Removal of Copper, Nickel and Zinc from Contaminated Water using Novel Adsorbents

Thesis submitted in partial fulfilment

for the Award of

DOCTOR OF PHILOSOPHY

in

BIOCHEMICAL ENGINEERING

by

JYOTI SINGH

SCHOOL OF BIOCHEMICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY (BANARAS HINDU UNIVERSITY)

VARANASI - 221 005

ROLL NUMBER 18011004 YEAR OF SUBMISSION 2021

CERTIFICATE

It is certified that the work contained in the thesis titled **Removal of Copper, Nickel and Zinc from Contaminated Water using Novel Adsorbents** by **Jyoti Singh** has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of **Doctor of Philosophy**.

mShr Supervisor

Dr. Vishal Mishra School of Biochemical Engineering Indian Institute Of Technology (BHU) Varanasi – 221 005

DECLARATION BY THE CANDIDATE

I, Jyoti Singh, certify that the work embodied in this thesis is my own bona fide work and carried out by me under the supervision of Dr. Vishal Mishra from July 2018 to September 2021, at the School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not

cited as my own work.

Date: 06/10/2021 Place: Varanasi, India

Jsingh

Signature of the Student

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

Supervisor 06 102021

Dr. Vishal Mishra School of Biochemical Engineering Indian Institute Of Technology (BHU) Varanasi - 221 005

Based on the deckration of Student and Supervisor. VelCehluma Duly Signature of Head of Department 6/10/2021

चनिवा अभियां विकी स्टान School of Biochemical English भारतीय प्रौद्योगिकी संस्थान Indian Institute of Technology (ला०हि०वि०वि०) वाराणसी 221066 0 4111 Veratiasi-221005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Removal of Copper, Nickel and Zinc from Contaminated Water using Novel Adsorbents

Name of the Student: Jyoti Singh

COPYRIGHT TRANSFER

The undersigned hereby assigns to the Indian Institute of Technology (BHU), Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Doctor of Philosophy in the School of Biochemical Engineering.

Date: 11 10 20 24 Place: Varanasi, India Signature of the Student

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENT

Even though only my name appears on the cover of my thesis, it was accomplished with the assistance of many incredible people. My PhD research experience will be one I will remember for the rest of my life thanks to the people who made it possible, and I owe my thesis to each and every one of them for their contributions. The assistance and support I received during the research process were invaluable, and I would like to express my utmost gratitude to my supervisor, **Dr. Vishal Mishra**, School of Biochemical Engineering, in particular for his excellent supervision, skilled guidance with a lot of patience, unwavering support, and constant encouragement throughout my thesis work and also during the entire stay in campus. I appreciate everything he has done for me.

Thanks to Dr. Vikash Kumar Dubey, the coordinator of the School of Biochemical Engineering for providing various instrumental facilities. A special word of thanks goes out to all of the faculty and staff members of the School of Biochemical Engineering. I owe my special thanks to Dr. Gautam Banerjee, Department of Civil Engineering, Dr. Manoj Kumar Mondal and Dr. Hiralal Pramanik, Department of Chemical Engineering for providing laboratory facilities.

I'd want to express my gratitude to all of the members of my laboratory, particularly Mr. Veer Singh, Mr. Vipul Yadav, Ms. Priyanka Yadav, Ms. Manisha Verma, Mr. Vishal Singh, and Mr. Ashok Pal Singh, for their contributions.

A special thanks to Mr. Souvik Sengupta for his continuous encouragement and support throughout the years; this would not have been possible without his help. This gratitude also extends to all of my friends (Ms. Kanchan Jha, Ms. Sukriti Tiwari, and Ms. Richa Sharma) for their time, advice, and emotional support throughout this process.

Most importantly though, my heartfelt gratitude and appreciation go out to my family for

their incredible support and hope that they have shown me during this journey. This thesis would not have been possible without that glimmer of hope. You have all given me enormous strength, and I am grateful for your help.

Contents

Li	st of l	Figures	XX
Li	st of [Tables	xxiii
Li	st of A	Abbreviations	xxiv
Al	bstrac	x x	xvii
1	Intr	oduction	1
	1.1	Background	1
	1.2	Sources of Heavy Metals	3
	1.3	Heavy Metals Exposure and Poisoning	4
	1.4	Mechanism of Heavy Metals Toxicity	4
	1.5	Heavy Metal Removal Technologies	8
	1.6	Motivation	10
	1.7	Objectives of the Present Work	11
	1.8	Thesis Outline	12
2	Lite	rature Review	14
	2.1	Background	14
	2.2	Nickel	17
		2.2.1 History	17
		2.2.2 Properties	18
		2.2.3 Nickel's presence in the Environment	19

	2.2.4	Health Effects	19
	2.2.5	Environmental Impacts	20
2.3	Copper	r	21
	2.3.1	Background	21
	2.3.2	History	22
	2.3.3	Properties	22
	2.3.4	Copper's presence in the Environment	23
	2.3.5	Health Effects	23
	2.3.6	Environmental Impacts	24
2.4	Zinc .		24
	2.4.1	Background	24
	2.4.2	History	24
	2.4.3	Properties	25
	2.4.4	Zinc's presence in the Environment	25
	2.4.5	Health Effects	26
	2.4.6	Environmental Impacts	27
2.5	Techni	ques for removal of copper, nickel and zinc from contaminated water	27
	2.5.1	Ion Exchange	28
	2.5.2	Chemical Precipitation	29
	2.5.3	Electrochemical Methods	31
	2.5.4	Adsorption	33
2.6	Proper	ties of an Adsorbent	35
2.7	Adsorp	otion Mechanisms	35
	2.7.1	Chemical Adsorption	36
	2.7.2	Physical Adsorption	37
	2.7.3	Ion Exchange	37
	2.7.4	Precipitation	38
	2.7.5	Complexation and Chelation	38
2.8	Raw A	dsorbents	39

		2.8.1	Bentonite	39
			2.8.1.1 History	39
			2.8.1.2 Chemical Properties of Bentonite clay	40
			2.8.1.3 Application of Bentonite Clay	41
		2.8.2	Red Ochre	42
		2.8.3	Tectona grandis Sawdust	43
		2.8.4	Azadirachta indica Twig Ash	44
		2.8.5	Natural Soil	44
3	Mat	erial an	d Methods	46
	3.1	Instrur	nents Used in Experimentation	46
	3.2	Charac	cteristic Analysis of Novel Adsorbents	47
		3.2.1	Proximate and Ultimate Analysis	47
		3.2.2	Yield (%)	47
		3.2.3	Bulk Density	48
		3.2.4	Iodine Number	48
		3.2.5	Brunauer-Emmett-Teller Surface Area	48
		3.2.6	pH _{ZPC}	48
		3.2.7	Surface Characteristics	49
		3.2.8	Crystallinity and Thermostabilization Characteristics	49
	3.3	Experi	mental Procedure for Adsorption Study	50
		3.3.1	Standards and Reagents Preparation	50
		3.3.2	Selection of Adsorbents for Preparing Novel Adsorbents	51
			3.3.2.1 Composite of Bentonite Clay and Red Ochre	51
			3.3.2.2 Azadirachta indica Twig Ash (ATA)	52
			3.3.2.3 Activated Carbon derived from <i>Tectona grandis</i>	53
			3.3.2.4 Mould	54
	3.4	Batch	Adsorption Study	55
	3.5	Factors	s Affecting Adsorption	56
		3.5.1	Contact Time	56

	3.5.2	pH	56
	3.5.3	Initial Concentration	57
	3.5.4	Adsorbent dose	57
	3.5.5	Temperature	57
3.6	Adsorp	otion Dynamics	57
	3.6.1	Derivation of Dimensionless Numbers	59
3.7	Mecha	nistic Modeling	60
	3.7.1	Bangham Model	60
	3.7.2	Boyd Model	61
	3.7.3	Mass Transfer Model	61
3.8	Adsorp	otion Kinetics	61
	3.8.1	PFO Kinetic Model	62
	3.8.2	PSO Kinetic Model	62
	3.8.3	Elovich Model	63
	3.8.4	IPD Model	63
3.9	Adsorp	otion Isotherm	63
	3.9.1	Langmuir Isotherm	64
	3.9.2	Redlich-Peterson (R-P) Isotherm	64
	3.9.3	Flory-Huggins (F-H) Isotherm	65
	3.9.4	Temkin Isotherm	65
	3.9.5	Toth Isotherm	65
	3.9.6	Hill Isotherm	66
	3.9.7	Sip Isotherm	66
	3.9.8	Koble-Corrigan (K-C) Isotherm	66
	3.9.9	Fritz Schlunder-5 (FS-5) Isotherm	67
	3.9.10	Khan Isotherm	67
	3.9.11	Radke-Prausnitz Isotherm	67
	3.9.12	Dubinin-Radushkevich (D-R) Isotherm	68
	3.9.13	Fowler-Guggenheim (F-G) Isotherm	68

		3.9.14	Elovich Is	otherm	69
		3.9.15	Freundlic	h Isotherm	69
		3.9.16	Halsey Iso	otherm	69
	3.10	Thermo	odynamics		70
	3.11	Artifici	ial Neural N	Network (ANN) Modeling	70
	3.12	Desorp	tion Study		72
4	Adso	orption	using Com	iposite	73
	4.1	Remov	ral of Cu ²⁺	, Ni ²⁺ and Zn ²⁺ ions by Composite \ldots	73
	4.2	Result	s and discu	ssion	75
		4.2.1	Physicoch	emical characterization	75
			4.2.1.1	SEM	75
			4.2.1.2	FTIR	76
			4.2.1.3	XRD	78
			4.2.1.4	BET Surface Area	79
			4.2.1.5	Ultimate Analysis	79
		4.2.2	pH _{ZPC}		80
		4.2.3	Adsorptio	n Dynamics	80
		4.2.4	ANN Mod	delling	81
		4.2.5	Adsorptio	n Kinetics	83
		4.2.6	Adsorptio	n Isotherm	85
		4.2.7	Thermody	namics	86
		4.2.8	Optimizat	ion Study	88
			4.2.8.1	Effect of pH	88
			4.2.8.2	Effect of Composite Dose	89
			4.2.8.3	Effect of Initial Concentration	90
			4.2.8.4	Effect of Contact Time	91
			4.2.8.5	Effect of Temperature	92
	4.3	Adsorp	tion Mecha	anism for composite	92
	4.4	Compa	rative Stud	y	94

	4.5	Conclu	usion	
5	Ads	orption	using ATA	A 96
	5.1	Adsorp	ption of Cu	1^{2+} , Ni ²⁺ and Zn ²⁺ ions by ATA
	5.2	Results	s and Disc	ussion
		5.2.1	Characte	rization
			5.2.1.1	SEM-EDX
			5.2.1.2	FTIR
			5.2.1.3	XRD
			5.2.1.4	BET Surface Area
			5.2.1.5	Proximate and Ultimate Analysis
			5.2.1.6	Bulk Density
		5.2.2	pH_{ZPC} .	
		5.2.3	Adsorpti	on Dynamics
		5.2.4	ANN Mo	odeling
		5.2.5	Adsorpti	on Kinetics
		5.2.6	Adsorpti	on Isotherm
		5.2.7	Thermod	ynamics Study
		5.2.8	Optimiza	tion Study
			5.2.8.1	Effect of pH
			5.2.8.2	Effect of ATA Dose
			5.2.8.3	Effect of Initial Concentration
			5.2.8.4	Effect of Contact Time
			5.2.8.5	Effect of Temperature
	5.3	Adsorp	ption mech	anism for ATA 117
	5.4	Compa	arative Stu	dy
	5.5	Conclu	usion	

6.1	Remov	val of Cu ²⁺	, Ni^{2+} and Zn^{2+} ions by Activated Carbon derived from
	Tecton	a grandis	
6.2	Result	s and Disc	ussion
	6.2.1	Characte	rization
		6.2.1.1	SEM-EDX
		6.2.1.2	FTIR
		6.2.1.3	XRD
		6.2.1.4	TGA
		6.2.1.5	BET Surface Area
		6.2.1.6	Proximate analysis
		6.2.1.7	Yield (%)
		6.2.1.8	Bulk Density
		6.2.1.9	Iodine Number
	6.2.2	$\ensuremath{pH_{ZPC}}\xspace$.	
	6.2.3	Adsorpti	on Dynamics
	6.2.4	ANN Mo	odeling
	6.2.5	Adsorpti	on Kinetics
	6.2.6	Adsorpti	on Isotherm
	6.2.7	Thermod	ynamics
	6.2.8	Optimiz	ation Study
		6.2.8.1	Effect of pH
		6.2.8.2	Effect of AC Dose
		6.2.8.3	Effect of Initial Concentration
		6.2.8.4	Effect of Contact Time
		6.2.8.5	Effect of Temperature
6.3	Adsor	ption mech	anism for AC
6.4	Compa	arative Stu	dy
6.5	Biodeg	gradability	Study
6.6	Conclu	usion	

7	Ads	orption	using mo	uld	154
	7.1	Remov	val of Cu ²⁺	, Ni ²⁺ and Zn ²⁺ ions by Mould $\ldots \ldots \ldots \ldots$. 154
	7.2	The G	anga River	r Bank (Ghat) in Varanasi	. 156
	7.3	Result	s and Disc	ussion	. 156
		7.3.1	Physicoc	hemical Characterization	. 156
			7.3.1.1	SEM-EDS	. 156
			7.3.1.2	FTIR	. 158
			7.3.1.3	XRD	. 160
			7.3.1.4	Proximate Analysis	. 162
			7.3.1.5	TGA	. 162
		7.3.2	Adsorpti	on Dynamics	. 163
		7.3.3	ANN Mo	odeling	. 164
		7.3.4	Adsorpti	on Kinetics	. 166
		7.3.5	Adsorpti	on Isotherm	. 169
		7.3.6	Thermod	lynamics Study	. 171
		7.3.7	Optimiza	ation Study	. 173
			7.3.7.1	Effect of pH	. 173
			7.3.7.2	Effect of Initial Concentration	. 175
			7.3.7.3	Effect of Temperature	. 176
			7.3.7.4	Effect of Contact Time	. 177
	7.4	Adsor	ption mech	nanism for mould	. 178
	7.5	Compa	arative Stu	dy	. 180
	7.6	Conclu	usion		. 182
8	Con	ipariso	n of Novel	Adsorbents, Desorption and Application of Spent Ad	d-
	sorb	oent			183
	8.1	Comp	arison of I	Novel Adsorbents	. 183
	8.2	Desor	ption Study	y	. 185
	8.3	Applic	cation of S	pent Adsorbent	. 186

9	Con	clusion			188
Aj	ppend	ix			194
	A.1	Remov	al of Nickel	using Composite	. 194
	A.2	Result	and Discuss	ion	. 196
		A.2.1	Physico-che	mical Characterization	. 196
			A.2.1.1 S	EM-EDX	. 196
			A.2.1.2 X	RD	. 197
			A.2.1.3 F	TIR	. 199
		A.2.2	Mechanistic	Study	. 200
		A.2.3	Adsorption	Dynamics	. 202
		A.2.4	Optimizatio	n Study	. 202
			A.2.4.1 E	ffect of pH	. 202
			A.2.4.2 E	ffect of Composite Dose	. 203
			A.2.4.3 E	ffect of Initial Concentration of Ni ²⁺ Ions	. 204
			A.2.4.4 E	ffect of Temperature	. 205
			A.2.4.5 E	ffect of Agitation Rate	. 206
			A.2.4.6 E	ffect of Contact Time	. 207
		A.2.5	Adsorption	Kinetics	. 208
		A.2.6	Adsorption	Isotherm	. 209
		A.2.7	Thermodyna	amic Study	. 212
	A.3	Compa	rative Study		. 213
	A.4	Conclu	sion		. 215
Re	eferen	ces			293
Li	st of I	Publicat	ions		294
Μ	edia (Coverag	e of Researc	h Work	297
C	OPYF	RIGHT	Ċ		298

List of Figures

1.1	Copper toxicity and its mechanisms of action	5
1.2	Nickel-induced oxidative stress	6
1.3	Regulation of zinc homeostasis in cells and its effects on cytotoxicity	7
1.4	Removal technologies for heavy metals from contaminated water	9
1.5	Outline of this work	13
2.1	Different mechanisms of Adsorption (AE and AM: molecules with ex-	
	changeable ions and metal ions, C: chelating agents, M+: heavy metal	
	ions, Tp: transport protein)	36
2.2	Structure of bentonite clay	40
3.1	Stock solution of Ni ²⁺ , Cu ²⁺ and Zn ²⁺ ions $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	50
3.2	Composite beads made from bentonite clay and red ochre	52
3.3	Process of preparation of ATA	52
3.4	Tectona grandis sawdust	53
3.5	Activated carbon derived from <i>Tectona grandis</i> sawdust	53
3.6	Process for producing activated carbon from <i>Tectona grandis</i> sawdust	54
3.7	(a) Mould preparation by the potter and (b) Final Product (Mould)	55
4.1	SEM of composite before and after adsorption of ternary metal ions	75
4.2	EDX of composite before adsorption of ternary metal ions	76
4.3	EDX of composite after adsorption of ternary metal ions	76
4.4	FTIR of composite before and after adsorption of ternary metal ions	77

4.5	XRD of composite before and after adsorption of ternary metal ions	78
4.6	pH_{zpc} of composite	80
4.7	Performance between number of epochs and MSE for prediction of (a)	
	$Cu^{2+},$ (b) Ni^{2+} and (c) Zn^{2+} ions removal using composite as adsorbent .	81
4.8	Regression plot for prediction of (a) Cu^{2+} , (b) Ni^{2+} and (c) Zn^{2+} ions re-	
	moval using composite as adsorbent	82
4.9	Correlation plot for the experimental and ANN predicted values for ternary	
	metal ions removal using composite as adsorbent	83
4.10	a) PFO b) PSO and c) IPD kinetic models for composite as adsorbent	84
4.11	a) Langmuir b) Freundlich and c) D-R isotherms for composite as adsorbent	85
4.12	Plot of $\ln K_d$ vs. 1/T for composite as adsorbent	87
4.13	Effect of pH on % removal of ternary metal ions and adsorption capacity	
	of composite (-Q is adsorption capacity and -R is % Removal)	88
4.14	Effect of composite dose on % removal of ternary metal ions and adsorp-	
	tion capacity of composite	89
4.15	Effect of initial concentration of ternary metal ions on % removal and	
	adsorption capacity of composite	90
4.16	Effect of contact time on % removal of ternary metal ions and adsorption	
	capacity of composite	91
4.17	Effect of temperature on % removal of ternary metal ions and adsorption	
	capacity of composite	92
5.1	SEM of ATA before adsorption of ternary metal ions	98
5.2	SEM of ATA after adsorption of ternary metal ions	98
5.3	EDX of ATA	99
5.4	FTIR Spectrum of ATA before and after adsorption of ternary metal ions .	100
5.5	XRD of ATA before and after adsorption of ternary metal ions	102
5.6	pH _{zpc} of ATA	104
5.7	Performance between number of epochs and MSE for prediction of (a)	
	Cu^{2+} , (b) Ni^{2+} and (c) Zn^{2+} ions removal using ATA as adsorbent	105

5.8	Regression plot for prediction of (a) Cu^{2+} , (b) Ni^{2+} and (c) Zn^{2+} ions re-
	moval using ATA as adsorbent
5.9	Correlation plot for the experimental and ANN predicted values for ternary
	metal ions removal using ATA as adsorbent
5.10	(a) PFO, (b) PSO and (c) IPD model for ATA as adsorbent 108
5.11	a) Langmuir, b) Freundlich and c) D-R isotherm models for ATA as adsorbent109
5.12	Plot of $\ln K_d$ vs. 1/T for ATA as adsorbent
5.13	Effect of pH on percentage removal of ternary metal ions using ATA 112
5.14	Effect of ATA dose on percentage removal of ternary metal ions and ad-
	sorption capacity of ATA
5.15	Effect of initial Cu^{2+} , Ni^{2+} and Zn^{2+} ions concentration on percentage re-
	moval and adsorption capacity of ATA
5.16	Effect of contact time on percentage removal of ternary metal ions and
	adsorption capacity of ATA
c 17	
5.17	Effect of temperature on percentage removal of of ternary metal ions 116
6.1	SEM of AC
5.176.16.2	Effect of temperature on percentage removal of of ternary metal ions 116 SEM of AC 123 EDX of AC 123
5.176.16.26.3	Effect of temperature on percentage removal of of ternary metal ions 116 SEM of AC 123 EDX of AC 123 FTIR of TG and AC (before and after adsorption of ternary metal ions) 125
 5.17 6.1 6.2 6.3 6.4 	Effect of temperature on percentage removal of of ternary metal ions 116 SEM of AC 123 EDX of AC 123 FTIR of TG and AC (before and after adsorption of ternary metal ions) 125 XRD analysis of AC 127
 5.17 6.1 6.2 6.3 6.4 6.5 	Effect of temperature on percentage removal of of ternary metal ions116SEM of AC123EDX of AC123FTIR of TG and AC (before and after adsorption of ternary metal ions)125XRD analysis of AC127TGA of AC128
 5.17 6.1 6.2 6.3 6.4 6.5 6.6 	Effect of temperature on percentage removal of of ternary metal ions 116 SEM of AC 123 EDX of AC 123 FTIR of TG and AC (before and after adsorption of ternary metal ions) 125 XRD analysis of AC 127 TGA of AC 128 pH _{zpc} of AC 131
 5.17 6.1 6.2 6.3 6.4 6.5 6.6 6.7 	Effect of temperature on percentage removal of of ternary metal ions116SEM of AC123EDX of AC123FTIR of TG and AC (before and after adsorption of ternary metal ions)125XRD analysis of AC127TGA of AC128pH _{zpc} of AC131Performance between number of epochs and MSE for prediction of (a)
 5.17 6.1 6.2 6.3 6.4 6.5 6.6 6.7 	Effect of temperature on percentage removal of of ternary metal ions116SEM of AC123EDX of AC123FTIR of TG and AC (before and after adsorption of ternary metal ions)125XRD analysis of AC127TGA of AC128 pH_{zpc} of AC131Performance between number of epochs and MSE for prediction of (a)Ni ²⁺ , (b) Cu ²⁺ and (c) Zn ²⁺ ions removal using AC133
 5.17 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 	Effect of temperature on percentage removal of of ternary metal ions 116 SEM of AC
 5.17 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 	Effect of temperature on percentage removal of of ternary metal ions 116 SEM of AC
 5.17 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 	Effect of temperature on percentage removal of of ternary metal ions 116 SEM of AC
 5.17 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 	Effect of temperature on percentage removal of of ternary metal ions 116 SEM of AC
 5.17 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 	Effect of temperature on percentage removal of of ternary metal ions 116 SEM of AC

6.14 Effect of AC dose on percentage removal of ternary metal ions and ad-
sorption capacity of AC
6.15 Effect of initial concentration of Ni ²⁺ , Cu ²⁺ and Zn ²⁺ ions on percentage
removal and adsorption capacity of AC
6.16 Effect of contact time on percentage removal of ternary metal ions and
adsorption capacity of AC
6.17 Effect of temperature on percentage removal and adsorption capacity of AC143
7.1 (a) SEM of unloaded mould and (b) SEM of metal ions-loaded mould 157
7.2 EDX of mould before adsorption
7.3 EDX of mould after adsorption of ternary metal ions
7.4 FTIR spectrum of mould before and after adsorption of ternary metal ions 159
7.5 XRD of mould before and after adsorption of ternary metal ions 161
7.6 TGA and DTG curves of mould
7.7 Performance between number of epochs and MSE for prediction of (a)
Ni ²⁺ , b) Cu ²⁺ and (c) Zn ²⁺ ions removal using mould as adsorbent \ldots 164
7.8 Regression plot for prediction of (a) Ni^{2+} , (b) Cu^{2+} and (c) Zn^{2+} ions re-
moval using mould as adsorbent
7.9 Correlation plot for the experimental and ANN predicted values for ternary
metal ions removal using mould as adsorbent
7.10 Adsorption kinetics for Ni^{2+} ions using mould as adsorbent
7.11 Adsorption kinetics for Cu^{2+} ions using mould as adsorbent
7.12 Adsorption kinetics for Zn^{2+} ions using mould as adsorbent
7.13 Adsorption isotherm for Ni^{2+} ions \ldots \ldots \ldots \ldots 169
7.14 Adsorption isotherm for Cu^{2+} ions \ldots \ldots \ldots \ldots \ldots 170
7.15 Adsorption isotherm for Zn^{2+} ions
7.16 Plot of $\ln K_d$ vs 1/T for Ni ²⁺ ions
7.17 Plot of $\ln K_d$ vs 1/T for Cu ²⁺ ions
7.18 Plot of $\ln K_d$ vs 1/T for Zn ²⁺ ions
7.19 Effect of pH on % removal of ternary metal ions

7.20	Effect of initial concentration on % removal of ternary metal ions and		
	adsorption capacity of mould	175	
7.21	Effect of temperature on % removal of ternary metal ions and adsorption		
	capacity of mould	176	
7.22	Effect of contact time on % removal and adsorption capacity of mould	177	
8.1	Percentage desorption of novel adsorbents	185	
A.1	SEM of composite after adsorption of Ni^{2+} ions $\ldots \ldots \ldots \ldots \ldots$	196	
A.2	EDX of composite after adsorption of Ni^{2+} ions \hdots	197	
A.3	XRD of composite before and after adsorption of Ni^{2+} ions $\ldots \ldots \ldots$	198	
A.4	FTIR of composite before and after adsorption of Ni^{2+} ions \hdots	200	
A.5	Mechanistic models for adsorption of Ni^{2+} ions	201	
A.6	Effect of pH on the removal of Ni^{2+} ions	203	
A.7	Effect of composite dose on % removal and adsorption capacity	204	
A.8	Effect of the initial concentration of Ni ²⁺ on removal and uptake capacity	204	
A.9	Effect of temperature on the removal of Ni^{2+} ions	205	
A.10	Effect of agitation rate on the removal of $Ni^{2+}ions$	206	
A.11	Effect of contact time on the removal of Ni^{2+} ions $\ldots \ldots \ldots \ldots$	207	
A.12	(a) PFO, (b) PSO model and (c) Elovich kinetic models for removal of		
	Ni^{2+} ions using composite $\ldots \ldots \ldots$	208	
A.13	Adsorption isotherm models for removal of Ni^{2+} ions using composite $\ . \ .$	211	
A.14	Plot of ΔG vs. T for removal of Ni ²⁺ ions using composite	213	

List of Tables

1.1	Permissible limit (mg/ L) of Copper, Nickel and Zinc in drinking water	
	[5]–[7]	2
1.2	Concentration (mg/L) of copper, nickel and zinc in various industrial dis-	
	charge	3
2.1	General information about copper, nickel and zinc with their possible toxic	
	effects [1], [4]	15
2.2	Key characteristics of Nickel	18
2.3	Key characteristics of copper	22
2.4	Key characteristics of Zinc	26
2.5	.5 Permissible limit (mg/ L) of Copper, Nickel and Zinc in drinking water	
	[5]–[7]	28
3.1	Instruments used in experimental work	46
4.1	Dimensionless numbers and diffusivity coefficients for composite	81
4.2	Adsorption kinetic model parameters for composite as adsorbent	84
4.3	Adsorption isotherm model parameters for composite as adsorbent	85
4.4	Thermodynamic parameters for composite as adsorbent	87
4.5	Comparison of adsorption capacities of inorganic adsorbents and compos-	
	ite synthesized in the present work	94
5.1	X-Ray Diffraction analysis of ATA	102
5.2	Value of dimensionless numbers for ternary metal ions	105

5.3	Adsorption kinetic model parameters for ATA as adsorbent
5.4	Adsorption isotherm model parameters for ATA as adsorbent
5.5	Thermodynamic parameters for ATA as adsorbent
5.6	Comparison of different adsorbents with ATA based on adsorption capacity 119
6.1	Percentage of elemental weight from AC's EDX
6.2	Table of FTIR comparisons before and after activation of sawdust 126
6.3	XRD analysis of AC
6.4	Proximate analysis of TG
6.5	Value of dimensionless numbers for ternary metal ions
6.6	Adsorption kinetic model parameters for AC as adsorbent
6.7	Adsorption isotherm model parameters for AC as adsorbent
6.8	Thermodynamic parameters for ternary metal ions adsorption
6.9	Comparative analysis of the physico-chemical features of AC with those
	of other activated carbons
6.10	Comparison of various adsorbents with AC
7.1	FTIR band positions of the prepared mould before and after adsorption 160
7.2	Calculated values of D and FWHM for the corresponding absorption peaks 161
7.3	Proximate analysis of mould
7.4	Dimensionless numbers and diffusivity coefficients for the adsorption of
	metal ions in mould
7.5	Kinetic parameters
7.6	Isotherm parameters
7.7	Thermodynamic parameters for ternary metal ions adsorption
7.8	Comparison of mould with other adsorbents
8.1	Comparative study of Novel Adsorbents
A.1	EDX of composite after adsorption
A.2	Diffractometer major peaks parameters
A.3	Mechanistic model parameters

A.4	Adsorption kinetic models parameters for Ni^{2+} ions removal $\ldots \ldots \ldots$	209
A.5	Adsorption isotherm model parameters for removal of Ni ²⁺ ions using com-	
	posite	209
A.6	Thermodynamic parameters for Ni^{2+} ions adsorption $\ . \ . \ . \ . \ .$	213
A.7	Comparison of composite adsorption capacity with other adsorbents	214

List of Abbreviations

AAS	Atomic Absorption Spectrophotometer
ACGIH	American Conference of Governmental Industrial Hygienists
AC/ACTG	Activated carbon derived from Tectona grandis
ANN	Artificial Neural Network
ASTM	American Society for Testing and Materials
ATA	Azadirachta indica Twig Ash
ATSDR	Agency for Toxic Substances and Disease Registry
BET	Brunauer–Emmett–Teller
BIS	Bureau of Indian Standards
СРСВ	Central pollution Control Board
Cu	Copper
D-R	Dubinin-Radushkevich
DTG	Derivative Thermogravimetry
ECEF	Electrocoagulation-Electroflotation
EDX	Energy-dispersive X-ray spectroscopy
F	Feldspar
FTIR	Fourier-transform infrared spectroscopy

- **FWHM** Full Width at Half Maxima
- I Illite
- IARC International Agency for Cancer Research
- ICMR Indian Council of Medical Research
- L-M Levenberg-Marquardt
- M Montmorillonite
- MSE Mean Square Error
- MT Metallothionein
- Ni Nickel
- NTP National Toxicology Program
- OFI Opuntia Ficus-indica
- PIO Pseudo First Order
- PSO Pseudo Second Order
- Q Quartz
- Q Reactive Oxygen Species
- **RSM** Response Surface Methodology
- SEM Scanning Electron microscopy
- **SRT** Statistical Rate Theory
- TG Tectona grandis Sawdust
- TGA Thermogravimetric analysis
- USA The United States of America
- USEPA United States Environmental Protection Agency
- WHO World Health Organization

- **XRD** X-ray Diffraction
- ZiP Zinc Importer
- Zn Zinc
- ZnT Zinc Transporter

Abstract

Worldwide, approximately 80% of wastewater goes back to the waterways without being treated or reused, creating health, environmental, and climate hazards. Wastewater is generated either from domestic or industrial sources. Heavy metals are common in industrial effluent like cadmium, chromium, copper, arsenic, lead, nickel, and zinc, which are hazardous above permissible limits and have severe effects on humans, other species, and the environment. Heavy metals are easily absorbed by living organisms because they are highly soluble in aquatic environments. As a result, heavy metals must be removed from water before consumption using an inexpensive technique such as adsorption. Adsorption has the advantage of being a more cost-effective way of heavy metal removal when compared to other heavy metal removal processes. Adsorption of metals on the adsorbent allows metals to be removed from wastewater. In the present work, adsorption studies on Ni²⁺, Cu²⁺ and Zn²⁺ ions removal by using novel adsorbents (Composite, Azadirachta indica Twig Ash, Activated carbon derived from Tectona grandis and Mould) showed significant effects of the variables like pH, initial adsorbate concentration, contact time, temperature and adsorbent dose. The optimum parameters for composite were observed as pH 6, initial Ni²⁺, Cu²⁺ and Zn²⁺ ions concentration 100 mg/L, contact time 270 minutes for Cu^{2+} , Ni^{2+} and 330 minutes for Zn^{2+} ions, temperature 308 K and adsorbent dose 1 g. The optimum parameters for Azadirachta indica Twig Ash were pH 6, initial Ni²⁺, Cu²⁺ and Zn²⁺ ion concentration 100 mg/L, contact time 210 minutes, temperature 308 K and adsorbent dose 1 g.The optimum parameters for Activated carbon derived from Tectona grandis were pH 9, initial Ni²⁺, Cu²⁺ and Zn²⁺ ion concentration of 100 mg/L, contact time of 30 minutes, temperature of 308 K and adsorbent dose of 0.10 g. The optimum parameters for mould were pH 6, initial Ni²⁺, Cu²⁺ and Zn²⁺ ion concentration of 50 mg/L, contact time of 30 minutes and temperature 308 K. Surface characterization using proximate and ultimate analysis, Scanning electron microscopy with energy dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller surface area, Thermogravimetric analysis and X-ray Powder Diffraction were done to analyze the physico-chemical characteristics of each novel adsorbent. Scanning electron microscopy micrograph of composite shows platelet-like particles clumped together with larger particles. Before adsorption, Azadirachta indica Twig Ash consisted of small particles of varying shape and size. In the scanning electron microscopy micrograph of Activated carbon derived from *Tectona grandis*, protrusions run through the biomass matrix. The diasporic particle size distribution revealed a range of forms and sizes for activated carbon particles. A sufficient adsorption zone were found on the surface of mould. Energy-dispersive Xray spectroscopy of Azadirachta indica Twig Ash showed the presence of C and O mostly with minor amounts of Al, Mg, Ca, Na, Si, N, K, P, and S. Energy-dispersive X-ray spectroscopy of Activated carbon derived from Tectona grandis revealed C, O, Na, Al, S, Cl, and K and for mould revealed the presence of K, O, Fe, Mg, Al, and Si. Alumina rich octahedral centres of bentonite, bending vibration of the H-O-H group, and Si-O stretching of silica and quartz were detected in the composite's Fourier-transform infrared spectroscopy and Azadirachta indica Twig Ash demonstrated O-H stretching of carboxylic groups, N-H stretching of syringaldehyde, and C=O stretching. The O-H stretching vibration in Tectona grandis sawdust and Activated carbon derived from Tectona grandis confirmed the presence of alcohols and phenols in the structure. Fourier-transform infrared spectroscopy of mould revealed stretching vibrations of O-H groups linked to alcohols and phenolic chemicals. It had Si-O-Si, Si-O-Al, and Al-O stretching vibrations on tetrahedral and octahedral sheets. It also contained Al-Mg-OH stretching, indicating quartz. X-ray powder diffraction analysis found quartz, alumina, and hematite in composite and showed that Azadirachta indica Twig Ash was somewhat amorphous and should be used as an adsorbent. X-ray powder diffraction pattern for Activated carbon derived from Tectona grandis revealed amorphous graphitic carbon and for mould revealed montmorillonite,

illite, quartz, and feldspar. Composite, Azadirachta indica Twig Ash, and Activated carbon derived from Tectona grandis have Brunauer-Emmett-Teller surface areas of 447.31, 71.35, and 1270 m²/g, respectively. The ultimate composite analysis revealed 39.03% C, 14.46% N, 1.48% H, and 0% S. Azadirachta indica Twig Ash had 38.47% C, 1.89% H, 49.21% O, and 10.43% N. Azadirachta indica Twig Ash had 55.22 % fixed carbon, 8.51 % moisture, 14.78 % ash, and 21.49 % volatile matter. Tectona grandis sawdust had 67.3 % fixed carbon, 18.3 % moisture, 0.7 % ash, and 13.7 % volatile matter. Based on proximate analysis, the mould had low moisture (0.49%), ash (4.5%) and high volatile matter (95.01%). The study of adsorption dynamics for novel adsorbents using dimensionless numbers for copper, nickel and zinc ions showed that adsorption on the surface of Activated carbon derived from *Tectona grandis* and mould was transfer controlled as N_k lies between 10⁻⁴ and 10⁻³ for Ni²⁺, Cu²⁺ and Zn²⁺ ions. The process was diffusion controlled for Azadirachta indica Twig Ash for removal of copper, nickel and zinc ions as N_k fell between 10¹ and 10⁴. For composite, the process was diffusion controlled for copper and nickel ions as value of N_k was observed between 10^1 and 10^4 and mixed diffusion and transfer controlled for zinc ions as N_k lies between 10^{-3} and 10^1 . The artificial neural network modeling has been performed to compare the experimental and theoretical values. It has been found that using ANN both the experimental and theoretical values for novel adsorbent seemed to be in agreement with each other showing a high regression coefficient of 0.95 - 0.99; 0.98; 0.99 and 0.98 for Activated carbon derived from Tectona grandis, Azadirachta indica Twig Ash, composite and mould, respectively. Experimenters used isotherms such as the Langmuir, Freundlich, and Dubinin Radushkevich isotherms to match their results. For Cu^{2+} , Ni^{2+} and Zn^{2+} ions, the maximum adsorption capacity of composite, Azadirachta indica Twig Ash, Activated carbon derived from Tectona grandis and mould were found to be 61.86 mg/g, 37.89 mg/g and 10.48 mg/g; 10.10 mg/g, 125 mg/g and 3.12 mg/g; 250 mg/g, 500 mg/g and 83.33 mg/g; 0.045 mg/g, 0.086 mg/g and 0.021 mg/g, respectively. The kinetics followed pseudo second order kinetic model for all novel adsorbents. Due to the positive Gibbs free energy, the adsorption on mould was non-spontaneous. Thermodynamic study for Azadirachta indica Twig Ash, Activated carbon derived from *Tectona grandis* and composite indicated the endothermic and spontaneous nature of the adsorption. In desorption study, Activated carbon derived from *Tectona grandis* had the highest percentage of desorption, followed by the composite, *Azadirachta indica* Twig Ash and mould. The findings indicate that composite, *Azadirachta indica* Twig Ash, Activated carbon derived from *Tectona grandis* and mould have a high potential for usage as an effective and cost-effective adsorbent for heavy metal removal in a variety of applications.