
Chapter 2

Background

This chapter presents an overview of the state-of-the-art in link prediction and influence

maximization in social networks. We discuss the literature review of link prediction and in-

fluence maximization techniques in sections 2.1 and 2.2, respectively. Section 2.3 discusses

the key concepts, basic definitions, and preliminaries used in this thesis. Then, we discuss

the principal evaluation metrics, public datasets used in this thesis, and baseline method-

ologies used to compare our proposed models in sections 2.4, 2.5, and 2.6, respectively.

Section 2.7 mention the hardware and software used for experimental work performed in

this thesis.

2.1 Literature Review for Link Prediction

The problem of Link prediction was initially introduced by Liben-Nowell and J. Kleinberg

in [27] as a fundamental problem in social network analysis [28] and knowledge graph

completion [29]. In literature, a large category of link prediction methods is based on

some heuristics such as Common Neighbours, Jaccard coefficient, Adamic-Adar [31], Pref-

erential Attachment [39], Katz coefficient [40], PageRank [41], SimAttri [42], and their

numerous variants. However, a major limitation of these heuristics is that they can not

deal with high non-linearity in networks. To tackle this, many advanced models like prob-

abilistic matrix factorization [45, 46], network embedding-based models [47, 48], graph
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neural network (GNN) models [49], and stochastic block models [50] have been developed.

These methods are powerful but still lack the ability to analyze the evolution of networks.

The typical reason behind this may be the ignorance of nodes’ individual behaviour, which

may be predicted by considering various factors. Recent studies indicate that the network

structure evolution highly depends on the dynamics of the structure as well as the at-

tributes of the nodes [51, 52, 53, 88, 24].

A graph data of social networks generally have significant evolution information, such as

the pattern of change in the structure of the graph [89, 90]. Some probability-based mod-

els of link prediction [91, 92, 93, 94] consider the dynamic behaviour of social networks;

however, they suffer from issues related to the model capacity and computation.

Link prediction techniques in [95, 96, 97] incorporated the information related to user

behaviour such as similar hobbies, culture, language, geographical location, or interac-

tion frequency to predict the links between users. A relational topic model proposed in

[98] predicts the link among the text using the analysis of topic distribution in text data.

Authors in [99] proposed a label propagation-based algorithm for similarity-based link pre-

diction in social networks. However, the above methods consider the impact of interests

derived directly from labels or keywords; they do not consider the user behaviour pattern,

which may also be influenced by other factors such as structural information along with

the interests of the users and the combined behaviour of the individual nodes and their

neighbours in the networks.

Authors in [100, 101, 102] consider the location check-in information of users for link

prediction, and paper [103] proposed a link prediction model based on users’ popularity;

however, they do not consider other important factors such as users interests, structural

patterns, and behaviour of the nodes. Studies in [104, 105, 106] show that user behaviour

learning is also responsible for predicting links in dynamic social networks. User behaviour-

based techniques are applied for web-link prediction [107], mobile web systems [108], and

recommendation systems [95, 109]; however, most of them consider only the single activity
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and do not consider the others collectively. Authors in [110] use the analysis of multiple

activities by users to measure the importance of their role in link formation in Facebook.

Authors in [111] proposed an algorithm by weighting activities of users for collaborative

filtering and recommendations to target users. In paper [112, 113], the analysis of user be-

haviour is applied for the link prediction task. However, these techniques can not be used

directly in the considered scenario for link prediction in social networks because they con-

sider specific factors based on above mentioned specific scenarios and applications. User

relationship-based methods [114, 115] for link prediction uses users attribute similarities.

Authors in [116] proposed an algorithm by combining the structural and attribute simi-

larity for link prediction. Authors in [117] use network clustering coefficient and degree

of nodes for the link prediction task. The graph neural network-based method in [49]

used the subgraph structure information for each pair of nodes, which makes this model

difficult to implement for large graphs. In the graph embedding-based method proposed

in [118], network embeddings alone are not able to capture the most useful link prediction

information located in the local structures.

In this thesis, we present methods to overcome the above-discussed limitations of existing

link prediction techniques by considering the dynamic nature of the graph, users’ behaviour

pattern, the topic of interest of the users, nodes’ popularity, and location-based information

of the nodes. We present two models for link prediction in dynamic social networks. The

first model uses conditional temporal Restricted Boltzmann Machine for predicting the

links that may appear in the network by considering the evolutionary networks’ temporal

and structural patterns. The second model presents a modified Latent Dirichlet Allocation

and Hidden Naive Bayesian-based link prediction technique named Popularity, interests,

the location used hidden Naive Bayesian-based model for link prediction in dynamic so-

cial networks by considering behavioural controlling elements like relationship network

structure, nodes’ attributes, location-based information of nodes, nodes’ popularity, users’

interests, and learning the evolution pattern of these factors in the networks.
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2.2 Literature Review for Influence Maximization

The study of influential nodes in viral marketing was first proposed in [63] by Domingos

and Richardson. Further, David Kempe et al. in [59] formulated the influence maximiza-

tion problem as a combinatorial optimization problem and suggested a greedy algorithm

applied to IC and LT models (more specifically on graphs to represent diffusion using

IC and LT models) with an approximation guarantee of (1 − 1/e). However, for large

networks, the proposed solution does not scale due to its requirement of a large number

of Monte-Carlo simulations to estimate influence spread. This is due to the working of

the greedy algorithm, which tests every node as a seed node for influence maximization in

each iteration. Several techniques [119, 120, 121, 122, 123, 124, 125] have been proposed

to handle this issue for influence maximization in static networks.

Broadly, the solutions proposed for influence maximization [126] can be divided into two

categories: the algorithms of the first category aim to improve the performance of the

greedy algorithm and give an approximation guarantee [127, 72]. Alternatively, the sec-

ond category of algorithms put on several heuristics but lack verifiable approximation

guarantee [67, 74, 128, 86]. However, all these approaches consider only static networks.

Some of the IM methods in the online social network consider the snapshots of the graph

and then apply static IM algorithms. However, these approaches do not handle the real

dynamics of the network. Some methods consider the graph streams, but they do not pro-

vide a theoretical guarantee of their seed quality and may return arbitrarily bad solutions.

For instance, Aggarwal et al. [129], Zhuang et al. [130], and Song et al. [131] focuses on

t + δ given the changing aspects of the progress of the network throughout the interval

[t, t + δ], where δ denotes the small change in time. They apply diffusion maximization

independently in each static graph Gt and use St−1 as seed node set for influence spread.

However, the previous seed set might become inefficient at a later stage because of the

graph’s dynamic nature. So, these solutions are not effective for dynamic social networks.
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Recently, there have been many studies about IM in online social networks. A few signifi-

cant contributions are discussed in this section. Wang et al. in [132] proposed a “Pairwise

Factor Graph (PFG) model” to formalize the problem of IM in social networks using a

probabilistic model and further extended it by incorporating the time information, which

results in the “Dynamic Factor Graph (DFG) model” for IM in the dynamic social net-

work. Aggarwal et al. in [129] use the communications of given social network entities,

which can frequently be predicted based on past behaviour of the evolving network, and

these represented future interactions, which were used to model the spread of informa-

tion. Rodriguez et al. in [133] developed a method INFLUMAX for IM that considers

time-based dynamics underlying the diffusion processes. This method allows for variable

transmission (influence) rates between nodes of a network.

Zhuang et al. in [130] proposed an algorithm to determine a subset of seed nodes in the

network so that the particular information diffusion method in the network can be best

projected with the probing nodes. That is, it decreases the likely error between the eval-

uated network and the real network. Gayraud et al. in [134] introduced a persistent and

transient variation of IC and LT model for justifying network evolution. Li et al. in [135]

proposed a novel conformity-aware greedy algorithm called CINEMA for a conformity-

aware cascade model that integrates the interplay among conformity and influence. Han

et al. in [136] proposed a dynamic probing context that accepts the community structure

as a unit and updates network topology to investigate the genuine changes of network and

employs community-based influence maximization. Wang et al. in [137] proposed an IM

query named Stream Influence Maximization (SIM) on social streams; it uses the sliding

window model and keeps up a set of k seeds with the most significant influence value over

the latest social activities. Tong et al. in [138] demonstrated the dynamic IC model and

presented the idea of an adaptive seeding technique with a provable performance guaran-

tee. However, all these approaches require high computation costs, and there is still a lot

of scopes to do better for dynamic social networks.

In this thesis, our goal is to have maximum information spread in a minimum time span for

online social networks. For achieving this goal, we predict the upcoming snapshot of the
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graph as Gt+1 by considering the temporal and structural behaviour of the evolving graph,

and then we detect the seed set that maximizes the information spread in the upcoming

snapshot of the graph.

Further, the influence maximization approaches can be generally categorized into different

groups depending upon the algorithms’ working technique. We have grouped the influence

maximization methods into the following four categories:

2.2.1 Centrality based Approaches for IM

Chen et al. in [67] presented a degree discount centrality algorithm in which the node with

the highest degree is selected and added to the seed set in each of the k iterations. In this

approach, if node vi is selected as a seed node, the edges between vi and the other nodes

are ignored in the computation of the spreading capability of the nodes. In [68], a degree

distance centrality algorithm is proposed, which ensures a minimum distance between

each selected seed node. Wang et al. in [69] presented an approach for IM named degree

punishment with repetitive punishment process. Here, when a node is selected as a seed

node, its first and second-level neighbours are punished by reducing their influentiability

level. A distance-based coloring method is presented in [70]. In this approach, the nodes

are firstly colored such that the distance between the same color node is higher than a

threshold. Then, the color-based grouping is done, and within each group, the nodes

are ranked on the basis of their degree. Finally, the top-k nodes in the groups based on

the maximum degree are selected as the most influential nodes. Although most of the

centrality-based IM approaches are efficient and scalable, accuracy is still an issue with

these algorithms.

2.2.2 Sub-modularity based Approaches for IM

In the paper [71], Svirdenko et al. modified the influence maximization problem proposed

in [59] by adding the constraint of node price. The authors proved that the objective

function of the proposed problem is sub-modular under IC and LT models. Therefore,
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the Greedy Algorithm proposed in [59] can be applied with the constraint of node price.

This approach gives a performance guarantee but is suitable for small networks due to

the time-consuming Monte Carlo (MC) simulations. Leskovec et al. in [72] presented

an algorithm named cost-effective lazy forward (CELF). This approach uses the property

of sub-modular function for cascade influence and reduces the computations of marginal

gain, which makes it 700 times faster than the normal greedy algorithm. Goyal et al. in

[73] proposed an improved version of CELF named CELF++. This algorithm computes

two marginal gain values simultaneously, which makes it 30% to 50% faster than CELF

experimentally. The above-discussed sub-modularity-based algorithms are much faster

than the greedy algorithm and also give a performance guarantee. However, they still use

time-consuming MC simulations and hence not suitable for large-scale networks.

2.2.3 Path based Approaches for IM

In paper [74], Kimura et al. presented an IM approach based on the shortest path named

as shortest path 1 model (SP1M). This method considers that only the shortest and second

shortest paths are important in influence spread. It does not use MC simulations. The

Maximum influence arborescence (MIA) method is proposed by Chen et al. in [75]. To

estimate the influence propagation from node v to other nodes, MIA uses local structures’

arborescence. The arborescence of a node v is computed as the set of nodes that are located

in paths starts from v and includes edges with propagation probability greater than the

threshold. Kim et al. in [76] presented an IM method named independent path algorithm

(IPA). This approach considers that the influence path from u to v are independent of each

other, and all paths having edges’ propagation probability above a threshold are considered

for influence spread. Rossi et al. in [77] proposed an algorithm named matrix influence

algorithm (MATI) for influence maximization. This method considers all possible paths

for information spread and uses the pruning threshold technique to reduce the computation

of influence paths. Influence path-based IM techniques [139] maintain a tradeoff between

accuracy and efficiency compared with centrality and sub-modularity-based techniques.

However, they cannot provide a theoretical guarantee for the optimal solution. They also

need a large amount of memory to maintain the information regarding the large set of

influential paths.
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2.2.4 Context-aware Approaches for IM

Literature shows that in social networks, users’ social-behavioural information plays a vi-

tal role in determining their influentiability [78, 79, 80, 81, 82, 83, 84]. Therefore, we need

to combine this information with the structural information to find the effective influ-

ence maximization. Mochalova and Nanopoulos in [78] presented a technique for selecting

seed set by considering the marketing potential of interested users. However, no specific

criterion is used to compute the value of interest. Z. Zhu in [79] introduced a seed se-

lection technique based on users’ interest in a particular product and also the sincerity

and trust between the users. Y. Li et al. in [80] presented an IM algorithm based on

users’ interest in various topics. Here the authors used topic-based query processing to

improve the effectiveness of the seed set. S. Li et al. in [81] proposed an approach to

identify influential users based on each users’ interest in various topics computed based

on users’ interactions and activities in earlier times. Zareie et al. in [82] presented an

Influential Marketer User Detection (IMUD) algorithm to select a seed set with k mem-

bers so that the selected seeds are located close to interested users covering as many such

users as possible. In [83], Chen et al. presented a Topic-aware Influence Maximum (TIM)

algorithm based on the topic-aware query. In paper [84], Zareie et al. presented an IM

approach called Multi-criteria influence maximization (MCIM) for finding a set of influ-

ential nodes selected as the initial core in the spreading process with the Technique for

Order of Preference by Similarity to Ideal Solution (TOPSIS) [140] method so that the

seed set featured maximal influence spread and minimal overlap.

Most of the above-discussed techniques tried to consider the topic-related information

along with the structural information of the network to find the suitable seed set for in-

fluence maximization. However, there exist many possibilities to improve the technique of

topic distribution among nodes, topic-aware diffusion process as well as to consider other

important factors responsible for efficient and effective seed selection.

Compared with the traditional IM approaches, topic-aware methods are more efficient and
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effective. Still, these algorithms ignore many other important factors such as the popu-

larity of nodes, location information, the behaviour of the nodes etc., which may also be

responsible for influence maximization in dynamic social networks. Thus, accuracy in seed

selection and effectiveness in information spread is still an issue.

In this thesis, we propose methods to overcome the limitations of existing influence max-

imization techniques by considering the dynamic nature of the graph, users’ behaviour

patterns, the topic of interest of the users, nodes’ popularity, and location-based infor-

mation of the nodes. In the upcoming chapters, we present the study of the Influence

Maximization problem in a social network that evolves with time and propose two new

frameworks: Link Prediction based Influential Node Tracking, and Multifeature based In-

fluential Nodes Tracking.

2.3 Preliminaries

In this segment, we briefly describe some of the theoretical concepts, which have been used

in further chapters.

2.3.1 Link Prediction

Link Prediction: Link prediction aims to predict the edges that are expected to be

added to the network at a future time t + 1 given the snapshot of the network at time t

[27].

Link predictor: Consider a graph G(V, E), where V is the set of nodes, and E is the

set of connections. Multiple connections and self-association are not permitted. Denoted

by U , the universal set containing all |V|.(|V|−1)
2 potential connections, where |V| signifies

the number of elements in set V. The set of nonexistent connections is U −E. We expect

some missing connections (or the connections that will show up in the future) from the
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set U − E, and to discover this connection is the task of link predictor.

Traditional Link Prediction method: All strategies give an association weight score

s(x, y) to pair of nodes (x, y) in the input graph G. And then produce a positioned list in

decreasing order of the score s(x, y). In this way, they can be seen as computing a vicinity

or similarity between nodes x and y concerning the network topology.

Time series-based Link prediction: In time series-based link prediction, the essential

idea is to make a time-based ordering of each non-connected pair of nodes of the network

utilizing similarity scores are given by a topological metric [141]. The time series based

link prediction problem is formally introduced as follows:

Given, G = {G1, G2, G3, . . . , Gt} as a series of snapshots of dynamic network with evolv-

ing edges during timestamps T = {1, 2, 3, . . . , t}. The time series based link prediction

problem’s objective is to use the key factors to capture the evolution pattern of the network

and predict the future links that may appear in Gt+1.

2.3.2 Influence Maximization

2.3.2.1 Diffusion Models

Independent Cascade (IC) model: It describes a straightforward and intuitive diffu-

sion process. Beginning from a seed set S, which is active, the diffusion process happens

in discrete-time steps. When a node u becomes active in step t, it attempts to activate all

of its inactive neighbours in step t+ 1. For each neighbour v, it succeeds with the known

probability puv. If it succeeds, v ends up active; else, v stays inactive. When u has made

all these attempts, it does not get the chance to make further activation attempts at later

occasions.
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Linear Threshold (LT) model: In this model, each node has an activation threshold

Θu, and the node u become active or accepts a new idea if the influence from all its active

neighbours has crossed the threshold, i.e., if
∑

v∈N(u) bu,v ≥ Θu.

Here, each edge between u and v has an arbitrary weight bu,v ∈ [0, 1] such that the sum

of the weights of the incoming edges of u is
∑

v∈N(u) bu,v ≤ 1; and each node u ∈ V has

a threshold Θu ∈ [0, 1] sampled uniformly at random and independently from the others.

N(u) denotes the set of neighbours of node u. Node v is an active neighbour of node

u. In both the IC and LT diffusion models, each node is independent and autonomously

and asynchronously perform the diffusion [142]. Several nodes can become active at the

same time because there are various nodes in the seed set trying to activate their inactive

neighbours. During this attempt, many nodes will become active at the same time.

Other terms related to the definition of diffusion models are defined below:

Seed Set: The set of active nodes before the start of the diffusion process is termed as a

seed set. In this thesis the sed set is represented by S and the size of the seed set is given

as k.

Live Edge: The edge between the two active nodes is termed as live edge.

Live Path: The path between two active nodes which contains only live edges are termed

as a live path.

Active Nodes are the nodes that got influenced by the message being spread in the net-

work.

Inactive Nodes are the nodes that are either not influenced by the message received

from their active neighbours or did not get any message from their neighbours.
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In the influence maximization problem, we aim to maximize the total number of active

nodes in the network at the end of the diffusion process.

2.3.2.2 Influence Maximization

Given the seed set S, we describe the influence spread of S as the expected number of acti-

vated nodes when the diffusion procedure stops, represented by the influence function σ(S).

Influence Maximization: The Influence Maximization process is to find a seed set

S ⊆ V of maximum size k to maximize the influence function σ(S). Formally, the Influence

Maximization method can be defined as the following optimization problem:

I∗ = arg max
|S|≤k

σ(S). (2.1)

It has been shown by David Kempe et al. in [59] that the IM problem under IC/LT model

is NP-hard. It can be shown that the influence function σ(S) under the IC model is mono-

tone and submodular. A set function f is monotone if f(S + e) ≥ f(S) for an element e;

and f is submodular if it has diminishing returns as f(S + e) − f(S) ≥ f(T + e) − f(T )

for an element e ∈ U/T for a finite set U (in this case, the set U is equal to the set of

nodes in the graph) whenever S ⊆ T . These properties of the IC/LT model allow for an

approximation algorithm with a guarantee.

In particular, there are elementary Greedy Algorithms (see Algorithm 2) proposed by

Nemhauser et al. in [143] for maximizing monotone submodular functions. The greedy

algorithm repeatedly picks the node with maximum marginal gain and adds it to the

present seed set until the budget k is reached. It can be shown that this algorithm

approximates the optimal solution with a factor of the (1− 1
e ) for the IM problem.

The optimization problem of selecting the influential nodes (i.e., the seed set) is NP−hard
while computing σ(·) exactly is #P − complete (for both LT and IC models). However, it

is possible to calculate arbitrarily good approximations of σ(·) (i.e., 1±e approximation for
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any given e) with the help of a polynomial in |V | number of times simulations of the pro-

cess. However, this is inefficient for large networks. Various strategies have been proposed

to handle the inefficiency of the greedy algorithm. We also observed in our experiments

that the greedy algorithm takes a significant amount of time to run for large networks.

Influence Spread: The total number of users/nodes finally get influenced after the

completion of the diffusion process in the network is termed as influence spread.

2.3.3 Other Important Definitions

Location-aware Dynamic Attributed Networks: At a particular timestamp t, the

corresponding location-aware dynamic attributed network is represented asGt = (V t, Et, At, Lt),

where vertices V t denotes the set of users, Et ⊆ (V t × V t) denotes the pairs of users hav-

ing a friendship relationship at t, At = [a1, a2, . . . , ant ]t denotes the node attributes and

Lt = [l1, l2, . . . , lnt ]
t denotes the nodes check-in information.

Here, the check-in information includes the “check-in time” (Date with time), “latitude”,

“longitude”, and “location id” for each user. Here, there is a unique id for each location

represented by “location id”.

Popularity: The popularity of a node vi is defined as the fraction of freshly added edges

to the overall edges connected to it. Mathematically it can be represented by equation

2.2:

Pvi =
∆dvi(ty, tz − ty)
∆dvi(tx, tz − tx)

=
dvi,fresher
dvi,all

, (2.2)

where dvi,all and dvi,fresher denote the overall degree and fresher degree of the node vi,

respectively. The value of popularity Pvi lies in [0, 1], and a higher value of Pvi means

higher popularity of node vi. The popularity vector P t = [Pv1 , Pv2 , . . . , Pvnt ] gives the

popularity of nodes at timestamp t. The total number of users at time t is denoted by nt.
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2.3.4 Restricted Boltzmann Machine

In our proposed Link Prediction-based Influential Nodes Tracking (LPINT) model, we pre-

dict the appearance of new links by exploring the evolution pattern of the graph. We have

used ctRBM [144], which adopts temporal variations (temporal connections) and neigh-

bour opinions (neighbour connections) during the training phase and performs prediction

dependent on the existing time window of snapshots and the local neighbour’s predictions

of each pair of nodes. A detailed explanation of the model is given in the next chapter.

Here, the basic Restricted Boltzmann Machine (RBM) [144] is introduced and defined as

follows:

Restricted Boltzmann Machine: is a particular case of Markov Random Field, which

has two layers of variables, Visible layer variables are denoted as set V and Hidden layer

variables are denoted as set H. A typical RBM is represented in figure 2.1. Here, set V

and set H form a fully-connected bipartite graph with undirected edges. RBM defines a

distribution over (V,H) ∈ {0, 1}|V | × {0, 1}|H|, where |V | and |H| are the dimension of V

and H layers. The joint probability distribution for RBM is defined as:

P (V,H) = exp(V ′WH + x′V + y′H)/Z, (2.3)

here Z =
∑

V,H exp(V ′WH + x′V + y′H), W ∈ R|V |×|H| is the weight between layers V

and H, x, y is the biases for V and H, respectively. V ′, x′, and y′ are the transposes of

V , x, and y, respectively.

Due to the bipartite nature of the RBM, there is no interaction between nodes in individual

layer, so the conditional probability distributions are fully factorial and represented by:

P (Hj = 1|V ) = ω(yj +W ′:,jV ),

P (Ṽi = 1|H) = ω(xi +Wi,:H),
(2.4)

here, ω is the logistic function given as ω(a) = (1+exp(−a))−1, Ṽ is the reconstructed data

showing the model’s evaluation, i and j are row and column index. The aim of learning is
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Figure 2.1: Restricted Boltzmann Machine

to minimize the gap between V and Ṽ .

2.3.5 Topic modelling

To capture the users’ interest and attribute similarity, we used the topic modelling tech-

nique from the field of Natural Language Processing. Here, we give the introduction of the

topic modelling technique and also discuss a basic topic modelling algorithm, i.e., Latent

Dirichlet Allocation (LDA) [145]. We have used these concepts in chapters 4 and 5 of this

thesis.

Topic modelling: It is an unsupervised Bayesian model, which presents each document

in a document set as a probability distribution with an unsupervised learning approach

[146]. The main objective of the topic model is to identify topics from large document

collections by exploiting the word distribution in a corpus. It is a typical Bag of Words

(BOW) model which assumes that a document is a collection of words and there is no

ordering relationship between words. Here a topic is a probability distribution with all the

words in the document as a support set, indicating how often the word appears in the topic.

Latent Dirichlet Allocation: LDA is capable of clustering words, documents, and

other related entities based on latent topics [145]. To be specific, given a document d, a

multinomial distribution θd over topics T is sampled from a Dirichlet distribution with
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parameter α. For each word wdi from document di, a topic tdi is picked from a topic

multinomial distribution φt sampled from a Dirichlet distribution with parameter β. Thus,

we can calculate the probability of a word w from a document d as follows:

P (w|d, θ, φ) =
∑

t∈T
P (w|t, φt)P (t|d, θd), (2.5)

then, the likelihood of corpora C is

P (T,W |Θ,Φ) =
∏

d∈D

∏

t∈T
θ
ndt
dt
×
∏

t∈T

∏

w∈W
φ
ntw
tw , (2.6)

where ndt is the number of times the topic t has been mentioned in document d, W is the

number of words in a given document and ntw represents the number of times that the

word w has been associated with topic t.

2.4 Evaluation Metrics

In this section, we present the evaluation metrics that we used to capture the necessary fea-

tures of our proposed models in this thesis. The literature and our experiments show that

the chosen evaluation metrics are the best ones to present the efficiency and effectiveness

of the proposed models of this thesis.

2.4.1 Quality Metric for Evaluation of Link Prediction

The link prediction task can be treated as a binary classification problem [147]. Here, the

presence of a link is the positive data element, and the absence of a link is the negative

data element. The evaluation of the binary classification process can be represented as a

confusion matrix. In the confusion matrix, we use the following terms:

� True Positive(TP): positive data element predicted as positive

� True Negative(TN): negative data element predicted as negative

� False Positive(FP): negative data element predicted as positive
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� False Negative(FN): positive data item predicted as negative

Many metrics can be derived using the confusion matrix; some of them are as follows:

� True Positive Rate(TPR)/Recall/Sensitivity : Out of all the positive classes, how

much we predicted correctly.

TPR =
#TP

#TP + #FN
. (2.7)

� False Positive Rate(FPR)

FPR =
#FP

#FP + #TN
. (2.8)

� True Negative Rate(TNR)/Specificity : The proportion of actual negatives that are

correctly identified.

TNR =
#TN

#TN + #FP
. (2.9)

� Precision: Out of all the positive classes, we have predicted correctly, how many are

actually positive.

Precision =
#TP

#TP + #FP
. (2.10)

We have used four evaluation metrics to compare the performance of the link prediction

of our proposed model with other methods. The four considered metrics are precision,

recall, F1-Measure [148], and the Area Under Receiver Operating Characteristics Curve

(AUROC) [149]. The formal definitions of these metrics are as follows:

� Precision: Precision quantifies the number of positive class (existence of links in

this case) predictions that actually belong to the positive class. It can be evaluated

using equation 2.10.

� Recall: The recall metric finds all positive samples (existence of links in this case)

in the data and can be computed using equation 2.7.
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� F1-Measure: The F1-Measure is the harmonic mean of precision and recall. It can

be computed using the following formula:

F1-Measure = 2 · Precision ·Recall
Precision+ recall

. (2.11)

� AUROC: The receiver operating characteristics curve represents a graph plot be-

tween the TPR(Sensitivity) on the y-axis and the FPR(1-sensitivity) on the x-axis.

The TPR and FPR can be calculated using equations 2.7 and 2.8, respectively. The

AUROC can be evaluated using the trapezoidal rule, which is the sum of all trape-

zoids under the curve. The value of the AUROC of a predictor should be greater than

0.5, and the higher value of AUROC shows the better performance of the predictor

[150].

The values of these metrics lie between 0.5 − 1.0. Better prediction results have greater

precision, recall, F1-measure, and AUROC values.

2.4.2 Quality Metric for Evaluation of Influence Maximization

� Spread of Influence: It is the total number of nodes in the network which gets

influenced by the seed set S after the diffusion process stops. The algorithm with a

higher value of spread of influence is termed as a higher quality algorithm.

� Speedup: We consider the speedup percentage (%) in terms of time taken for influ-

ence spread. It represents how efficiently the influence spreads using a selected seed

set S by the proposed algorithm is compared to the considered baseline algorithms.

A higher value of speedup % shows that the proposed algorithm performs better than

the considered baseline algorithm in terms of time taken to spread the influence.
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2.5 Datasets

In this section, we present the datasets used in the experimental parts of this thesis. These

are standard datasets that are publically available and are commonly used in various papers

in the literature.

2.5.1 Datasets used for Link Prediction based Influence Maximization

In the link prediction based influence maximization task, we performed our experiments

on four real-world dynamic networks: College, Mathoverflow, Askubuntu, and Wikitalk.

The datasets are available on the web at https://snap.stanford.edu/data/.

� The College [151] is a transient network dataset that comprises private messages

sent on an online social network at the University of California, Irvine. Here, clients

search the network for different clients, and after that, start a discussion based on

profile data. An edge (p, q, t) signifies that client p sent a message to client q at time

t.

� The Mathoverflow [152] is a temporal network of interactions on the stack-exchange

web site mathoverflow. The data consists of a directed edge (p, q, t), where user p

interacts with user q at time t.

� The Ask-ubuntu dataset used in [152] is an online social network of interactions on

the stack-exchange website askubuntu. This network data also consists of a directed

edge (p, q, t), where user p interacts with user q at time t.

� The Wiki-talk dataset used in [153] is an online social network representing Wikipedia

users editing each other’s talk page. A directed edge (p, q, t) shows that user p edited

user q’s talk page at time t.

The basic statistics of the dataset networks are given in Table 2.1.
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Table 2.1: Statistics of Datasets 1

Dataset Nodes Time span
(days)

college 1,899 193
mathoverflow 21,688 2,350
ask-ubuntu 137,517 2,613
wiki-talk 1,140,149 2,320

2.5.2 Datasets used in Multifeature Analysis based Link Prediction and

Context-aware Influence Maximization

For Multifeature Analysis-based Link Prediction and Context-aware Influence Maximiza-

tion tasks, we used six real-world network datasets for the performance evaluation of our

proposed models. These datasets are from online social networks and coauthor networks.

The basic statistics of the datasets are indexed in Table 4.1. These datasets are publically

available at Stanford Large Network Dataset Collection (http://snap.stanford.edu/index.html).

The description of these networks is given below.

� Facebook [154]: This dataset consists of friend lists from Facebook. The dataset

includes node features, circles, and ego networks.

� Epinions [155]: This is a who-trust whom, an online social network of a general

consumer review site Epinions.com. Members of the site can decide whether to trust

each other.

� Brightkite [156]: This dataset was taken from a location-based social networking

service provider where users shared their locations by checking in. The dataset was

collected using their public Application Programming Interface (API).

� DBLP [157]: The DBLP computer science bibliography dataset provides a compre-

hensive list of research papers in computer science. This is a co-authorship network

in which two authors are connected if they publish at least one paper together.



Chapter 2. Background 39

� Gowalla [156]: This dataset was taken from a location-based social networking

website where users share their locations by checking in. The dataset was collected

using their public API.

� Twitter [158]: This dataset has been built after monitoring the spreading process

on Twitter before, during, and after the announcement of the discovery of a new

particle with the features of the elusive Higgs boson on the 4th July 2012.

Table 2.2: Statistics of Datasets 2

Dataset Nodes Edges

Facebook 4,039 88,234
Epinions 5,261 23,915
Brightkite 50,686 194,090
DBLP 101,836 873,256
Gowalla 107,067 456,760
Twitter 256,626 3,991,895

2.6 Baseline Methods

In this section, we briefly discuss the state-of-the-art techniques for Link prediction and

Influence Maximization used to compare the effectiveness and efficiency of our proposed

models in this thesis. We use these baselines either because they are standard techniques

or because our work is an extension of the chosen baseline methods.

2.6.1 Baseline Methods used for Link Prediction based Influence Max-

imization

Basic approaches used for comparison of influence maximization in evolving networks with

and without link prediction are:

� DegreeDiscount [67]: A degree discount heuristic algorithm developed for the

Independent Cascade model with uniform propagation probability.
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� LPDegreeDisount: A degree discount heuristic algorithm implemented on the link

prediction based predicted snapshot for seed selection.

� PageRank [159]: A link analysis algorithm that positions the priority of pages in a

Web graph.

� LPPageRank: The PageRank algorithm for IM implemented on the link prediction

based predicted snapshot for seed selection.

� UBLF: The Upper Bound based Lazy Forward (UBLF) algorithm [127] for IM derive

an upper bound to reduce the number of spread estimations in the initialization step

of influence maximization.

� LUBLF: The UBLF algorithm implemented on the link prediction based predicted

snapshot for seed selection.

� EXCHANGE: Our proposed upper bound based algorithm computes the upper

bound of marginal gain while evaluating the upper bound of node replacement gain.

Approaches used for comparison of Online Influence Maximization with the proposed

LPINT model are:

� CIM [160]: CIM (Continuous Influence Maximization) adopted the IC model as an

influence model and pp=0.01 as propagation probability.

� OIM [161]: OIM (Online Influence Maximization) uses explore-exploit strategies for

IM problems in dynamic networks. Here the propagation probability is taken as 0.01,

and we have evaluated the result for varying seed sets using the greedy approach.

� INT [131]: INT (Influential node tracking) algorithm using for influence estimation

with propagation probability 0.01. The initial seed set S0 is set up by the Greedy al-

gorithm. Then by using the UBI algorithm, we calculate an upper bound of marginal

gain and an upper bound of node replacement gain.

� LPINT: Our LPINT algorithm using ctRBM for link prediction to predict the up-

coming snapshot of the graph Gt+1 and then uses the above IM algorithms for
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predicting the probable seed set St+1 for efficient Influence Maximization in the

dynamic social network.

2.6.2 Baseline Methods used for Multifeature Analysis based Link Pre-

diction

We compare our proposed PILHNB model with ten state-of-the-art methods using their

published codes or our implementation. Four of these methods used only network structure

for link prediction, and the rest of the other methods use structure and attribute both for

predicting the interactions.

� Common neighbours (CN) [27]: For link prediction, CN evaluates score based

on common neighbours between pair of nodes.

� Adamic-Adar (AA) [27]: AA refines the counting of common neighbours by pe-

nalizing them with high node degrees. It is an extension of CN.

� Jaccard Coefficient (JC) [27]: JC calculates the similarity score for link prediction

between a pair of nodes by using a Jaccard coefficient, which is defined as the size

of the intersection divided by the size of the union of the common neighbours of the

nodes.

� Rooted Pagerank (RP) [162]: RP evaluates node proximity from the root node

to other nodes by performing a random walk, which starts from the root node.

� AttriRank [163]: It evaluates a score for each node by performing PageRank on

the attributed network and then uses the product of scores of two end nodes for link

prediction.

� Streaming Link predIction for Dynamic attributEd networks (SLIDE)

[54]: SLIDE maintains and updates a low-rank sketching matrix to summarize all

observed network data (structure/attributes) and further uses this matrix to predict

the missing interactions in a dynamic network.
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� Local Naive Bayes based Common neighbour (LNBCN) [164]: This method

is based on the Naive Bayes theory and arguments that different common neighbours

play a different role in the network and hence contributes differently to the score

function computed for non-observed node pairs.

� SemiGraph (SG) [118]: This method of link prediction adopts the semi-supervised

graph embedding approach. The learned embedding reflects information from both

the temporal and cross-sectional network structures.

� Subgraphs, Embeddings, and Attributes for Link-prediction (SEAL) [49]:

This method is based on GNN to learn general structure features from local enclosing

subgraphs, embeddings, and attributes; it then uses this framework for the link

prediction task. In SEAL, the hop number h is an important hyperparameter. Here,

we select h only from {1, 2}.

� Three-level Hidden Bayesian link Prediction (3-HBP) [165]: The 3-HBP

method uses a hidden Naive bayesian based algorithm and LDA topic modelling

technique to predict the links using inferred interests of the pair of users.

2.6.3 Baseline Methods used for Context-aware Influence Maximization

We compare our proposed MINT algorithm with the following baseline methods.

� Random[59]: In this algorithm, randomly, any k users are selected as the influential

users.

� MaxDegree[59]: In this algorithm, top k users with the highest out-degree are

selected as influential users.

� TIM [83]: This algorithm uses topic-of-interest-based queries for efficient seed selec-

tion. It selects k seeds from social networks to maximize the topic-aware influence

spread in the network.

� MCIM [84]: A set of influential nodes are selected as the initial core in the spreading

process with the Technique for Order of Preference by Similarity to Ideal Solution
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(TOPSIS) [140] method, such that the seed set featured maximal influence spread

and minimal overlap.

� IMUD [82]: This algorithm aims to select a set of k seed nodes for initiating the

information spread process, such that the seed nodes and their neighbours, collec-

tively represented as S Coverage (SC), are maximally interested in the contents of

the marketing message.

2.7 Hardware and Software Used

All experiments of this thesis are conducted on a server machine running CentOS-7 with

a Quad-Core 2.1 GHz Intel Xeon Silver 4110 processor and 64 GB memory. All the

algorithms are implemented in the Python programming language.


