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PREFACE

A capacitor material which has high dielectric constant and low dielectric loss is an
interesting topic in materials science. It may be used as multilayer capacitor (MLCC),
dynamic random access memory (DRAMSs), microwave devices, electronic devices in
automobiles andaircrafts. ACusTi4O12 (A = Ca, Bi, Sr) type oxides had complex
perovskite structure and discovered in 1967 by Subramanian et al. It produces a high
dielectric constant (e~ 10%) and nearly constant in the temperature range of 100-600 K.
which has led to many important applications. The high dielectric loss of CCTO
ceramics (tan & > 0.05 at 1 kHz) is still the most serious problem for applications
requiring capacitive components. Presently we use simple perovskite BaTiOs, which are
not environmentally friendly as capacitor materials. The problem with BaTiOs is that it
is quite unstable at higher and shows phase transition. Therefore, it is not suitable for
use at high temperature. Therefore, Development of excellent dielectric materials with

good stability over wide temperature and frequency ranges are highly desired.

The modern age technology needs for the development of electrical composite,
that properties are not available in individual single component materials. The required
combination properties are possible to tailor composite by combining two or more
components. Composites perovskite play a very important role in various areas of
chemistry, physics, biology and materials science because of their interesting properties.
When two or more perovskites are mixed together either by physical or by chemical
methods to fabricate composite, a novel set of physical and chemical properties may be

obtained that would be completely different from that of the individual constituents.

Electrical and dielectric properties of the composite are also very important.
Which leads to data storage, tunnel junction, and spin valves. The composite has also

been increasing interest in flexible, high dielectric constant and a polymer for use in

XXii



PREFACE

high-density energy storage and capacitor applications. With the smaller sizes of
nanoparticle less than 100 nm surfaces to volume ratio increases resulting in the number
of atoms on the surface of nanocrystals, therefore variation in electrical properties with
change in structure in the nanoscale region is observed in comparison to the bulk
material. The electrical and dielectric properties of nanoparticle are affected by particle

size, morphology, and chemical composition.

In the present work synthesis of composite perovskite with different
composition using semi-wet route. All the synthesized composites were characterized
by various physicochemical techniques to study the crystal structure, particle size and
shape whereas electrical and dielectric, properties of materials were studied in detail.

And it also studied the effect of sintering duration of these composite.

The present work aims to investigate (a) crystal structure (b) microstructure (c)
elemental analysis (d) particle size (e) electrical and dielectric behavior of the following

compound prepared by semi-wet route.

1. CaCusTisMnO12

2. CaCusTi3.5sMno.5012
3. CaCusT1i3.75Mno.25012
4. CaCusTi13.5Wo.5012

5. CaCusTi3.5Nbo.s012

Chapter I This chapter contains a brief introduction of the subject describing briefly
the technical investigations reported in the field of perovskite oxides and composite

materials. Polarization also describes which related to dielectric properties as well as the

xxiii



PREFACE

frequency of perovskite. It contains basic knowledge of Impedance spectroscopy which
separates the contributions of the grains and grain boundaries, and electrode specimen
interface observed RC elements of the composite. This includes the effect of isovalent,
heterovalent and valence compensated substitutions on the electrical and dielectric

properties.

Chapter II This chapter describes the details of experimental procedure used for the
synthesis, characterization, and application of composite materials. The crystalline
phases of composite sintered samples were identified by using the X-ray diffraction
analysis (Rigaku, miniflex-600, Japan) employing Cu-ka radiation.Scanning Electron
Microscopy gives an idea of formation of the microstructure of these materials.
Transmission Electron Microscopy (TEM) has been used for determination of their size
and shape of the particle. Atomic force microscopy analyzed the surface morphology.
Electrical and dielectric properties which are characteristic of all the composite were
measured as a function of temperature (300-500 K) in the frequency range 100Hz-5

MHz with the help of PSM 1735 (NumetriQ 4™ U.K Limited) LCR Meter.

Chapter III The detailed synthesis, characterization and application of the
CaCusTisMnO12 (CCTMO) perovskite were described in this chapter. CCTMO was
synthesized using a semi-wet method through sintering at 1223 K for 8 h. The structural
and microstructural details were studied by X-ray diffraction (XRD), scanning electron
microscope (SEM) and transmission electron microscope (TEM) techniques. XRD
analysis confirmed the existence of CaCusTi4O12 (CCTO) as the primary phases along
with TiOz as the minor aspects. The average grain sizes obtained by SEM analysis were
found to be around 1.46 pm sintering for 8 h, respectively. TEM analysis showed the

particle size in the range of 43.76 = 10 nm. The surface morphology was analyzed by
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PREFACE

atomic force microscopy (AFM). The sample sintered for 8 h exhibited very high
dielectric constant (er ~ 100) at 1 kHz and 303 K. The presence of semiconducting
grains with the insulating grain boundaries significantly attributes to such a high
dielectric constant value, supporting the internal barrier layer capacitance (IBLC)

mechanism operative in CCTMO perovskite.

Chapter IV In this chapter, the CaCu3Tiu-xMnxO12 (CCTMO) was synthesized by a
semi-wet method at 1223 K for 8 h. X-ray diffraction (XRD) analysis confirms the
presence of CCTMO and CaCu3TisO12 both phases in the perovskite ceramic.
Transmission electron microscope (TEM) analysis of the composite demonstrates the
formation of nanoparticles with average particle size 23 + 10 nm, 31 = 10 nm and 24 +
10 nm at a different doping concentration of Mn (x= 0.25, 0.50 and 1.00) in CaCus3Tis-
xMnxO12 ceramic.. The surface morphology of the composite sintered at 1223 K for 8 h
obtained by SEM analysis indicate the formation of large and small grains with bimodal
structure. The average and root mean square roughness is found to be 72 nm and 90 nm,
respectively by Atomic force microscopy studies of the ceramic. The dielectric constant
of CCTMO ceramic is found to be 150 at 100 Hz and 500 K respectively. The presence
of semiconducting grains and insulating grain boundaries in the composite supporting
the internal barrier layer capacitance (IBLC) mechanism operative in Mn-doped CCTO

type of perovskites of different composition.

Chapter V The synthesis, characterization and application of the CaCu3Ti3.sMno.sO12
ceramic were discussed in this chapter. A nano-composite ceramic with the chemical
composition CaCu3Ti3.sMnosO12 was synthesized by a semi-wet method at CCTMO
sintered at 950 °C, 1050 °C, and 1100 °C, respectively for 8 h. X-ray diffraction analysis

confirms the presence of CCTO and TiO2 phases in the composite ceramic.
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PREFACE

Transmission electron microscope analysis of the formation of nano-particles (98.49 +
10 nm, 92.95 £ 10 nm and 145.50 = 10 nm at 950 °C, 1050 °C, and 1100 °C,
respectively. Further, scanning electron microscope (SEM) images show that the
morphology consists of large and small grains (1.0-10 um) with a bimodal distribution.
The surface morphology of composite was studied by atomic force microscope using
tapping mode of measurement also substantiates the results obtained by SEM analysis.
The sample sintered for 8 h exhibits very high dielectric constant (&~130) at 100 Hz and
room temperature. The presence of semiconducting grains with insulating grain
boundaries significantly attributes to such a high dielectric constant value, supporting
the internal barrier layer capacitance mechanism operative in Mn-doped CCTO of

different composition.

Chapter VI the CCTMO, CCTWO and CCTNO perovskites were successfully
synthesized by semi-wet route. Powder X-Ray Diffraction confirms the formation of
CCTO as main phase along with minor TiO2 phase in CCTMO, CCTWO and CCTNO
at sintered at 950°C, 1050°C, and 1100°C, for 8 h. Particle size observed by TEM is 44
nm, 101 nm, and 51 nm, respectively. Atomic force microscopy shows statistically
significant changes in the surface roughness. The nano-composite exhibits improvement
in dielectric loss (tan 8 = 0.9) at 1 kHz. The low-frequency performance of the doped
CCTO was estimated by measuring the frequency dispersion of the dielectric constant

(¢') and dielectric loss (tan 9).
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