Table of Contents

Acknow	vledgementsi
Table o	of Contentsv
List of 1	Figuresix
List of '	Tablesxxiii
List of A	Abbreviations xxv
List of S	Symbolsxxix
Preface	exxxiii
1 Ch	apter 1: Introduction and Literature Review1
1.1	Martensite Phase Transition
1.2	Shape Memory Alloys
1.3	Magnetic Shape Memory Alloys7
1.4	Ni-Mn-based Magnetic Shape Memory Alloys 10
1.4	.1 Phase Transitions in Ni-Mn-Ga Magnetic Shape Memory Alloys
1.4	.2 Phase Transitions in Ni-Mn-In Magnetic Shape Memory Alloys 15
1.4	.3 Premartensite (Precursor) Phase in Ni-Mn-based Magnetic Shape Memory Alloys
1.5	Anomalous and Topological Hall Effect
1.6	Magnetic Shape Memory Alloys with Hexagonal Austenite Phase
1.7	Objective of the Present Work
2 Ch	apter 2: Synthesis and Experimental Methods
2.1	Synthesis Procedure
2.2	X-ray Diffraction
2.3	Scanning Electron Microscope and Energy Dispersive Analysis of X-rays
2.4	Differential Scanning Calorimetry 40
2.5	Magnetic Measurements 41
2.6	Magnetoresistance and Hall Measurements 45
2.7	Synchrotron X-ray Powder Diffraction
2.7	.1 Linac
2.7	.2 Booster Ring

2.	.7.3	Storage Ring
2.7.4		Beamlines
2.	.7.5	P02.1 Beamline of PETRA-III
2.	.7.6	Xpress Beamline of ELETTRA
	-	3: A Pair Distribution Function Study of Ni2MnGa Magnetic Shape Memory
•		ence for the Precursor State of the Premartensite Phase
3.1	Intr	oduction 57
3.2	Exp	erimental Section
3.3	Ato	mic Pair Distribution Function Method62
3.4	Res	ults and Discussion
3.	.4.1	Magnetization
3.	.4.2	Arrott Plot, Critical Isotherm and Universal Curve
3.	.4.3	Temperature Dependent High-Resolution Synchrotron X-ray Powder Diffraction 75
3.	.4.4	Temperature dependent atomic pair distribution function analysis
3.5	Cor	clusions
4 C	Chapter	: 4: Intrinsic Anomalous Hall Conductivity and Topological Hall Effect in
Ni ₂ Mı		agnetic Shape Memory Alloy
4.1	Intr	oduction
4.2	Exp	erimental Section
4.3	Res	ults and Discussion
4.	.3.1	Phase purity
4.	.3.2	Temperature and Magnetic Field Dependent Magnetization 100
4.	.3.3	Resistivity and Magnetoresistance
4.	.3.4	Anomalous Hall Effect 106
4.	.3.5	Topological Hall Effect
4.4	Con	clusions
		5: Stabilization of the Premartensite Phase in Ni ₅₀ Mn ₃₄ In _{16-x} Al _x (x = 0.5, 0.8)
Magn	etic Sh	ape Memory Alloys 121
-		1
5.1		oduction
-		erimental Section
5.1	Exp	

5.	.3.2	Magnetization and High-Resolution Synchrotron X-ray Powder Diffraction.	130			
5.4	Co	nclusions	143			
	6 Chapter 6: Temperature and Pressure-Induced Phase Transition and Magnetoelastic Coupling in the Hexagonal NiMnGa145					
6.1	Intr	oduction	145			
6.2	Exp	perimental Section	151			
6.3	Res	sults and Discussion	152			
6.	.3.1	Phase Purity	152			
6.	.3.2	Ferromagnetic to Paramagnetic Phase Transition Behavior	153			
6.	.3.3	Spin Reorientation Transition Behavior	160			
6.	.3.4	Temperature Dependent Structure Investigation	163			
6.	.3.5	Magnetoelastic Coupling	169			
6.	.3.6	Bond Length and Bond Angle	172			
6.	.3.7	Thermal Expansion Behavior	176			
6.	.3.8	Structural Investigation Under Hydrostatic Pressure	179			
6.4	Co	nclusions	187			
7 C	hapte	nclusions r 7: Signature of Skyrmions and Evidence for the Local Noncentrosymm acture in Hexagonal NiMnGa	etric			
7 C	hapte al Stru	r 7: Signature of Skyrmions and Evidence for the Local Noncentrosymm	etric 189			
7 C Crysta	hapte al Stru Intr	r 7: Signature of Skyrmions and Evidence for the Local Noncentrosymm acture in Hexagonal NiMnGa	etric 189 189			
7 C Crysta 7.1	Chapte al Stru Intr Exp	r 7: Signature of Skyrmions and Evidence for the Local Noncentrosymm acture in Hexagonal NiMnGa	etric 189 189 193			
7 C Crysta 7.1 7.2 7.3	Chapte al Stru Intr Exp	r 7: Signature of Skyrmions and Evidence for the Local Noncentrosymm acture in Hexagonal NiMnGa oduction	etric 189 189 193 193			
7 C Crysta 7.1 7.2 7.3 7. 7.	hapte al Stru Intr Exp Res 3.1 3.2	r 7: Signature of Skyrmions and Evidence for the Local Noncentrosymm acture in Hexagonal NiMnGa oduction perimental Section	etric 189 189 193 193 193			
7 C Crysta 7.1 7.2 7.3 7. 7. D	hapte al Stru Intr Exp Res 3.1 3.2	r 7: Signature of Skyrmions and Evidence for the Local Noncentrosymm acture in Hexagonal NiMnGa oduction berimental Section sults and Discussion Temperature Dependent AC-Susceptibility Signature of the Skyrmions with Hysteretic Nature using Magnetic Field	etric 189 193 193 193 193			
7 C Crysta 7.1 7.2 7.3 7. 7. D 7.	hapte al Stru Intr Exp Res 3.1 .3.2 epende	r 7: Signature of Skyrmions and Evidence for the Local Noncentrosymm acture in Hexagonal NiMnGa oduction berimental Section sults and Discussion Temperature Dependent AC-Susceptibility Signature of the Skyrmions with Hysteretic Nature using Magnetic Field ent AC-Susceptibility Measurements	etric 189 193 193 193 195 199			
7 C Crysta 7.1 7.2 7.3 7. 7. D 7.	hapte al Stru Intr Exp Res 3.1 3.2 epende 3.3 3.3 3.4	r 7: Signature of Skyrmions and Evidence for the Local Noncentrosymm acture in Hexagonal NiMnGa oduction berimental Section sults and Discussion Temperature Dependent AC-Susceptibility Signature of the Skyrmions with Hysteretic Nature using Magnetic Field ent AC-Susceptibility Measurements Temperature Dependent High-Q Synchrotron X-ray Powder Diffraction	etric 189 193 193 193 193 195 199 201			
7 C Crysta 7.1 7.2 7.3 7. 7. D 7. 7. 7. 4	hapte al Stru Intr Exp Res 3.1 3.2 epende 3.3 3.4 Cor	r 7: Signature of Skyrmions and Evidence for the Local Noncentrosymm acture in Hexagonal NiMnGa	etric 189 193 193 193 193 195 199 201 215			
7 C Crysta 7.1 7.2 7.3 7. 7. D 7. 7. 7. 4	hapte al Stru Intr Exp Res 3.1 3.2 epende 3.3 3.4 Cor hapte	r 7: Signature of Skyrmions and Evidence for the Local Noncentrosymm acture in Hexagonal NiMnGa	etric 189 189 193 193 193 195 195 201 215 217			
 7 C Crysta 7.1 7.2 7.3 7. 7. 7. 7. 7. 7.4 8 C 	hapte al Stru Intr Exp Res 3.1 3.2 epende 3.3 3.4 Cor hapte Sur	r 7: Signature of Skyrmions and Evidence for the Local Noncentrosymm incture in Hexagonal NiMnGa	etric 189 189 193 193 193 193 195 201 215 217 217			
 7 C Crysta 7.1 7.2 7.3 7. 7. 7. 7.4 8 C 8.1 8.2 	hapte al Stru Intr Exp Res 3.1 3.2 epende 3.3 3.4 Cor hapte Sur Sug	r 7: Signature of Skyrmions and Evidence for the Local Noncentrosymm neture in Hexagonal NiMnGa	etric 189 189 193 193 193 193 195 201 215 217 217 219			

List of Figures

Figure 1.1: Schematic diagram of FCC austenite to BCT martensite transformation via Bain
distortion. The xyz and XYZ represent the axes of the parent FCC austenite and BCT martensite
phase, respectively. The lattice parameter (LP) of FCC lattice is labelled by a ₀ , while LP of BCT
lattice are <i>a</i> and <i>c</i> [16]2
Figure 1.2: Lattice deformation from austenite to the martensite phase accompanying shear. (a) No
lattice invariant shear, (b) Slip shear, and (c) Twinning shear[14]. (d) A more simplified model of
austenite to the martensite phase transformation[16]
Figure 1.3: (a) Austenite to martensite phase transition with temperature change. The M_s , M_f , A_{s} ,
and Af indicate the martensite start, martensite finish, austenite start, austenite finish temperatures,
respectively. The H represents the width of the thermal hysteresis. (b) Schematic diagram of Gibbs
free energy (G) relationship during the martensite transformation[19]. ΔT_s is the supercooling
driving temperature for the forward martensite transformation. The subscripts P and M stand for
the parent austenite and martensite phases, respectively, while To indicates the equilibrium
temperature
Figure 1.4: Schematic diagram of shape memory effect and superelastic behavior during cooling,
heating, loading, and unloading are depicted. The states (i), (ii), and (iii) represent the austenite,
twinned martensite, and detwinned martensite phases. Labels $A_{\rm f}$ and $M_{\rm f}$ indicate the austenite
finish and martensite finish temperatures, respectively. The black curve represents a wire whose
shape changes in (i) and (iii)
Figure 1.5: Schematic diagram of magnetic shape memory effect with application of magnetic
field (H). The states (i), (ii), and (iii) represent the twinned martensite with no magnetic field,
twinned martensite with field H , and detwinned martensite with field H , respectively. The MCA
stands for magnetocrystalline anisotropy
Figure 1.6: Schematic diagram of unit cells of austenite phase (A) for Ni ₂ MnGa MSMA. The inset
(i), (ii), and (iii) depicts the unit cells of body centered tetragonal martensite, 3M modulated
premartensite (PM), and 7M modulated martensite (M) phases, respectively
Figure 1.7: Phase diagram of Ni-Mn-Ga MSMA for (a) deficient Ni and excess Mn, (b) excess Ni
and deficient Mn and (c) excess Mn and deficient Ga composition. The FM and PM stand for

ferromagnetic and paramagnetic, while T_C , T_M , and T_{PM} indicate the PM to FM, martensite, and Figure 1.8: Phase diagram of Ni-Mn-In MSMA. The FM and PM stands for ferromagnetic and paramagnetic while T_c^A , T_c^M and M_s indicate the Curie temperature of the austenite, Curie temperature of the martensite, and martensite start temperature, respectively. Label L10 represents the L1₀-type tetragonal structure[98].....16 Figure 1.9: (a) Schematic illustration of Hall effect, where I, H, and V stands for current, magnetic field, and Hall voltage, respectively [152] and (b) Hall resistivity (ρ_{xy}) with magnetic field for a Figure 1.10: (a) Schematic illustration of anomalous Hall effect (AHE)[152] and (b) Hall resistivity (ρ_{xy}) with magnetic field for a ferromagnetic conductor, where R_SM is the zero-field Figure 1.11: Schematic illustrations of intrinsic, side jump, and skew scattering mechanism to Figure 1.12: The schematic diagram of topological hall effect (THE). (a) Turning of electron trajectory on passing through a magnetic texture like skyrmion. The electron's spin orientation follows the spin orientation of the skyrmion texture. (b) Topological hall resistivity vs magnetic field plot, where arrow indicated the direction of field sweeping. Insets in (b) show positive and Figure 2.1: (a) Real image of sample preparation unit at the School of Materials Technology, IIT Figure 2.2: Schematic diagram of x-ray diffraction by a set of lattice planes of the crystal. 36 Figure 2.3: (a) A real image of temperature dependent x-ray diffractometer in the School of Materials Science and Technology, IIT (BHU). (b) An enlarged view of the machine part...... 37 Figure 2.4: A schematic diagram of working principle of scanning electron microscope[236]... 39 Figure 2.5: A schematic mechanism of characteristic x-rays emission from inner shells of an atom Figure 2.7: A schematic diagram of the operating principle for the VSM option of PPMS[239].42 Figure 2.8: A schematic diagram of ACMS II coil set[240], where different coils are indicated.44

Figure 2.9: The schematic diagram of magnetic flux detection by SQUID, where $\Delta \varphi$ is the change
in flux and ϕ_0 is flux quanta[241]45
Figure 2.10: A typical schematic diagram of (a) Longitudinal voltage and (b) Hall (transverse)
voltage measurement setup, where I+, I-, V+, and V-, indicate positive current, negative current,
positive potential, and negative potential contacts respectively while H, V_L , and V_H represent the
magnetic field, longitudinal voltage, and Hall voltage, respectively
Figure 2.11: A real image of a sample mounted for magnetotransport measurements using the four-
probe method in ETO of PPMS at School of Materials Science and Technology, IIT (BHU) 47
Figure 2.12: The real image of CFMS setup at School of Materials Science and Technology, IIT
(BHU)
Figure 2.13: The real image of sample holder for magnetoresistance measurement using CFMS at
School of Materials Science and Technology, IIT (BHU)
Figure 2.14: A schematic diagram of synchrotron light source and beamlines[245]
Figure 2.15: (a) Schematic diagram of optics of P02.1 beamline of PETRA-III, DESY[246]. (b)
Real image of mounted capillary during measurement at P02.1 beamline of PETRA-III, DESY.

enlarged view around the lower field region, revealing the negative slope guided by a dotted blue Figure 3.3: The behavior of $\ln(M)$ with $\ln(H)$ around $T_C \sim 371$ K. The red line represents the linear fitting at the higher field at 370 K. The significant deviation from the linearity at the lower Figure 3.4: Isothermal entropy change versus temperature across the magnetic phase transition. Figure 3.5: (a) The variation of the peak value of entropy change (ΔS_{pk}) (obtained from Figure 3.4) with change in the magnetic field. (b) The red line indicates the fit using power law ($\Delta S_{pk} = k H^n$). The variation of ΔS_{pk} with the rescaled magnetic field (H^n). The blue line represents the deviation Figure 3.7: (a) High-resolution SXRPD patterns at various temperatures in the temperature range 260 K to 400 K. The inset (i) shows the enlarged view around the most intense Bragg peak of the cubic austenite phase at various temperatures while the inset (ii) depicts a highly magnified view around the most intense peak at 260 K showing the appearance of satellite peaks corresponding to the premartensite phase, which are marked as "PM". The panels (b) and (c) show the observed (black circles), calculated (continuous red line), and difference profiles (continuous green line at the bottom) obtained after Rietveld refinement using SXRPD data at 400 K and 270 K, respectively, while the blue tick bars indicate the Bragg peak positions and R_{wp} is the weighted agreement factor. The inset in (b) and (c) show the quality of Rietveld fit around the most intense

Figure 3.11: Experimental PDFs in the SR regime at various temperatures from 400 K to 260 K. The atomic pairs contributing to the individual peaks are indicated below the blue arrow line. The asterisk (*) marked peak is a ripple due to the truncation of the Fourier series. The inset shows an enlarged view around 5.4 Å, where the black arrow is to guide to the emergence of new pair of interatomic distance while the blue arrow shows the shift of the minima towards the higher *r* side.

Figure 3.14: The correlation length (ξ) of the premartensite phase as a function of temperature. The black dotted line shows the slowly increasing trend of ξ in the temperature range 330 to 270

Figure 4.2: (a) Temperature dependence of dc magnetization (M) of Ni₂MnGa, measured at 100 Oe in the zero-field cooled warming (ZFCW; black color), field cooled (FC; red color), and field cooled warming (FCW; blue color) cycles. The inset in (a) depicts an enlarged view around paramagnetic to ferromagnetic transition. The T_M , T_{PM} , T_{onset} and T_C (indicated in the inset) represent the martensite, premartensite, onset of ferromagnetic, and ferromagnetic transition temperatures, respectively. The arrows are to guide the cooling and warming cycles. (b) The magnetic field dependence of magnetization of Ni₂MnGa, measured at the indicated temperatures (385-2 K), wherein inset depicts the temperature dependency of the saturation magnetization (M_S).

Figure 5.1: The observed (dark black dots), calculated (continuous red line), and difference profiles (continuous green line) obtained after Le Bail refinement using laboratory source XRD data at 300 K for (a) the martensite phase in the P2/m space group for Ni₅₀Mn₃₄In_{15.5}Al_{0.5} and (b) for the cubic austenite phase in the $Fm\overline{3}m$ space group for Ni₅₀Mn₃₄In_{15.2}Al_{0.8}. Above the difference profile, the vertical tick marks represent the Bragg peak positions in (a) and (b). The inset of (a) depicts an enlarged view of fit around the most intense Bragg peak, while the inset of (b) shows an enlarged view of fit around the (111) and (200) Bragg reflections. The BSE image for (c) Ni₅₀Mn₃₄In_{15.5}Al_{0.5} Figure 5.2: The DSC data for (a) Ni₅₀Mn₃₄In_{15.5}Al_{0.5} and (b) Ni₅₀Mn₃₄In_{15.2}Al_{0.8}. The arrows in (b) and (c) indicate the heating and cooling cycle. The magnetic field dependent magnetization (M(H))loop) for (c) Ni₅₀Mn₃₄In_{15.5}Al_{0.5} at 5 K and (d) Ni₅₀Mn₃₄In_{15.2}Al_{0.8} at 2 K. The value of saturation Figure 5.3: (a) The temperature dependent dc-magnetization at 500 Oe for Al free Ni₅₀Mn₃₅In₁₅ (taken from reference[91]). The temperature dependent real part of ac-susceptibility for (b) Ni₅₀Mn₃₄In_{15.5}Al_{0.5} and (c) Ni₅₀Mn₃₄In_{15.2}Al_{0.8} MSMAs. The insets are enlarged view around 300 K for the field cooled protocol. The T_M , T_{PM} , T_C^M and T_C represent the martensite transition temperature, premartensite transition temperature, Curie temperature of the martensite phase, and Curie temperature of the austenite phase, respectively. The ZFCW, FC, and FCW correspond to

measurements performed during warming on the zero-field cooled sample, during field cooling, Figure 5.4: Typical SXRPD patterns of Ni₅₀Mn₃₄In_{15.5}Al_{0.5} MSMA in the (a) austenite, (b) premartensite, and (c) martensite phases. An enlarged view around the most intense (220) Bragg peak for the austenite and the premartensite (PM) phases, given in inset (i) of (a) and (b), respectively, reveal the appearance of the satellite peaks (indicated by 'PM' in the inset (i) of (b)) due to 3M like modulation in the PM phase. Untruncated view of the (220) cubic peak for the austenite and PM phases, given in inset (ii) of (a) and (b), respectively, reveal the absence of Bain distortion in the PM phase. The inset of (c) depicts the splitting of the most intense (220) cubic peak and appearance of the satellite peaks due to Bain distortion and 3M like modulation of the martensite (M) phase. The observed (dark black dots), calculated (continuous red line), and difference patterns (continuous green line), obtained after Le Bail refinement using the SXRPD data for the (d) cubic austenite, (e) 3M modulated PM, and (f) 3M modulated martensite phases in the $Fm\bar{3}m$, P2/m, and P2/m space groups, respectively, for Ni₅₀Mn₃₄In_{15.5}Al_{0.5}. The vertical ticks above the difference profile represent the Bragg peak positions. The insets (i) and (ii) of (a) show an enlarged view of fit around the (111) and (200) Bragg reflections and around the most intense Bragg peak, respectively. The inset of (e) and (f) shows fits around the most intense Bragg peak region in a magnified scale. The satellite peaks of the PM phase are marked as 'PM' at 310 K in the inset of (b) and (e). The peaks related to the martensite phase are marked as 'M' at 110 K in Figure 5.5: (a) The laboratory source (CuKa) XRD data at indicated temperature (300 to 13 K) for Ni₅₀Mn₃₄In_{15.5}Al_{0.5} MSMA. (b) An enlarged view around the most intense Bragg peak region of Figure 5.6: The SXRPD patterns of $Ni_{50}Mn_{34}In_{15,2}Al_{0,8}$ are shown in (a) at (i) 400 K, (ii) 220 K, and (iii) 100 K. The insets show an enlarged view around the most intense Bragg peak to reveal the satellite peaks of the premartensite (PM) phase. The enlarged view around the most intense cubic peak (220) at the various temperatures in the range 400-100 K are given in (b) and (c). The arrows in (c) indicate the temperature dependent shifts of the PM satellite peak positions. Note the gradual sharpening of the satellite peaks in (c) on lowering the temperature. (d) An enlarged view around the most intense (220) cubic peak at selected temperatures reveal the appearance of the most intense satellite peak of the PM phase at $T \sim 300$ K, indicated by an arrow. (e) Untruncated

vertical ticks above the difference profile represent the Bragg peak positions. The " R_{wp} " is the weighted agreement factor of the fitting. The inset depicts a unit cell structure of NiMnGa. ... 153 Figure 6.2: The magnetization vs temperature (M(T)) plot for an applied field of 100 Oe under zero-field cooled warming (ZFCW) cycle. Inset (i) depicts the enlarged view of M(T) in the temperature range of 150 K to 330 K where the arrow shows the decreasing behavior of M(T) below ferromagnetic transition temperature (T_C), the red line shows deviation below 180 K and dotted blue lines are showing the spin reorientation transition (SRT) region with starting at ~ 210 K. Inset (ii) depicts the M(T) measured at a high applied field (5 Tesla) under the ZFCW cycle.

Figure 6.3: (a) M(T) at different magnetic applied fields under ZFCW, FC, and FCW cycles indicated by black, olive, and blue color, respectively. (b) An enlarged view of (a) around T_C at the indicated field, where ZFCW and FCW cycles are completely superimposed, while the arrow indicates the FC and FCW cycles. The ZFCW, FC, and FCW correspond to measurements performed during warming on the zero-field cooled sample, during field cooling, and during warming on the field cooled sample, respectively......157 Figure 6.4: The enlarged view of Figure 6.3(a) around T_C only for the ZFCW cycle (indicated by arrow) at the indicated fields. The red lines indicate the extrapolation of magnetization for both above and below T_C where the intersection point of red lines is considered as the onset temperature of T_C (T_{onset}) at each field. The obtained T_{onset} at each field is shown in the inset, where the blue Figure 6.5: (a) The isotherms (M(H)) around T_C in the temperature range of 378-330 K, in the 2 K temperature interval, under the cooling cycle. (b) The Arrott plots (H/M vs M^2 plots) using M(H). Figs. (c) and (d) depict enlarged views of the Arrott plots at the low field region at the indicated temperatures. The arrow in (c) is to guide the negative slope. The change of sign of curvature Figure 6.6: The enlarged view of M(T) (given in Figure 6.3(a)) at the indicated fields around spin reorientation transition (SRT) for (a) ZFCW cycle and (b) FC cycle. The (c) depicts an enlarged view of M(T) around SRT for FC and FCW cycles guided by the arrow at 2000 Oe of the applied field. The (d) depicts the field dependence of start of the SRT temperature (T_{SRT}^{s}) (obtained from

Figure 6.7: (a) Isothermal M(H) around T_{SRT} in the 170-230 K temperature range in the 5 K temperature interval. (b) Arrott plots using M(H) around T_{SRT} . The inset in (a) and (b) depict an enlarged view at the region of the high field of M(H) and at the low field region of the Arrott plots.

Figure 6.8: (a) The observed (filled black dots), calculated (continuous red line), and difference (bottom green line) profiles obtained after Rietveld refinement using synchrotron x-ray powder diffraction (SXRPD) data at room temperature using the hexagonal structure with $P6_3/mmc$ space group. The vertical blue ticks above the difference profile represent the Bragg peak positions. The inset of (a) depicts an enlarged view of the most intense Bragg peak region. (b) The SXRPD patterns at indicated temperatures. The inset of (b) depicts the enlarged view of the most intense Bragg peak region. (c) The enlarged view of SXRPD data around intense Bragg peak region in the Figure 6.9: (a) The temperature dependent (300 to 15 K) laboratory source x-ray diffraction patterns of MnNiGa. (b) An enlarged view of (a) around the most intense Bragg peak region. The miller indices of both major peaks are indicated near the bottom-most pattern in (b). 165 Figure 6.10: Temperature dependent behavior of (a) lattice parameters (a & c), (b) c/a ratio and (c) unit cell volume (V). The temperature derivative of a, c, and V are given in (d) da/dT, (e) dc/dTand (f) dV/dT, respectively. The blue curve in (d), (e), and (f) represent a smoothen behavior. The transition temperatures ($T_{SRT} \sim 200$ K and $T_C \sim 350$ K) are guided by the vertical dotted line in (a)-Figure 6.11: The unit cell volume (V) of hexagonal phase vs temperature plot indicated by black circles. The solid red line indicates the theoretically modeled unit cell volume (V_{cal}) using the Debye-Grüneisen equation. The grey arrow indicates the deviation between V and V_{cal} . The bulk hexagonal strain ($\Delta V/V$) vs square of spontaneous magnetization (M_s^2) plots are shown in the inset (i) for 350-300 K, inset (ii) for 300-260 K, and inset (iii) for 260-180 K, where the blue line Figure 6.12: The bond length corresponding to (a) Ni-Ga, (b) Mn-Mn, and (c) Ni-Mn or Ga-Mn pairs. The temperature derivative of (d) Ni-Ga, (e) Mn-Mn, and (f) Ni-Mn or Ga-Mn, pairs. The blue curve in (d)-(f) represents a smoothen behavior. The transition temperatures $T_C \sim 350$ K and

Figure 6.15: The observed (black spheres), calculated (continuous red line), and difference profiles (bottom green line) obtained after Rietveld refinement using synchrotron x-ray powder diffraction pattern at the ambient condition in the P6₃/mmc space group of NiMnGa. The vertical tick marks above the difference profile represent the Bragg peak positions. The " R_{wp} " represents the weighted Figure 6.16: (a) The synchrotron x-ray powder diffraction pattern collected at various pressure (indicated) up to 14 GPa. (b) The enlarged view around the most intense Bragg peak region. The miller indices of both major peaks are given in the bottom-most in (b). The "P (GPa)" represents the pressure in the GPa unit. The topmost pattern labeled by "0.50 (release)" was collected during Figure 6.17: Pressure-dependence of (a) in-plane and (b) out of plane lattice parameters of NiMnGa. The red line and dotted blue line in (a) and (b) represent the linear compression and extrapolated region of linear compression behavior, respectively. The "da/dP" and "dc/dP" indicate the linear compression rate in a and c-parameter in (a) and (b), respectively. The error in lattice parameters is smaller than the symbol size. (c) The unit cell of NiMnGa, wherein different lengths of springs connected with arrows indicate the different compression rates in the in-plane Figure 6.18: Pressure-dependence of unit cell volume (V). Solid lines indicate the results of a second-order Birch-Murnagan equation-of-state (EoS) fit to the data. "EoS1" and "EoS2"

represent the fitting considering the data upto 4 GPa and above 4 GPa, respectively. The V₀, B, and B' are the parameters obtained from the fit. Pressure dependence of c/a ratio is depicted in the inset, wherein the red line and dotted blue line represent the linear fit and extrapolation of the linear Figure 7.1: Temperature dependence of the real part of ac-susceptibility ($\gamma'(T)$) of NiMnGa, measured at 333 Hz under the zero-field cooled warming cycle. The T_C and T_{SRT} indicate the Figure 7.2: (a) The variation of the real component of ac-susceptibility (χ') with dc magnetic field (H) (χ' vs H plot) at 220 K with increasing and decreasing field (-1 T to 1 T). H_S and H_C indicate the critical fields at which the system transforms from helical to biskyrmions and from biskyrmions to ferromagnetic states, respectively. (b) The first derivative $(d\chi'/dH)$ of $\chi' vs H$ plot. The insets (i) & (ii) of (b) depict an enlarged view around -0.25 T and 0.25 T, respectively, where the vertical dashed lines indicate the increasing and decreasing fields of maxima and minima...... 196 Figure 7.3: The variation of the real component of ac-susceptibility (χ') with dc magnetic field (H) (χ' vs H plot) at the indicated temperatures (5 to 340 K) with increasing magnetic field only (0 to ± 1 T). The inset shows the enlarged view around 0.2 T. The blue arrow in the inset indicates the increasing behavior of critical field (H_s) and peak growth on decreasing the temperature...... 198 Figure 7.4: The observed profile (black spheres), calculated profile (continuous red line), difference profile (continuous green line), Bragg peak positions (blue ticks), and weighted agreement factor (R_w) obtained after Rietveld refinement in the P6₃/mmc space group of NiMnGa using high-Q synchrotron x-ray powder diffraction data at (a) 400 K, (b) 300 K, and (c) 100 K. The reduced structure function F(Q) vs Q at (d) 400 K, (e) 300 K, and (f) 100 K. 200 Figure 7.5: Experimental pair distribution functions (PDFs; G(r)) on the vertically spaced scale at various temperatures from 400 K to 100 K in the (a) Short-range (SR), (b) Medium-range (MR), and (c) Long-range (LR) regimes. 202 Figure 7.6: The experimental PDF (blue spheres), calculated PDF (continuous red line), their difference (continuous green line at the bottom), and weighted agreement factor (R_w) obtained by real-space structure refinements using the $P6_3$ /mmc space group in the SR and LR at (a) 400 K, (b) 300 K and (c) 100 K with isotropic atomic displacement parameters (ADPs; Uiso) consideration in the refinements. The PDFs fits in the SR and LR using the same space group (P63/mmc) at (d) 400 K, (e) 300 K, and (f) 100 K with anisotropic ADPs (U_{aniso}) consideration in the refinements.

The significant misfit just below 5 Å is indicated by encircled region of difference PDFs (Gdiff) Figure 7.7: The anisotropic atomic displacement parameter (AADP) of the Mn atom with distance (r) obtained after r-dependent real-space structure refinement using the $P6_3/mmc$ space group at (a) 400 K, (b) 300 K, and (c) 100 K. The planer ADP (U_{11}) and prismatic ADP (U_{33}) are indicated by black squares connected with a solid line and blue spheres connected with a solid line, respectively. The insets in the (a), (b), and (c) depict the ratio of U_{33} with U_{11} (i.e., U_{33}/U_{11}) vs r Figure 7.8: The experimental PDF (blue spheres), calculated PDF (continuous red line), their difference (continuous green line at the bottom), and weighted agreement factor (R_w) obtained by real-space structure refinements in the SR at 300 K using space group (a) $P6_{3}mmc$, (b) $P\overline{6}m2$, (c) $P6_{3}mc$, (d) $P\overline{6}2c$, (e) $P6_{3}22$, (f) $P6_{3}/m$, (g) $P\overline{3}1c$, (h) Pmmc, (i) Pnma, (j) $P\overline{3}m1$, and (k) P3m1. For comparison, the difference PDF (Gdiff) of (j) and (k) are depicted in separate panels given below (j) and (k), respectively. 209 Figure 7.9: The experimental PDF (blue spheres), calculated PDF (continuous red line), their difference (continuous green line at the bottom), and weighted agreement factor (R_w) obtained by real-space structure refinements using the P6₃/mmc space group in the SR at (a) 400 K and (c) 100 K, while in the LR at (e) 400 K and (g) 100 K. The PDFs fits using the P3m1 space group in the SR at (b) 400 K and (d) 100 K, while in the LR at (f) 400 K and (h) 100 K..... 214

List of Tables

Table 3.1: Interatomic distances corresponding to the refined structural parameters of the austenite Table 3.2: Parameters obtained from the PDF refinement using cubic austenite ($Fm\overline{3}m$) and 3Mcommensurate premartensite (Pnmn) structures in the SR regime at selected temperatures. The a, b, c are the lattice parameters, U_{iso} is the isotropic atomic displacements parameter, δ_2 is the coefficient for $1/r^2$ contribution to the peak sharpening, and R_w is the weighted agreement factor Table 6.1: The lattice parameters (a and c), thermal factor (B), and agreement factors obtained after Rietveld refinement (with P63/mmc space group) using temperature dependent SXRPD data Table 6.2: Comparison of lattice parameters (a and c) with temperature and pressure of hexagonal Table 7.1: The lattice parameters (a and c), thermal factor (B), and agreement factors obtained after Rietveld refinement (with $P6_3/mmc$ space group) using temperature dependent high-Q Table 7.2: The lattice parameters (a and c), isotropic atomic displacements parameters (U_{iso}), the coefficient for $1/r^2$ contribution to the peak sharpening (δ_2), and weighted agreement factor (R_w) obtained from the PDF refinement using hexagonal ($P6_3/mmc$ space group) at the selected Table 7.3: The lattice parameters (a and c), anisotropic atomic displacements parameters (U_{11} = U_{22} and U_{33}), the coefficient for $1/r^2$ contribution to the peak sharpening (δ_2), and weighted agreement factor (R_w) obtained from the PDF refinement using hexagonal ($P6_3/mmc$ space group) Table 7.4: List of subgroups of P6₃/mmc (194), their asymmetric unit, Wyckoff positions[415], and weighted agreement factor (R_w) of the real-space structure refinement of NiMnGa. The $P6_3/mmc$ (194) is not the subgroup. It is added just given for the comparison of Wyckoff positions Table 7.5: The lattice parameters (a and c), isotropic atomic displacements parameters (U_{iso}),

coefficient for $1/r^2$ contribution to the peak sharpening (δ_2), atomic positions and weighted

agreement factor (R_w) obtained from the PDF refinement in the SR using trigonal structure	with
P3m1 space group at the selected temperatures of NiMnGa.	212