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Preface 

Shape memory alloys (SMAs) are a special class of materials that remember their shape with the 

application of temperature and (or) stress. The shape change in these materials, which can be 

manipulated by both temperature and stress, is directly related to a structural (martensite) phase 

transition. These alloys have received tremendous interest due to their extensive technological 

applications ranging from automobiles, aerospace, marine structures, biomedical devices to energy 

conversion devices. Recently, another kind of SMAs gained huge interest, where shape change 

can be manipulated, and a large strain can be generated with the application of external magnetic 

field. These materials are termed magnetic shape memory alloys (MSMAs). The MSMAs have the 

advantage over the conventional SMAs as large strain can be generated within the martensite phase 

with magnetic field, which provides faster switching. Thus, the discovery of MSMAs offers 

potential for developing novel sensors and actuators based on the application/removal of the 

magnetic field with or without external stress at a fixed temperature. Among the several MSMAs, 

the Ni-Mn-based MSMAs are of current interest as, besides a large magnetic field induced strain 

(MFIS), they also exhibit several exotic physical properties/phenomena, e.g., giant magnetocaloric 

effect, large magnetoresistance, anomalous Nernst effect, strain glass transition, skyrmionic 

textures etc. These exotic properties/phenomena of Ni-Mn-based MSMAs make these materials 

very important for solid-state cooling and information storage technology applications also.  

The origin of the above-mentioned properties of Ni-Mn-based MSMAs is closely related to their 

interesting phase transition behavior. These alloys exhibit a paramagnetic to ferromagnetic (FM) 

phase transition and sometimes include FM to antiferromagnetic and (or) ferrimagnetic phase 

transition. Besides the magnetic phase transitions, they also show a structural phase transition from 

the high temperature cubic austenite to a low-temperature lower-symmetry martensite phase. In 
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general, the martensite phase of Ni-Mn-based MSMAs exhibits structural modulation, which plays 

a vital role in the appearance of huge strains in these alloys. Therefore, it is important to understand 

the phase transitions and crystal structure of different phases in order to explore the different 

physical properties of Ni-Mn-based MSMAs. 

Some important Ni-Mn-based MSMAs (e.g., Ni2MnGa) show an interesting precursor (or 

premartensite) phase, which precedes the martensite phase, with preserved cubic symmetry of the 

austenite phase. As premartensite phase is directly related to the martensite phase, it also affects 

the related physical properties (e.g., strain glass behavior and skyrmionics textures) observed in 

these alloys. Therefore, a detailed understanding of the premartensite phase is necessary to tune 

the related physical properties of the martensite phase. Although the precursor have been observed 

in the austenite phase also in terms of the appearance of diffuse scattering and softening of 1/3 

(110) transverse acoustic (TA2) phonon mode in Ni2MnGa due to the development of local short-

range correlations, it is still unclear whether these precursor effects are related to the martensite or 

the premartensite phase. This calls for a systematic study of the local structure of these alloys. In 

addition, since the premartensite phase usually appears in a rather narrow temperature range with 

weak signatures in the bulk physical property measurements, a premartensite phase stable over a 

wider temperature window is desirable for a proper understanding of this state. The results 

presented in this thesis provide evidence for a precursor state of the premartensite phase as local 

structure in the austenite phase of Ni2MnGa MSMA, where the stability of the premartensite phase 

is narrow and robust evidence for the stabilization of the premartensite phase as ground state of 

the Ni-Mn-In MSMA via chemical pressure tuning using magnetization and high-resolution, high-

flux as well as high-Q synchrotron x-ray diffraction data analysis.  
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In recent years, additional contributions (anomalous and topological) to the conventional Hall 

effect have been reported in Ni-Mn-based MSMAs. The results presented in the literature for the 

Hall effect are, however, controversial and calls for a detailed investigation of these MSMAs. The 

existing literature also suggests that the topological Hall effect associated with skyrmions may be 

influenced by the premartensite phase. Therefore, it is essential to investigate the role of the 

premartensite phase on the topological Hall effect in these alloys. In the present thesis, results of 

a comprehensive study on the origin of the anomalous and topological Hall effect in Ni2MnGa 

MSMA is presented using analysis of magnetotransport data.  

The hexagonal compound NiMnGa, which comes under another class of related materials, has 

received vast attention due to the observation of stable biskyrmionic textures, which can be utilized 

in the skyrmion-based spintronic devices at higher temperatures. Although temperature dependent 

structural and magnetic studies have been performed in the past, a detailed investigation of the 

correlation between the structural and magnetic behavior is still unclear in this compound. 

Interestingly, the stability of skyrmionic textures in some of the materials is found to be very 

sensitive to external uniaxial stress or pressure. This suggests that the stability of the skyrmionic 

spin textures can be manipulated through spin-lattice/magnetoelastic coupling. The manipulation 

of skyrmions with external pressure provides an additional tool for manipulating the functionality 

of such compounds. Thus, a detailed study of the hexagonal compound NiMnGa with external 

hydrostatic pressure may provide important information, which can be useful for the applications 

in spintronic devices. The present thesis provides results of a comprehensive study of phase 

transitions on NiMnGa using magnetization as well as temperature and pressure dependent 

synchrotron x-ray diffraction data. In general, the stabilization of skyrmions have been proposed 

to exit in noncentrosymmetric materials due to the presence of Dzyaloshinskii–Moriya interaction. 
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However, the NiMnGa has a hexagonal structure with a centrosymmetric space group (P63mmc) 

and yet it hosts biskyrmionic textures. To understand the origin of biskyrmions in this compound, 

the results of a local structure study of the NiMnGa using high-Q synchrotron x-ray diffraction 

data analysis are also presented in this thesis.  

In this thesis, a detailed study of the phase transition, local as well as global crystal structure, and 

anomalous Hall effect are performed in Ni2MnGa, Ni50Mn34In16-xAlx (x = 0.5, 0.8) MSMAs, and a 

related hexagonal NiMnGa system. The present thesis is divided into eight chapters.  

Chapter 1 provides definition and a detailed description of martensite transition, shape memory 

alloys, magnetic shape memory alloys and related terms used in this work, followed by a review 

of literature related to the Ni-Mn-based MSMAs and hexagonal NiMnGa.    

Chapter 2 contains the details of the synthesis process, including a detailed discussion of various 

components, several characterization techniques employed, e.g., laboratory source x-ray 

diffraction measurements for checking the phase purity, energy dispersive analysis of x-rays for 

composition determination, differential scanning calorimetry for the phase transition temperatures. 

In addition, the details of the magnetic and magnetotransport measurements using physical 

properties, magnetic properties, and cryogenic free measurement systems are provided. The details 

of the synchrotron x-ray powder diffraction (SXRPD) measurements carried out at the P02.1 

beamline of PETRA-III and Xpress beamline of ELETTRA at different temperatures and 

pressures, respectively, are also presented in this chapter.     

Chapter 3 provides evidence for the precursor state of the premartensite phase in Ni2MnGa 

MSMA using atomic pair distribution function analysis of the high-Q SXRPD data and 

magnetization studies. This precursor state is present in the short-range only with a crystal structure 

similar to the premartensite phase. The Arrott plot, critical isotherms and universal curve analysis 
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confirm the first-order character of paramagnetic to FM phase transition in Ni2MnGa MSMA, 

while the analysis of the high-resolution SXRPD data reveals the presence of magnetoelastic 

coupling. The role of such a coupling in inducing first-order FM phase transition is rationalized 

using the Landau theory considerations.  

Chapter 4 presents evidence for intrinsic anomalous Hall conductivity as well topological Hall 

effect in Ni2MnGa MSMA. A detailed analysis of Hall conductivity reveals that intrinsic Berry 

curvature contribution dominates over skew scattering and side jump in the austenite, 

premartensite and martensite phases of Ni2MnGa MSMA. The presence of skyrmions is indicated 

in the martensite as well as the premartensite phases by the observation of characteristic 

temperature-independent behavior of the peak value of the topological Hall resistivity.    

Chapter 5 describes the results of a detailed structural and magnetic investigation of the effect of 

Al-substitution in Ni50Mn34In16 MSMA using SXRPD and magnetization data. The combined 

analysis of magnetization and SXRPD data reveal that the premartensite phase is stabilized over a 

wide temperature range in Ni50Mn34In15.2Al0.8 MSMA. This robust evidence for the stabilization 

of the premartensite phase is shown to result by tuning of the chemical pressure via substitution 

with a smaller size atom (Al) at the In site in Ni50Mn34In16 MSMA. The structure of stabilized 

premartensite phase is shown to be 3M modulated monoclinic in the P2/m space group. The 

analysis of the SXRPD data measured under the magnetic field provides evidence for the presence 

of magnetoelastic coupling, which plays a crucial role in the stabilization of the PM phase in 

Ni50Mn34In16 MSMA by Al substitution.  

Chapter 6 presents the results of magnetization data and a detailed crystal structure investigation 

using SXRPD on the biskyrmion host hexagonal NiMnGa compound. The Arrott plots analysis 

and presence of small thermal hysteresis around FM TC in the magnetization data reveal first-order 
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character of the paramagnetic to FM phase transition in this compound. We also presented 

evidence for magnetoelastic coupling at the FM as well as the spin reorientation transitions (SRT). 

It is argued that the Ni-Mn and Ni-Ga mediated exchange interactions dominate the paramagnetic 

to the FM phase transition, while the Mn-Mn mediated exchange interactions dominate the SRT. 

In addition, the evidence for an isostructural phase transition driven by hydrostatic pressure at a 

pressure around 4 GPa in the hexagonal NiMnGa using pressure dependent SXRPD data analysis 

is also presented in this chapter.  

Chapter 7 provides the signature of biskyrmionic states in NiMnGa using magnetic field-

dependent ac-susceptibility measurements and a detailed analysis of the local structure of NiMnGa 

using the pair distribution function method. A high-Q SXRPD data reveals the presence of 

noncentrosymmetric trigonal structure with space group P3m1 in the short-range, which may be 

responsible for the presence of the biskyrmionic state. On the other hand, the long-range structure 

of NiMnGa remains centrosymmetric hexagonal with P63/mmc space group.  

Chapter 8 summarizes the key findings of the present thesis and proposes a few suggestions for 

future work in the field related to this study.
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