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Abstract

Network science has emerged as a fast-expanding research area in the last decade and has
brought significant advances to our knowledge about the modern science of graphs. It in-
cludes the study of social networks that have gained attention from researchers due to the
abundance of its data on the web. The rapid increase in the number of users to the social
platforms (such as Facebook, Twitter, Instagram, and other blogs, dating sites, friends
making sites) provided by the web has shown unseen human relationships and motivated
the researchers to use this to extract meaningful information. This thesis deals with the
two important challenges of social network analysis (also of dynamic/complex networks
analysis): Influence Mazimization and Link Prediction.

Influence Maximization is the problem of finding a small set of highly influential
users in the social networks. The influence spreads according to an explicit influence prop-
agation model. Influence Maximization is an essential component in many applications
such as Network Monitoring and Viral Marketing. In this thesis, we study the Influence
Maximization problem in a social network that evolves with time and proposes two new
frameworks: Link Prediction based Influential Node Tracking (LPINT), and Multifeature
based Influential Nodes Tracking (MINT).

Link prediction aims to predict the missing interactions in evolving networks that
may appear in the future. It has practical importance in various real-world applications,
ranging from friendship recommendation, knowledge graph completion, target advertis-
ing, and protein-protein interaction prediction. In this thesis, we present two models for
link prediction in dynamic social networks. The first model uses conditional temporal
Restricted Boltzmann Machine for predicting the links that may appear in the network
by considering the evolutionary networks’ temporal and structural patterns. The sec-
ond model presents a modified Latent Dirichlet Allocation and Hidden Naive Bayesian
(HNB)-based link prediction technique named Popularity, interests, location used hidden
Nuaive Bayesian-based (PILHNB) model for link prediction in dynamic social networks by
considering behavioural controlling elements like relationship network structure, nodes’
attributes, location-based information of nodes, nodes’ popularity, users’ interests, and
learning the evolution pattern of these factors in the networks. Extensive experiments are
performed over various real social network datasets to demonstrate the effectiveness of the

proposed methods over the existing ones.

Keywords: Online Social Networks, Influence Maximization, Link Prediction, Latent

Dirichlet Allocation, Hidden Naive Bayesian, Restricted Boltzmann Machine.
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Chapter 1

Introduction

This chapter establishes the key concepts and vocabulary used in the rest of the thesis. We
begin with a general introduction to the network science in Section 1.1, followed by a brief
description of social networks, link prediction, and influence maximization in sections 1.2,
1.4, and 1.5, respectively. In Section 1.6, the general limitations of existing methods of link
prediction and influence maximization in online social networks are illustrated. In Section
1.7, we provide motivation for our work. Section 1.8 summarise the main contributions of

the thesis. Finally, Section 1.9 presents the layout of the rest of the thesis.

1.1 Network Science

Network Science has been getting a lot of attention recently. Broadly, it deals with complex
networks such as telecommunication networks, computer networks, biological networks,
cognitive and semantic networks, and social networks, considering distinct elements or
actors represented by nodes and the connections between the elements or actors as links.
This field of research is interdisciplinary based on the concepts and algorithms of graph
theory [1] from mathematics, statistical mechanics [2] from physics, data mining [3] and
information visualization [4] from computer science, inferential modelling [5] from statis-

tics, and social structure [6] from sociology.



