

for influence maximization in online social networks.

In dynamic networks, the number of snapshots is the graph instances taken after a fixed

interval of time (timestamps) for an evolutionary graph in which the edges are being

added/removed with the increase of time. Here, we need to select suitable seed nodes at

different timestamps for achieving the maximum influence spread. Changes in structure

affect the spreading capacity of seed nodes. To demonstrate the idea of link prediction-

based IM in dynamic social networks, consider an example shown in figure 3.1. This

example shows the links (edges) between users (nodes) at different timestamps. Each edge

indicates that a user can influence another user. Figures 3.1-a, 3.1-b, 3.1-c, 3.1-d shows

the snapshots G0, G1, G2, G3 of an evolving graph at the time-stamps t = 0, 1, 2, 3, respec-

tively. The most influential node at timestamp t = 0 in snapshot G0 is b, as it seems to

influence the maximum number of nodes. Similarly, at time t = 1, t = 2 and t = 3, nodes

e, e and d are the most influential nodes, respectively. Even in this simple example, we

can see that the most influential node can be different for different snapshots of the graph.

For dynamic social networks, the seed nodes selected for a particular snapshot may not be

influential at other snapshots of the network. So, we need to compute the seed nodes for

each snapshot of the network. However, the seed selection process itself takes a significant

amount of time for large networks, and if the network is highly dynamic in nature, then

the computed seed nodes may not be the best ones due to continuous changes in network

structure. To deal with this problem, we propose a new influence maximization algorithm,

LPINT. In our proposed algorithm, the crucial idea is to predict the next snapshot of the

graph by considering the evolving graph’s temporal and structural behaviour. For exam-

ple, in figure 3.1 (e), g4 is the predicted snapshot at 3 < t < 4, and node c is chosen as

the seed node for the predicted graph g4. We use this predicted seed node for information
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Figure 3.1: (a), (b), (c), (d), (f) are the Snapshots of the Graph G =
{G0, G1, G2, G3, G4} respectively, and (e) is the Predicted gt+1 = g4, here in g4, Link

a− c is Expected to Appear in Snapshot G4.

diffusion in actual upcoming snapshot G4 at time t = 4 for efficient and faster information

diffusion. In our proposed method, we predict the next snapshot of the graph using an

efficient link prediction method. We then find the seed set for the predicted snapshot

using an efficient IM technique. This seed set is used for information diffusion in the next

snapshot of the graph.

For link prediction, we use the ctRBM technique, which combines the temporal as well

as structural behaviour of the nodes in evolving graphs to predict the upcoming links.

Next, to select the efficient seed set, we tried various state-of-the-art algorithms of influ-

ence maximization and found that the Upper Bound based Lazy Forward (UBLF) [127]

approach works better in our problem. We use an improved UBLF algorithm named

EXCHANGE algorithm in our proposed LPINT framework. To make the EXCHANGE

algorithm run faster, we find the most influential nodes in the current snapshot starting
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from the set of seed nodes found from the previous snapshot rather than from an empty set.

In this chapter, we assume that the active nodes are the ones that have communicated

in past N snapshots. We find seed nodes only among these active nodes. For example,

let us consider the friendship/following relationship of the social network. Many nodes

in the network do not communicate frequently, or some of them are less active or inac-

tive. Considering these inactive nodes for the IM problem would be a waste of time and

resources. These inactive nodes are rarely helpful in IM applications like viral marketing

or fake news containment. In the proposed work, we consider only the active nodes in

the seed selection process. Implementing this assumption is novel and makes our goal of

influence maximization more efficient and effective.

Briefly, our contributions in this chapter can be stated as: first, we define a novel Influen-

tial Node Tracking problem to maximize the influence spread in an online social network.

Then, we propose an LPINT framework for efficient and effective influence maximization in

dynamic social networks. The proposed model uses the link prediction technique to predict

the upcoming snapshot of the graph and then computes the seed set for influence maxi-

mization. Finally, through experiments, we show that the proposed framework performs

better in terms of influence spread in comparison to the considered baseline techniques on

considered datasets. See Appendix A for our research paper supporting this work.

3.2 Problem Description

The goal of the proposed model is to predict graph Gt+1 from graph snapshots up to Gt

and find seed set St+1 based on predicted Gt+1, which maximizes the influence function

σt+1(·) at every snapshot Ĝt+1 at time t + 1. So, there are two parts in the proposed

model; first part predicts the upcoming snapshot and second part finds the suitable seed

nodes.
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In this chapter, we have used time-series based link prediction using the ctRBM method,

which was introduced in Section 2.3. To find the most influential seed nodes in online

social networks, we need to track the dynamic behaviour of the networks. Here, we con-

sider the sequence of the snapshot graphs G0, G1, . . . , Gt at time-stamp T = 0, 1, 2, . . . , t,

respectively. In this thesis, we consider the dynamics of the graph in terms of edge change

with time, i.e., an edge gets added in the graph if there is communication between a pair

of nodes in the networks. Each snapshot graph shows an undirected graph termed as a

growing graph and denoted as Gt = (V, Et), where V is the set of nodes and Et is the set

of edges showing the nodes communication between time-stamp t−1 and t. A propagation

probability P tu,v is associated with each edge of every snapshot graph Gt.

As the selection of seed set St itself takes significant time for large graphs, it is possible

that by the time St is computed, the graph might evolve from Gt to Gt+δ, where we assume

computation time for St ≤ δ < snapshot interval. So St may become less effective for

influence maximization in the actual snapshot Ĝt+δ. To handle this problem, we propose a

novel approach in which we use a time series dependent link prediction method to predict

Gt+1 by considering the evolution pattern of the graph, then we find the probable seed

set St+1 based on predicted Gt+1. And we use the predicted seed set St+1 for influence

maximization in the actual snapshot Ĝt+1 at time t+ 1. We now formally define this Link

Prediction based Influential Node Tracking (LPINT) problem in online social networks.

Problem Definition: Let ρ = {Gi}t0 be an online social network. The LPINT prob-

lem is to find a sequence of seed sets S1, . . . , St whose size is maximum k, such that

St = arg maxSt∈V,|St|≤k σt(St) for all snapshot graphs Gt.

We propose a straightforward method to solve the LPINT problem. This method uses an

efficient link prediction technique on the sliding window (a set snapshots) of snapshots of

the dynamic graph to predict the next snapshot of the graph and then applies an effective

Influence Maximization algorithm to find the predicted set of seed nodes in the predicted
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Figure 3.2: Block Diagram Showing LPINT Steps

snapshot of the graph. This predicted seed set is used for influence maximization in the

actual upcoming snapshot of the graph.

3.3 Proposed Framework

The proposed LPINT framework is given by a block diagram in Figure 3.2. Here, we

consider the dynamic behaviour of the graph in the past and depending on the time-series

pattern of graph snapshots; we are predicting the next snapshot of a graph using the

Link Prediction method. We then apply the proposed IM algorithm to find the probable

seed set for the upcoming graph snapshot. More detailed descriptions about how our

method works on the snapshot graphs and dynamic networks are presented in the next

two subsections.
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3.3.1 Predicting Gt+1 using Link Prediction

We predict the appearance of new links by exploring the evolution pattern of the graph.

We have used ctRBM [144], which adopts temporal variations (temporal connections)

and neighbour opinions (neighbour connections) during the training phase and performs

prediction dependent on the existing time window of snapshots and the local neighbour’s

predictions of each pair of nodes. The model trains a ctRBM denoted as Lm for each node

m, and then collects a set of ctRBMs denoted by L. The prediction is, therefore, Gt+1

done by aggregating the results from each Lm.

3.3.1.1 Temporal Connections

Let N be the size of the window, which is a tunable parameter indicating the number

of time steps (graph snapshots) we have to look back. In modelling a highly dynamic

graph, N depends on the snapshots interval so as to better manage evolutionary networks.

We assume that the graph snapshots at t − N, . . . , t − 1 is integrated into a vector V <t

of dimension N · |V |. The N · (|V | × |H|) size weight matrix WA provides the weights

for temporal connections. Since the model has transitory information, the conditional

probability at time t is represented as:

P (Ht|V t, V <t; θ) = β · ω(y +W ′AV
<t) + (1− β) · ω(y +W ′V t), (3.1)

P (Ṽ t|Ht) = ω(x+WHt), (3.2)

here, visible layer variables are denoted as set V and Hidden layer variables are denoted

as set H. β is a hyperparameter used to balance the static and dynamic characteristics of

the graph. x and y are the biases for V and H respectively. W ′ is the transposes of W .

Ṽ is the reconstructed data, representing the model’s estimation. The goal of learning is

to minimize the distance between Ṽ and V . θ is the parameter of ctRBM model R. ω is

the logistic function defined as ω(Z) = (1 + exp(Z))−1



Chapter 3. Link Prediction based Influence Maximization in Dynamic Social Networks 51

3.3.1.2 neighbour Connections

We can explain the common assumption that an individual’s conduct is influenced by

his/her neighbour’s circle by considering this. To formulate this, we define the neighbour

impact as the desirability of its prediction. If the total number of nodes in V is p̂, the

neighbour impact can be written as:

ηtm =
1

U tm

p̂∑

n=1

l(xtm, x
t
n)× P (Ṽ t

n|Ht
n)× P (Ht

n|V t
n, V

<t
n ; θn), (3.3)

here, U tm =
∑p̂

n=1 l(x
t
m, x

t
n), and the indicator function l is 1 if node n is connecting to

node m at time t, and 0 otherwise. And θn is the parameter of ctRBM model Rn for

neighbour node n.

neighbours make their predictions for node m based on their past. It can be seen from

Eq. 3.3 that the opinion ηtm of a node m is an average of its neighbour’s opinions. Since

models are already trained using last t − 1 snapshots, P (Ṽ t
n|Ht

n) · P (Ht
n|V t

n, V
<t
n ; θn) can

be effectively computed by Eq. 3.1 & 3.2 by substituting V t in Eq. 3.1 by V t
m.

3.3.1.3 Training and Inferences on ctRBM

In the ctRBM [171], the state of the hidden units is controlled by the contribution from

individual perception V t and V <t and the input ηt from neighbours. Given V t and V <t,

the hidden units at time t are restrictively independent. The impact of the neighbour

influence can be seen as adaptive bias:

x̄t = γ · x+ (1− γ) · ηt, (3.4)

which includes the static bias, x for the current observation, and the contribution from

the neighbours. Here γ is a hyperparameter that says how much an individual complies

with his/her neighbours. In our experiments, we set it to be 0.5. Hence in Eq. 3.2 x is

replaced with x̄t to obtain:

P (Ṽ t|Ht) = ω(x̄t +WHt). (3.5)
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The detailed algorithm for inference used by ctRBM is shown in Algorithm 1.

y

xA x

WA W

V t−N V t−1 V t

Figure 3.3: Restricted Boltzmann Machine with Temporal Information, here the Win-
dow Size is N .
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Figure 3.4: A Conditional Restricted Boltzmann Machine with Summarized neighbour
Influence ηt Integrated into an Adaptive Bias into the Energy Function.

Algorithm 1 PREDICT({Gt}tt−N+1,L) [144]

Require: : A trained L for all nodes, in which Lm ∈ L has parameters θm :
{WAm,Wm, xAm, xm, ym}, Snapshots {Gt−N+1, . . . , Gt}, here N is the size of window

Output: : Predicted graph Gt+1

1: Initialize: m← 1, Gt+1 ← zero(size(V), size(V))
2: for m < size(V) + 1 do
3: V <t+1

m ← {Gt−N+1
m , . . . , Gtm}

4: V t+1
m ← one(1, size(V)).5

5: Take neighbour indicator:Jdx← find(Gmt == 1)
6: Take neighbour models detail:Lnbr ← L(Jdx)
7: Determine ηt+1

m by Eq.3.3 provided Lnbr
8: xt+1

m ← xm + ηt+1
m

9: Determine Ṽ t+1
m by Eq.3.1 & 3.5 replacing V t and V <t by V t+1

m and

V <t+1
m

10: Gt+1
m ← Ṽ t+1

m

11: end for
12: return Gt+1.
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3.3.2 Finding Seed Nodes for Influence Maximization

The Interchange Heuristic proposed in [143] is utilized to replace the nodes in the seed set

St. Beginning from a self-assertive set St ⊆ V, Interchange Heuristic discovers a set S′t ⊆ V

that contains all nodes present in St except one node, and the number of nodes remains

the same. According to Nemhauser et al., when we apply the Interchange Heuristic on

any submodular monotone function till maximum improvement gives a solution having an

approximation guarantee of 1/2 [143].

Algorithm 2 GREEDY (G = (V, E), k)

Require: : Graph G = (V, E), Number of seed nodes k
Output: : Seed set S

1: Initialize: S = ∅
2: for i = 1 to k do
3: e∗ = arg maxe∈V−S {σ(S ∪ {e})− σ(S)}
4: S ← S + {e∗}
5: end for
6: return S.

Algorithm 3 describes how to get the set St+1 using the Interchange Heuristic. We select

St+1 so that the gain accomplished by means of substitution of any fixed es ∈ St to

e ∈ V− St is maximized. We evaluate e∗ = arg maxe∈V−St ∆e,est
(St), by choosing St+1 =

St−es+e∗, here ∆e,est
(St) is replacing gain from node est to e. The upper bound [131] on

the replacement gain is denoted by ∆̄e,est
(St). We stop to find another eSt for interchange

if the largest replacing gain ∆e,eSt
is less than a given threshold χ ≥ 0. We are doing this

to increase the speed of the process of interchange and reduce the computations for the

case of minor improvements.

We determine the gain by substituting es with any node in e ∈ V − St, which requires

|V−St| influence estimations. Monte-Carlo simulation-based calculation for the above task

is excessively costly, even for a network with a moderate size. To decrease the number of

iterations for influence estimation, we use the upper bound on replacing gain as proposed

in [131]. The subroutine in Algorithm 3 performs the Interchange Heuristic for any fixed

es ∈ St.
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Algorithm 3 EXCHANGE(Gt+1, St, es, ∆̄.,es(St))

Require: : Gt+1, St, es, ∆̄.,es(St)
Output: : St+1

1: Set ∆e,est
← ∆̄e,est

(St), e ∈ V − St
2: Set curre ← false, e ∈ V − St
3: while TRUE do
4: e∗ ← arg maxe∈V\St{∆e,est

}
5: if ∆e∗,est ≤ χσ(St) then
6: break
7: end if
8: if curre∗ then
9: St ← St − est + e∗

10: break
11: else
12: ∆e∗,eSt ← σ(St − est + e∗)− σ(St)
13: curre∗ ← TRUE
14: end if
15: end while
16: St+1 = St
17: return St+1.

Algorithm 4 LPINT({Gt}tt−N+1, k)

Require: : Snapshots of the graph {Gt}tt−N+1, size of seed set k
Output: : Seed set St+1 with k nodes for snapshot Gt+1

1: S1 = GREEDY(G1(V, E1), k) using Algorithm 2

2: Predicting Gt+1 using Algorithm 1

3: For snapshot Gt+1 compute ∆̄e,es(St) for e ∈ V− St, es ∈ St
4: for i = 1 to k do
5: e∗s ← arg maxes∈St{∆̄·,es(St)}
6: St ← EXCHANGE(Gt+1, St, e

∗
s, ∆̄·,es(St))

7: Update ∆̄e,es(St) for any e ∈ V − St, es ∈ St according to the EXCHANGE

result

8: end for
9: St+1 = St

10: return St+1.
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3.3.3 Link Prediction based Influential Node Tracking

By using the strategy of interchange from Algorithm 3, we describe our Link Prediction

based Influential Node Tracking, in short, LPINT as Algorithm 4. In algorithm 4, when we

start the process; firstly, we find the seed set in given snapshot G1 by applying Algorithm

2, then we predict the upcoming graph snapshot using Algorithm 1, and then we apply

Algorithm 3 to do at most k rounds of a replacement instead of doing it until no further

improvement is possible, and finally, we got the fresh seed set St+1 for snapshot Gt+1.

Hence we ignore the insignificant performance improvement for reducing the computations

and time of processing and hence increasing the efficiency of the overall process of seed set

selection.

3.3.4 Theoretical Results

We present some theoretical results on influence maximization for dynamic networks.

Theorem 1. For growing graph G(V, Et), snapshots Gt and Gt+1 at timestamp t and

t+1 > t, if Gt ⊆ Gt+1 and k size seed set St, St+1 ⊆ V for graph Gt and Gt+1 respectively,

then the equation for the influence spread is related as:

arg max|St+1|=k σ(Gt+1, St+1)− arg max|St|=k σ(Gt, St) ≥ 0. (3.6)

Proof. To establish this result, we need to consider Claim 2.3 proposed in [59]. According

to the claim, a node x ends up being active if and only if there is a path from a node in

S to node x composed only of live edges. We also have the following relation

Gt ⊆ Gt+1 implies Et ⊆ Et+1.

The active node estimator function E[Active nodes] can be written as

E

[∑

x∈V
Ix

]
,
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where

Ix =





1 if node x is active,

0 otherwise.

Thus,

E

[∑

x∈V
Ix

]
=
∑

x∈V
PG

t

x ,

where PG
t

x is the probability that the node x is active or there is a path containing only

live edges from x to S in Gt. We have,

PG
t

x ≤ PG
t+1

x .

In words, the probability of x being active in Gt ≤ probability of x being active in Gt+1.

Thus we see for a given seed set S,

∑

x∈V
PG

t

x ≤
∑

x∈V
PG

t+1

x .

As there can only be l ≥ 0 extra paths in Gt+1, we have:

arg max|St|=k σ(Gt, St) ≤ arg max|St+1|=k σ(Gt+1, St+1),

which concludes the proof.

Theorem 2. If the accuracy of link prediction is high, then the influence spread is high.

Proof. Let the accuracy of the prediction of edges be ξ, then:

|Et+1 ∩ Êt+1|
|Et+1 ∪ Êt+1|

≥ ξ. (3.7)
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Here Êt+1 is the actual number of edges at time t+ 1 and Et+1 is predicted edges at time

t+ 1. We have for any graph Gt+1,

| arg maxσ(Gt+1, St+1)| ≤ | arg maxσ(Gt+1, Ŝt+1)| ≤ λ, (3.8)

for some λ > 0. Now assume that the propagation probabilities pu,v is same for all the

edges. Hence if the number of edges |Et+1 ∩ Êt+1| is atleast ξ · |Et+1 ∪ Êt+1|, we have

arg maxσ((Ĝt+1 ∩Gt+1), Ŝt+1) ≥ arg maxσ((Ĝt+1 ∪Gt+1), St+1) · ξ

Now we have:

| arg maxσ(Ĝt+1, Ŝt+1)− arg maxσ(Gt+1, St+1)| ≤

| arg maxσ((Ĝt+1 ∪Gt+1), Ŝt+1)− arg maxσ((Ĝt+1 ∩Gt+1), St+1)| ≤

| arg maxσ((Ĝt+1 ∪Gt+1), Ŝt+1)− arg maxσ((Ĝt+1 ∪Gt+1), St+1) · ξ|. (3.9)

Combining equations (3.8) and (3.9), we get

| arg maxσ(Ĝt+1, Ŝt+1)| − | arg maxσ(Gt+1, St+1)| ≤ λ(1− ξ).

Thus we can conclude if the prediction accuracy ξ is high the difference between influence

spread in the predicted and actual graph is small.

3.4 Experiments

3.4.1 Dataset Used

We performed our experiments on four real-world dynamic networks: College, Mathover-

flow, Askubuntu, and Wikitalk datasets. The datasets are introduced in section 2.5.1.

We generate the snapshot Gt = (V, Et), V =
⋃
Vt at timestamp t by considering all the

edges appearing during the time [t − δt, t], where δt is the time duration between two

snapshots. The dynamic behaviour of the dataset is represented in the graphs shown in
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(a) College (b) Mathoverflow

(c) Askubuntu (d) Wikitalk

Figure 3.5: Number of Edges versus Time-stamp Graph for Datasets

Figure 3.5. It shows the graph plot of timestamp versus the number of communications

for different datasets.

3.4.2 Baseline Methods

Baseline approaches used for comparison of influence maximization in evolving networks

with and without link prediction and approaches used for comparison of Online Influence

Maximization with the proposed method are introduced in section 2.6.1.

3.4.3 Quality Metric for Influence spread

To demonstrate the effectiveness of our proposed solution, we find the seed sets produced

by all the strategies described above for every window shift. When a seed set St+1 is

returned by an algorithm, we evaluate the influence spread under the IC model by 10,000
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rounds of Monte-Carlo simulation on the current snapshot of the graph, i.e., Ĝt+1. Note

that we assume that the graph is highly dynamic, so it evolves quickly after the selection

of seed sets. Finally, we take the average influence spread over all windows as the quality

metric to compare different approaches.

3.4.4 Experimental Settings

For the information diffusion process, we use the Independent Cascade model. In this

model, most of the literature [67] have done experiments using a small propagation prob-

ability of p = 0.01. Larger p values such as p = 0.1 are not considered due to insensitivity

to different algorithms. In our experiments, we use p = 0.01 as the value of propagation

probability. In the first step, the dataset is divided into different snapshots. We have

divided the dataset according to a fixed timeframe, which is different for the different

datasets. For all datasets, we have divided them into T = 25 snapshots. Now, we have

[G1, G2, . . . , G25] snapshots of the graph. We use N = 10 as the size of the window; it

means there are 10 snapshots in each window. Here, we use the first 10 snapshots for

training the ctRBM using Algorithm 1 for link prediction task and then predict the newly

arrived edges in newly added snapshot after window shift of 1 snapshot and compare it

with original edges at latest snapshot for testing and repeat the same process for each win-

dow shift. For influence maximization, we find the seed node-set by applying Algorithm 3

on the predicted snapshot graph and use this seed set for evaluating the influence spread

on the newly added snapshot graph. In our experiments, we are varying the size of seed

set k represented on the x-axis, and the y-axis represents the information spread in the

target snapshot of the graph. In our experiments, we predict 5 percent links, which may

appear in the upcoming snapshot of the graph. We use the average of 10,000 rounds of

Monte-Carlo simulations to estimate the actual influence spread and thereby assess the

seed set found by the algorithms.
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Figure 3.6: Number of Seeds versus Spread of Influence for Different Static IM Technique
with and without Link Prediction on the Snapshot of Different Dynamic Networks
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Figure 3.7: Comparison of Different Online IM Techniques with LPINT on the Snapshot
of Different Dynamic Networks by Showing Number of Seeds versus Spread of Influence.

3.5 Results and Discussions

3.5.1 Comparing Different Approaches with and without using Link

Prediction

The results in Figure 3.6 shows the influence spread for different datasets against varying

seed nodes with and without link prediction technique for the dynamic network. The

result shown here is valuated for a single snapshot of the network. The final number

of influenced nodes are the average of repetition of the influence maximization process.

The seed set size value varies as {25, 50, 75, 100, 200, 300, 400, 500}. Here, we compared
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different static IM techniques applied with and without link prediction techniques for IM

in dynamic social networks. Here we use the link prediction technique for predicting the

next snapshot. Then, we find the seed nodes in the predicted snapshot using different

static IM techniques. Further, we find the influence spread using those seed nodes in the

actual snapshot. In this way, we get better results in terms of influence spread for all the

considered algorithms when link prediction technique used. We see that the EXCHANGE

algorithm gives an improvement in influence spread as compared with other baseline IM

algorithms, and it becomes even better when used with link prediction as LPINT.

3.5.2 Comparing Dynamic Approaches with our Proposed LPINT Al-

gorithm

We compare our proposed LPINT model for influence maximization with existing tech-

niques for influence maximization in dynamic networks. The results are presented in

graphs shown in Figure 3.7, here we have shown the influence spread by varying the seed

set size k on the target snapshot of the graph. We can see that the proposed LPINT

algorithm outperforms other considered algorithms in terms of influence spread.

3.5.3 Comparison of Average Running Time for Influence Spread

In table 3.1, we can see the average running time of influence spread for a snapshot graph

using benchmark algorithms and the LPINT method. Notice that LPINT performs sig-

nificantly better in terms of the time required for influence spread. The reason for this

faster influence spread is the selection of better seed nodes. If we choose more effective

seed nodes, it takes less time for influence spread as it requires fewer iterations to complete

the influence spread process using the Independent Cascade model. This lower time for

influence spread in LPINT again confirms its efficiency over benchmark methods.
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Table 3.1: Average Running Time for Influence Spread

Datasets
Methods

INT OIM CIM LPINT

college 46 ms 40 ms 32 ms 21 ms

mathoverflow 38 ms 33 ms 28 ms 24 ms

ask-ubuntu 1.1 s 59 ms 53 ms 40 ms

wiki-talk 1.6 s 1.2 s 1.0 s 59 ms

3.5.4 Insightful Discussion

In our proposed influence maximization algorithm for the dynamic social network, we show

the improvement in results in terms of influence spread experimentally and theoretically.

In our proposed work, once the behaviour of nodes for making the new links are learned,

the prediction of the upcoming snapshot becomes efficient and effective. At each snapshot,

there is no need to explore all the nodes to find suitable seed nodes. Efficient seed nodes

reduce the number of iteration in the IC model for influence spread and hence take less

time for information spread as compared to other considered baseline algorithms.

The limitation of our proposed method includes the overhead of prediction of the upcoming

snapshot; however, with the increase of time system learns for efficient prediction. Here,

we have not considered the situation where any node behaves randomly, although it is also

not considered by the baseline algorithms. Our proposed model can also be implemented

with other diffusion models, which is not explored here.

3.6 Conclusions

A link prediction based influential node tracking method is presented in this chapter to find

seed nodes for information spread in the dynamic social network. We use the ctRBM based

deep learning technique for link prediction to predict the next snapshot of the graph. We
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then find the seed set in the predicted snapshot using the EXCHANGE algorithm. This

seed set is used for actual influence spread in the real snapshot of the graph. This method

improves the influence spread in terms of the number of influenced nodes in highly dynamic

social networks. Extensive experiments on datasets obtained from four real social networks

demonstrate that our method outperforms the baselines in terms of influence coverage and

influence spread time.


