<u>CONTENT</u>	
	Page No.
Preface	i-xx
Chapter 1: Introduction and Literature Review	1-64
1.1 Introduction	1
1.2 Perovskite structure	3
1.3 Ferroelectricity and related phenomena	5
1.4 Light induced physical phenomena in materials	8
1.5 General Description of the Photovoltaic effect	13
1.6 Mechanism of Photo-voltaic effect in Ferroelectric materials	16
1.6.1 Bulk-photovoltaic effect (BPVE)	18
1.6.2 Depolarization field model	20
1.6.3 Domain wall effect	27
1.6.4 Schottky diode model	32
1.7 Strategies to improve PV efficiency in ferroelectric oxide solar cells	36
1.7.1 Optical band engineering of ferroelectric layer	36
1.7.2 Charge Separation in ferroelectric solar cells	41
1.7.3 Charge Collection in ferroelectric solar cells	43
1.8 Brief review of ferroelectric photovoltaic materials	48
1.8.1 Bismuth Ferrite (BiFeO ₃)	48
1.8.2 Lead Titanate (PbTiO ₃)	53
1.8.3 Solid Solution of (1-x)Bi(Ni _{2/3} Nb _{1/3})O ₃ -xPbTiO ₃	55
1.8.4 Band gap engineering and PV response in BaTiO ₃ and KNbO ₃ based binary solid solutions	59
1.9 Objectives of the Present Work	64

Chapter 2: Synthesis and Characterization Techniques	(7.00)
2.1 Introduction	<u>65-98</u>
	05
2.2 Synthesis of Samples	65
2.2.1 Precursors	66
2.2.2 Mixing and milling	66
2.2.3 Calcinations	67
2.2.4 Preparation of Green Pellets and Target	71
2.2.5 Sintering	72
2.3 Microstructural and compositional study	73
2.4 Preparation of Ferroelectric thin films	76
2.4.1 Pulsed laser deposition (PLD)	77
2.4.2 RF Magnetron Sputtering	78
2.4.3 Sol-gel based deposition technique	81
2.5 Device fabrication process	83
2.5.1 Substrate Cleaning	83
2.5.2 Processing steps for device	83
2.5.3 Electrode deposition	86
2.6 Bulk Ceramics and thin films Characterization techniques	90
2.6.1 XRD	90
2.6.2 Scanning Electron Microscopy	91
2.6.3 Transmission Electron Microscopy	92
2.6.4 Dielectric Spectroscopy	92
2.6.5 Polarization-Electric field hysteresis loop characterization	93
2.6.6 . UV- Visible spectroscopy	94

2.7.7 Raman Spectroscopy	95
2.7.8 Atomic Force Microscopy and Piezoresponce Force Microscopy	95
2.7.9 Photovoltaic device Measurement	97
2.8 Conclusions	98
Chapter3: Band gap Narrowing of xPbTiO ₃ -(1-x)Bi(Ni _{2/3} Nb _{1/3})O ₃ ceramics, and Photo-voltaic effect in its PLD grown thin films	99-142
3.1. Introduction	99
3.2 Experimental	101
3.3 Results and discussion	102
3.3.1 Structural Investigation	103
3.3.2 Composition Dependent Dielectric and Ferroelectric properties of xPbTiO ₃ -(1-x)Bi(Ni _{2/3} Nb _{1/3})O ₃ solid solution	111
3.3.3 Composition Dependent Optical Band gap analysis	117
3.3.4 Band Gap Narrowing in Ni doped 0.65PbTiO ₃ - 0.35Bi(Ni _{2/3} Nb _{1/3})O ₃ Ferroelectric Ceramics	120
3.3.5 Band Gap Narrowing in Co doped 0.65PbTiO ₃ - 0.35Bi(Ni _{2/3} Nb _{1/3})O ₃ Ferroelectric Ceramics	123
3.3.6 Band Gap Narrowing in Composites of $Ni_{0.65}Zn_{0.35}Fe_2O_4$ and $Co_{0.5}Zn_{0.5}Fe_2O_4$ With 0.65PbTiO ₃ -0.35Bi($Ni_{2/3}Nb_{1/3}$)O ₃ ceramics	128
3.3.7 Band Gap Narrowing and Bulk Photovoltaic Effect in CuO doped 0.65PbTiO ₃ -0.35Bi(Ni _{2/3} Nb _{1/3})O ₃ Ferroelectric Ceramics	132
3.3.8 Fabrication of PT-BNN Thin Film and study of Nano-scale ferroelectric phenomenon	137
3.3.9 Current- voltage (I-V) characteristics of AZO/65PTBNNO/LSMO/STO heterojunction device	139
3.4 Conclusions	141
Chapter 4: Synthesis, Band-gap tuning and Conduction mechanism study of (Co, Bi) doped PbTiO ₃ for Photo-ferroelectric Applications	143-191

4.1 Introduction	143
4.2 Experimental	145
4.3 Results and discussion	146
$\begin{array}{ccc} 4.3.1 & \text{Effect} & \text{of} & \text{calcination} & \text{Temperature} & xPbTiO_3 & (1-x)-Bi(Co_{1/2}Ti_{1/2})O_3 & (x=0.60) \end{array}$	146
4.3.2 Composition Dependent Crystal Structure, Ferroelectric, and Semiconducting Properties of xPbTiO ₃ -(1-x)Bi(Co _{1/2} Ti _{1/2})O ₃ Solid Solution in the Composition range $(0.55 \le x \le 0.80)$	150
4.3.3 Composition Dependent Optical Band Gap Analysis of xPbTiO ₃ -(1-x)Bi(Co _{1/2} Ti _{1/2})O ₃ Solid Solution in the Composition Range ($0.80 \le x \le 0.55$)	158
4.3.4 The Band gap tuning by changing Co/Ti ratio in $0.60PbTiO_3$ - 0.40Bi (Co _y Ti _{1-y})O ₃ solid solutions	161
4.3.5 Fabrication of $0.60PbTiO_3$ - $0.40Bi(Co_{0.60}Ti_{0.40})O_3$ Thin Films and Their photoelectrical properties	167
4.3.6 Optical Properties of $0.60PbTiO_3$ - $0.40Bi(Co_{0.60}Ti_{0.40})O_3$ Thin Film	170
4.3.7 Study of Nano-scale ferroelectric phenomenon	171
4.3.8 Current-Voltage (I-V) Characteristics and Conduction mechanism study of Ag/0.60PbTiO ₃ -0.40Bi(Co _{0.60} Ti _{0.40})O ₃ /FTO device	174
4.3.9 Tip-Enhanced I-V Characteristics of PT-BCT/FTO Heterostructure	186
4.4 conclusion	190
Chapter 5: Synthesis, Band gap engineering and Anomalous	
photovoltaic response in xBaTiO ₃ -(1-x)Bi(Ni _{2/3} Nb _{1/3})O ₃ solid	192-229
SOLULIOII	
5.1 Introduction	192
5.2 Experimental	194
5.3 Results and Discussion	195
5.3.1 Composition Dependent Structural analysis of xBaTiO ₃ -(1-	195

x)Bi(Ni _{2/3} Nb _{1/3})O ₃ solid solution in the composition range ($0.60 \le x \le 0.92$).	
5.3.2 Composition Dependent microstructure of xBaTiO ₃ -(1- x)Bi(Ni _{2/3} Nb _{1/3})O ₃ solid solution in the composition range ($0.50 \le x \le 0.92$).	200
5.3.3 Composition Dependent ferroelectric and electrical behaviour of $xBaTiO_3$ -(1-x)Bi(Ni _{2/3} Nb _{1/3})O ₃ solid solution in the composition range (0.50 $\leq x \leq 0.92$).	204
5.3.4 Composition Dependent Optical Band gap analysis of $xBaTiO_3$ -(1-x)Bi(Ni _{2/3} Nb _{1/3})O ₃ solid solution in the composition range ($0.50 \le x \le 0.92$).	207
5.3.5 Light intensity dependent Current density- voltage (J-V) characteristics of AZO/BT-BNN/Ag device	213
5.3.6 Switchable photovoltaic behavior of AZO/BT-BNN/Ag device	220
5.3.7 Compositional dependent J-V characteristics of AZO/BT- BNN/Ag Heterostructure	225
5.4 Conclusions	228
5.4 Conclusions Chapter 6: Growth and Photovoltaic behavior of (1-x)KNbO ₃ - xBa(Ni _{1/2} Nb _{1/2})O _{3-δ} Thin Films and Application of ZnO nano- structures as light trapping layer in device	228 230-280
 5.4 Conclusions Chapter 6: Growth and Photovoltaic behavior of (1-x)KNbO₃- xBa(Ni_{1/2}Nb_{1/2})O_{3-δ} Thin Films and Application of ZnO nano- structures as light trapping layer in device 6.1 Introduction 	228 230-280 230
 5.4 Conclusions Chapter 6: Growth and Photovoltaic behavior of (1-x)KNbO₃- xBa(Ni_{1/2}Nb_{1/2})O_{3-δ} Thin Films and Application of ZnO nano- structures as light trapping layer in device 6.1 Introduction 6.2 Experimental 	228 230-280 230 233
 5.4 Conclusions Chapter 6: Growth and Photovoltaic behavior of (1-x)KNbO₃- xBa(Ni_{1/2}Nb_{1/2})O₃₋₈ Thin Films and Application of ZnO nano- structures as light trapping layer in device 6.1 Introduction 6.2 Experimental 6.3 Results and discussion 	228 230-280 230 233 235
 5.4 Conclusions Chapter 6: Growth and Photovoltaic behavior of (1-x)KNbO₃- xBa(Ni_{1/2}Nb_{1/2})O_{3-δ} Thin Films and Application of ZnO nano- structures as light trapping layer in device 6.1 Introduction 6.2 Experimental 6.3 Results and discussion 6.3.1 Room Temperature Structural characterization 	228 230-280 230 233 235 235
 5.4 Conclusions Chapter 6: Growth and Photovoltaic behavior of (1-x)KNbO₃- xBa(Ni_{1/2}Nb_{1/2})O_{3-δ} Thin Films and Application of ZnO nano- structures as light trapping layer in device 6.1 Introduction 6.2 Experimental 6.3 Results and discussion 6.3.1 Room Temperature Structural characterization 6.3.2 Optical Band gap analysis 	228 230-280 230 233 235 235 237
 5.4 Conclusions Chapter 6: Growth and Photovoltaic behavior of (1-x)KNbO₃- xBa(Ni_{1/2}Nb_{1/2})O_{3-δ} Thin Films and Application of ZnO nano- structures as light trapping layer in device 6.1 Introduction 6.2 Experimental 6.3 Results and discussion 6.3.1 Room Temperature Structural characterization 6.3.2 Optical Band gap analysis 6.3.3 Raman and Dielectric properties of 0.90KNbO₃- 0.10Ba(Ni_{1/2}Nb_{1/2})O_{3-δ} Ceramic 	228 230-280 230 233 235 235 235 237 244
 5.4 Conclusions Chapter 6: Growth and Photovoltaic behavior of (1-x)KNbO₃- xBa(Ni_{1/2}Nb_{1/2})O_{3-δ} Thin Films and Application of ZnO nano- structures as light trapping layer in device 6.1 Introduction 6.2 Experimental 6.3 Results and discussion 6.3.1 Room Temperature Structural characterization 6.3.2 Optical Band gap analysis 6.3.3 Raman and Dielectric properties of 0.90KNbO₃- 0.10Ba(Ni_{1/2}Nb_{1/2})O_{3-δ} Ceramic 6.3.4 Synthesis of 0.90KNbO₃-0.10Ba(Ni_{1/2}Nb_{1/2})O_{3-δ} thin films by magnetron sputtering 	228 230-280 230 233 235 235 235 237 244 246

6.3.6 Atomic force and Piezoforce microscopy Analysis	252
6.3.7 Current-voltage characteristics in KNBNN /FTO heterostructure	257
6.3.8 Sol-gel deposited $(1-x)KNbO_3-xBa(Ni_{1/2}Nb_{1/2})O_{3-\delta}$ Thin Films as photoactive layer	261
6.3.9 ZnO nano-Structures as Light Trapping Layer for KNBNN Solar Cells Application	263
6.3.9.1 Synthesis of ZnO nano-Structures	263
6.3.9.2 Structural and Morphological properties of ZnO nano- Structures	266
6.3.9.3 Growth Mechanism of Nanowalls and Nanoscale Characterization using AFM	273
6.3.9.4 Light Trapping behavior of ZnO nano-Structures	276
6.3.9.5 Photo-voltaic behavior of KNBNN and KNBNN/ZnO nanostructures Heterojunction devices	279
6.4 Conclusions	289

Chapter-7: Summary and Future Prospects	291-298
7.1 Summary and Conclusions	291
7.2 Significant outcomes of the Present Work	291
7.2.1 Band gap engineering in $xPbTiO_3$ -(1-x)Bi(Ni _{2/3} Nb _{1/3})O ₃ system and detection of photovoltaic behavior in PT-BNN thin film	291
7.2.2 Band gap engineering in $xPbTiO_3-(1 - x)Bi(Co_{1/2}Ti_{1/2})O_3$ system and Discovery of switchable flexo-photovoltaic behaviour in PT-BCT thin film	293
7.2.3 Development of $BaTiO_3$ based new low band gap perovskite system and observation of Bulk-photovoltaic behaviour	293
7.2.4 Investigation of photovoltaic behaviour of $0.9KNbO_3$ - 0.10Ba(Ni _{1/2} Nb _{1/2})O _{3-δ} Thin Films and Enhancement in photo-current by application of ZnO nano-structures as light trapping layer	294
7.3 Key Contributions of this Thesis	295

7.4 Suggestions for Future Work	296
References	299-325
List of Publications	326-327
List of Conferences/Workshops/Seminars/Symposiums Attended	328-330
- • •	

LIST OF FIGURES

Figure No.	Captions	Page No.
Figure 1.1	(a) Representation of crystal structure of cubic perovskite oxides ABO ₃ (N. Xu et al 2010) (b) Typical dielectric constant vs. temperature plot for ferroelectric to paraelectric transition in $BaTiO_{3.}$	5
Figure 1.2	Typical P-E hysteresis loop for ferroelectric .	7
Figure 1.3	Schematic of a photoconductor between two metal contacts (M) (a) in dark and (b) under illumination.	11
Figure 1.4	Logarithmic plot of conductivity with time. The inset shows IV curves obtained before (blue) and after (red) illumination for a BiFeO ₃ film.	11
Figure 1.5	Frequency dependence of the (a) dielectric permittivity and (b) dielectric loss (tan δ) at 330 K for Ba(Al _{0.95} Zn _{0.05}) ₂ O _{4-δ} . Squares and circles indicate the dark states and the photo-irradiated states respectively.	12
Figure 1.6	Typical curve for (a) photovoltaic effect and (b) photoconductivity and (c) Bulk-photovoltaic effect.	13
Figure 1.7	Schematic illustration of Bulk-photovoltaic effect in ferroelectric materials.	15
Figure 1.8	(a) Schematic diagram for bulk-photovoltaic mechanism and (b) typical curves for switchable bulk-photovoltaic effect.	16

Figure 1.9	(a) Photo-emf across n individual grains adding to produce a net voltage V_o across edge electrodes. The arrows show the directions of spontaneous polarization (b) an individual grain showing region of space charge shielding the potential due to the polarization.	17
Figure 1.10	(a) Symmetric distribution of nonequilibrium carriers in a centrosymmetric crystal; (b) Asymmetric distribution of nonthermalized carriers in a noncentrosymmetric crystal.	20
Figure 1.11	Direction of depolarization field inside the ferroelectric.	23
Figure 1.12	Thin-film ferroelectric sandwiched capacitor: a poled ferroelectric layer sandwiched between two metal electrodes.	23

Figure 1.13	Distribution of potential V in a ferroelectric semiconductor configuration.	24
Figure 1.14	J-V characteristics for (a) UP-poled and (b) DOWN-poled state of the BZT-BCT film recorded under dark and light illumination conditions. Schematic energy band diagram showing the variation of the barrier field for (c) poled with $E_{poled} < E_{coercive}$, and (d) poled with $E_{poled} > E_{coercive}$ states of the Au/BZT-BCT/Pt film. Here, δ_P is the polarization charge due to poling, and W_t and W_b are the depletion widths at the top and bottom electrode/film interfaces, respectively.	26
Figure 1.15	Mechanism of photovoltaic effect in (a) conventional p-n junction solar cell and (b) Ferroelectric photovoltaic cell, in the ferroelectric domain, band bending occurs across the domain wall (DW). The directions of electric polarization (P) are shown by arrows.	29
Figure 1.16	Band structure in dark conditions and under illumination. (a) Schematic of four domains (three domain walls) in an order array of 71° domain walls. (b) Corresponding band diagram showing the valence band (VB) and conduction band (CB) across these domains and domain walls in the dark. Note that there is no net voltage across the sample in the dark. Section (i) illustrates a photon hitting in the bulk of a domain and section (ii) a photon hitting at a domain wall. (c) Evolution of band structure upon illumination of the domain wall array. (d) Detailed picture of the build-up of photo excited charges at a domain wall.	30
Figure 1.17	Schematics of the perpendicular domain wall (a) and the parallel domain wall (b) device geometries and (c), (d) Corresponding I–V measurements.	30
Figure 1.18	Schematic depicting majority 71° domains (not to scale) and typical measurement geometries in which the electrodes are running: (a) parallel (PLDW) and (b) perpendicular to DW (PPDW), respectively. I-V characteristics under illumination with monochromatic light (hv =3.05 eV) of BFO thin films comprising (c) 109° and (d) 71° periodic stripe domains. A schematic showing the periodic arrangement of domains and DW in BFO thin films for the (e) PLDW and (f) PPDW geometry with respect to the DW. An equivalent circuit considering that the domain bulk and DW have different resistances, R _{bulk} and R _{DW} , is shown for both the geometries in (g) PLDW and (h) PPDW.	31

Figure 1.19	Schematic energy band diagrams illustrating the variations in Schottky barriers from back-to-back diodes at virgin (a) to a forward diode at polarized up (b) and a reverse diode at polarized down (c).	33
Figure 1.20	Schematic illustrations of a asymmetric Schottky barriers, b built-in field distributions: red or blue line indicates the electric field without or with the interface layer and c top and bottom interface layers in Pt/PZT/Pt capacitor.	34
Figure 1.21	J–V characteristics of (a) ITO/h-LFO/Pt (b) J–V curve of the ITO/h-TFO/Pt device compared with those of the ITO/h-LFO/Pt and ITO/BFO/SRO devices after upward poling. Modulated energy band diagrams of ITO/h- LFO/Pt (c) the virgin state (d) up-polarization state (e) down-polarization state.	35
Figure 1.22	Photocurrent properties for the (a) BT, (b) $Mn(0.03\%)$ -BT, and (c) $Mn(0.25\%)$ -BT crystals. (d) Defect states in the electronic band structure of BT and Mn-BT (A = Al, Fe etc.).	38
Figure 1.23	(a) Optical conductivity of BiT (blue), $1Bi_4Ti_3O_{12}$ – 1LaCoO ₃ (1B2L) (red) and LCO (grey) confirms an orderly and considerable decline in bandgap values on site-specific substitution of BiT with La and Co (b) Photo-current density (J)-Electric field (E) curves (c) Photoresponse J-t curve from BiT (blue) and 1B2L (red) thin films (c) J recorded from BiT (blue) and 1B2L (red) thin films by switching on and off the solar simulator at 20 kVcm ⁻¹ .	39
Figure 1.24	(a) Absorption spectrum of $KBiFe_2O_5$ Inset: $(\alpha hv)^2$ versus hv (b) J-V curves in the dark and under UV illumination.	40

Figure 1.25	(a) schematic electronic structures of transition metal (TM=Cr, Mn, Co, Ni and Cu)-doped BFO obtained from DFT calculations (b) $J-V_{\text{bias}}$ curve under dark and illuminated (hv =2.4 eV) conditions.	41
Figure 1.26	Charge separation mechanisms in (a) Ferroelectric material (b) semiconducting p-n junction (c) Ferroelectric-semiconducting perovskite heterostructure .	43
Figure 1.27	(a) I–V curves and the corresponding terminal voltage V_{oc} dependence of light-to-electricity power conversion efficiency η for ITO/BFO/Pt ((a) and (b)) and Au/BFO/Pt ((c) and (d)) capacitors, respectively.	44

Figure 1.28	(a) Current–voltage characteristics measured under 3.06 eV at room temperature. (b) J_{SC} and V_{OC} extracted from (a) plotted with the thickness of the samples.	45
Figure 1.29	(a) Polarization-voltage hysteresis loops of the samples measured at 1 kHz. (b) Comparison of photovoltaic current density (J) vs output voltage (V_{out}) curves of the as-grown samples.	46
Figure 1.30	 (a) J-V characteristics under AM1.5G illumination for: (a) i-n devices and (b) p-i-n devices; Layout of the devices for: (c) i-n and (d) p-i-n. 	47
Figure 1.31	(a) J–V characteristics measured by probing with the AFM tip in the middle of the illuminated area. The inset in (b) shows the measurement setup for the local measurements by the AFM tip.	47
Figure 1.32	(a) The experimental configuration for I-V measurement , including the thermalization hemisphere (b) Dependence of the photovoltaic current in the BTO crystal on the intensity of the monochromatic illumination intensity using a 25-nm-radius tip.	48
Figure 1.33	Photovoltaic effects in epitaxial BFO thin films using ITO/BFO/SrRuO ₃ /STO heterostructure.	51
Figure 1.34	(a) J(E) curves of the BFO sample in the dark (D) and with green-light illumination on right (R) or left (L) semitransparent Au electrodes. The inset shows an expanded view of the J(E) curves near zero bias field (E = 0). (b) The zero-bias photocurrent density as a function of time with (top) green light (1 =532 nm) or (bottom)red light (1 = 650 nm) on or off, shining on the different sides of BFO.	51
Figure 1.35	(a) Photovoltaic response for ITO/BFO/SRO/STO. Schematic of energy-band alignment for the ITO/BFO/SRO capacitor. E_b and E_t are the built-in field at the bottom- and top-electrode interfaces, respectively. E_{bi} is the unswitchable built-in field in the film bulk possibly due to nonuniform distribution of defects. Q_{sc} denotes the gap-state charge density.	52
Figure 1.36	$\begin{array}{llllllllllllllllllllllllllllllllllll$	54

Figure 1.37	(O) Experimentally measured band gap of ferroelectrics versus their theoretical polarization (×) Estimated values for the materials proposed in this study.	54
Figure 1.38	$(\alpha hv)^2$ plotted as function of hv for the PbTiO ₃ (PT) and PbTi _{0.67} Ni _{0.33} O ₃ (PTN) ceramics. The inset shows the mechanism of band-gap narrowing in such type of solid solutions.	57
Figure 1.39	P-E loops of $PbTi_{1-x}Ni_xO_3$ (a) x=0 (b) x=0.20 thin films, (c) Compositional dependent photocurrent of $PbTi_{1-x}Ni_xO_3$ thin films.	57
Figure 1.40	XRD patterns for (1-x)Bi(Ni _{2/3} Nb _{1/3})O ₃ -xPbTiO ₃ with increasing PT content (b) Phase diagram showing Curie temperature.	58
Figure 1.41	J-V curve for 0.65PT-BNN samples with and without poling, inset display device structure.	58
Figure 1.42	(a) plots of $(\alpha hv)^2$ versus hv for the absorption spectra (1- x)BaTiO ₃ -xBaCo _{0.5} Nb _{0.5} O _{3-\delta} ceramics. Inset: The schematic diagram of band-gap structure in such materials [D. Zhenga et al (2019)]. (b) Plots of $(\alpha hv)^2$ vs. hv in the absorption spectra (1-x)BaTiO ₃ - xBaNb _{1/3} Cr _{2/3} O _{3-\delta} ceramics. Inset: the schematic pattern of band structure.	61
Figure 1.43	(a) Bandgap values versus BNNO fraction. Images of the KNbO ₃ and KBNNO pellets for $x = 0.1$ and $x = 0.4$ compositions. (b) Photoresponse at 77 K under 4 mW/cm ² of above-bandgap illumination. Reversal of poling voltage results in the reversal of photocurrent direction. (c) The inset shows the photoresponse versus applied bias at 77 K.	62
Figure 1.44	J-V characteristics of the device without poling and after	63
	poling at $-1V$ and $+1V$ under AM1.5 illumination, in comparison with those of the unpoled device in dark.	
Figure 2.1	Schematic illustrations of steps of synthesis process to get phase pure ferroelectric perovskite solid solution using Mechano-chemical solid-state ceramic method.	66

	Mechano-chemical solid-state ceramic method.	
Figure 2.2	The XRD patterns of 0.65PbTiO ₃ -0.35Bi(Ni _{2/3} Nb _{1/3})O ₃	68
	powders obtained after calcination at different	
	temperatures for 6.5 hours duration. XRD peaks	
	corresponding to perovskite phase are marked with "P"	
	and intermediate/secondary phase peaks are marked with	

	asterisk (*).	
Figure 2.3	SEM images of as synthesized polycrystalline $0.65PbTiO_3-0.35Bi(Ni_{2/3}Nb_{1/3})O_3$ ceramic calcined at (a) 700°C (c) 850°C (e) 900°C and corresponding EDS spectra in the right panel (b), (d), (f) respectively, showing the presence of elements as per the composition.	70
Figure 2.4	The XRD patterns of $0.65PbTiO_3$ - $0.35Bi(Ni_{2/3}Nb_{1/3})O_3$ powders obtained after calcination at 850°C temperature with varying the calcination time duration.	71
Figure 2.5	XRD patterns of sintered 0.65PT-0.35BNNO samples with varying the sintering temperature and time.	73
Figure 2.6	XRD patterns of xPT-(1-x)BNNO samples for compositions $x = 0.87, 0.77, 0.70, 0.67, 0.66, 0.65, 0.64, 0.63, 0.60, 0.55$ and 0.50.	73
Figure 2.7	Scanning electron micrographs and EDX spectra of 0.65PT-0.35BNNO samples sintered at (a) 990°C, (b) 1040°C and (c) 1090°C.	75
Figure 2.8	Elemental mapping of 0.77PT-0.23BNNO solid solution.	76
Figure 2.9	Image of a Pulsed laser deposition unit during its operation.	78
Figure 2.10	Schematic diagram of Pulsed laser deposition unit.	78
Figure 2.11	(a) Illustration of magnetron sputtering system and process (b) Image of a rf-magnetron sputtering unit during its operation.	80
Figure 2.12	(a) Schematic illustrations of spin coating process and (b) effect of annealing temperature on spin coated films.	82
Figure 2.13	Schematic illustrations of thin film deposition steps by chemical solution deposition technique for (1-x)KNbO ₃ -xBa(Ni _{1/2} Nb _{1/2})O ₃ ceramic.	82
Figure 2.14	Schematic illustrations of device Fabrication steps on Si substrate using silver paste and thin ferroelectric pellet.	84
Figure 2.15	Schematic illustration of device Fabrication steps on FTO glass substrate.	85
Figure 2.16	Sketch of bottom-top electrodes configuration for ferroelectric films.	86
Figure 2.17	Schematic illustration of device architecture on FTO glass substrate using MoO ₃ as hole transport layer and ZnO as	86

	electron transport layer with ferroelectric layer.	
Figure 2.18	(a) XRD pattern (b) Transmittance (c) AFM topography image and (d) 3-D image of AZO thin film.	88
Figure 2.19	AFM Topography image of SrRuO ₃ (SRO) thin film (a) single layer (b) 3 layers (c) 6 layers, (d), (e), (f) showing their 3-D image, (g), (h), (i) showing their roughness profile respectively. (j) XRD pattern of single layer SRO films (k) XRD pattern of 6 layer SRO films (l) resistivity of SRO films with varying number of layers.	89
Figure 2.20	Sawyer-Tower circuit for measurement of ferroelectric polarization.	94
Figure 2.21	Schematic diagram of atomic force microscopy system.	97
Figure 2.22	Schematic illustration of I-V measurement from C-AFM system.	98
Figure 3.1	Powder XRD patterns of $xPbTiO_3-(1-x)Bi(Ni_{2/3}Nb_{1/3})O_3$ solid solution (a) Full range profile (b) the magnified profiles of (111), (200) and (210) reflections .	103
Figure 3.2	Room temperature Raman scattering spectra of $xPbTiO_3$ - (1-x)Bi(Ni _{2/3} Nb _{1/3})O ₃ solid solution for compositions (x = 0.87 to 0.50).	107
Figure 3.3	The Scanning electron microscopy (SEM) images of PT- BNN for (a) $x = 0.70$ and (b) $x = 0.63$ compositions, Dark HRTEM image for (c) $x = 0.70$ and (d) $x = 0.60$ and showing the Corresponding SAED pattern.	109
Figure 3.4	Temperature dependent permittivity of xPT-(1-x)BNN as a function of frequency for compositions (a) $x = 0.87$ to (f) $x = 0.50$ and temperature dependent dielectric loss for compositions (g) $x = 0.87$ and (h) $x = 0.50$.	112
Figure 3.5	(a) Curie temperature and (b) Dielectric permittivity of xPT-(1-x)BNN as a function compositions measured at 100kHz frequency.	113

Figure 3.6	Room temperature P-E hysteresis loops of the xPT-(1-x)BNN for various compositions $x = (a) 0.87$, (b) 0.77 (c) 0.70 (d) 0.65 (e) 0.625 (f) 0.50.	115
Figure 3.7	Room temperature I-E hysteresis loops of the xPT-(1-x)BNN for various compositions $x = (a) 0.65$, (b) 0.625.	116

Figure 3.8	Temperature dependent P-E hysteresis loops of the 0.65PT-BNN measured at 5 Hz frequency and 30kV/cm applied field.	116
Figure 3.9	Composition dependent variations of (a) absorption spectra (b) direct band gap estimation using the Tauc plot $(\alpha h\nu)^2$ vs $h\nu$ for xPbTiO ₃ -(1-x)Bi(Ni _{2/3} Nb _{1/3})O ₃ solid solution for compositions in the range ($0.55 \le x \le 0.87$).	118
Figure 3.10	Composition dependent variations of Indirect band gap estimation using the Tauc plot $(\alpha h \upsilon)^{0.5}$ vs h υ (c) for xPbTiO ₃ -(1-x)Bi(Ni _{2/3} Nb _{1/3})O ₃ solid solution.	119
Figure 3.11	Schematic diagram of density of electronic states (a) Ideal Situation for $PbTiO_3$ (b) With presence of oxygen vacancies (c) with effect of Ni states and oxygen vacancies $xPbTiO_3$ - $(1-x)Bi(Ni_{2/3}Nb_{1/3})O_3$.	119
Figure 3.12	The Tauc plot $(\alpha h \upsilon)^2$ vs h υ for 0.65PT-BNN solid solution (a) without and with Ni doping (b) y = 0.04, (c) y = 0.07 and (d) y = 0.1. P-E hysteresis loops of 0.65PT-BNN doped with Ni (e) y =0.04 (f) y =0.07.	122
Figure 3.13	Powder X-ray diffraction patterns of 0.65P T-BNN with and without Co doping. Inset is showing the change in position of diffraction peak with Co doping.	124
Figure 3.14	The Tauc plot $(\alpha h \upsilon)^2$ vs h υ for 0.65PT-BNN solid solution with extra Co doping (a) y = 0.3 (c) y = 0.6 (e) y = 1.0 and corresponding P-E hysteresis loop in (b), (d) and (f).	126
Figure 3.15	(a) The Tauc plot $(\alpha h\nu)^2$ vs hv and (b) optical band gap for 0.65PT-BCN solid solution. (c) Nyquist plots of impedance spectra of 0.90PT-BCN and (d) 0.60PT-BCN. The inset shows the equivalent circuit model grain boundary resistance (R _{gb}) and bulk resistance (R _g)	127
Figure 3.16	Powder XRD patterns of $(1-y)$ 0.65PT-BNN-yNZFO particulate composites for compositions with $y = 0, 0.05, 0.10, 0.50, 0.75$ and 1.0.	129
Figure 3.17	Tauc plot $(\alpha h \upsilon)^2$ vs h υ for 0.65PT-BNN-yNZFO composites with y = (a) 0.05 (c) 0.10 (e) 0.50 and (g) 0.75 and corresponding P-E hysteresis loop in (b), (d), (f) and (h).	130
Figure 3.18	Tauc plot $(\alpha h \upsilon)^2$ vs h υ for (a) 0.65PT-BNN, (b) CZFO and 0.65PT-BNN-yCZFO composites with y = (c) 0.05 (d) 0.10 (e) 0.50 and (f) 0.75	131

Figure 3.19	Powder X-ray diffraction patterns of 0.65P T-BNN with and without CuO doping. Inset is showing the change in position of diffraction peak with CuO doping.	134
Figure 3.20	The Tauc plot $(\alpha h\nu)^2$ vs h ν for 0.65PT-BNN solid solution with and without CuO doping. Two different slopes provide two characteristic threshold gap. (a) The first threshold band gap E_{g1} , Inset is showing the simplified energy band diagram of system. (b) Second threshold band gap E_{g2} .	135
Figure 3.21	Linear J-V Characteristic of Solar cells in dark and under light with Device structure: AZO/0.65PT-BNN-CuO//Ag, the inset is schematic design of device.	136
Figure 3.22	(a) A schematic energy level diagram for AZO/PT- BNNC/Ag Hetero-structure showing the internal photo- electric process (b) Internal electric field distribution showing the dotted arrow which represents the applied polarization direction and big blue arrow shows the depolarization field direction.	136
Figure 3.23	AFM topography image of 65PTBNNO thin film with thickness (a) 20 nm and (b) 200 nm.	138
Figure 3.24	(a) PFM Amplitude image (b) PFM Phase image of 65PTBNN thin film. Arrows indicate the domain walls.	138
Figure 3.25	Real time measurement image of device during laser light illumination and Schematic diagram of AZO/65PTBNNO/LSMO/STO heterojunction device.	140
Figure 3.26	I-V characteristics of AZO/65PTBNNO/LSMO/STO heterojunction in dark and under 520 nm laser light illumination.	140
Figure 4.1	Comparison of XRD patterns of $0.60PbTiO_3-0.40Bi(Co_{0.5}Ti_{0.5})O_3$ ceramic powders calcined at various temperatures for 5 hours.	148

Figure 4.2	Calcination temperature dependent lattice parameters for $0.60PbTiO_3-0.40Bi$ (Co _{0.5} Ti _{0.5})O ₃ ceramic.	148
Figure 4.3	SEM images of as synthesized polycrystalline $0.60PbTiO_3-0.40Bi$ (Co _{0.5} Ti _{0.5})O ₃ ceramic calcined for 5 hours at (a) 600°C (b) 700°C (c) 850°C (d) 950°C.	149
Figure 4.4	HR-TEM images of as synthesized polycrystalline	149
	$0.60PbTiO_3$ - $0.40Bi(Co_{0.5}Ti_{0.5})O_3$ particles calcined at (a)	

	600°C (b) 850°C and SAED pattern for particles of samples calcined at (c) 600°C (d) 850°C.	
Figure 4.5	Elemental Mapping and EDAX for $0.60PbTiO_3-0.40Bi$ (Co _{0.5} Ti _{0.5})O ₃ particles calcined at 850°C.	150
Figure 4.6	Powder x-ray diffraction patterns of xPbTiO ₃ -(1-x)Bi(Co _{1/2} Ti _{1/2})O ₃ solid solution in the composition range $(0.55 \le x \le 0.80)$ sintered at 1000 °C for 2 hours. The inset shows the zoomed portion for 2θ =43°-49°, to show tetragonal splitting of diffraction peaks with increasing the Bi(Co _{1/2} Ti _{1/2})O ₃ contents.	152
Figure 4.7	Rietveld fit for the XRD pattern of sintered sample of $0.60PbTiO_3-0.40Bi(Co_{0.5}Ti_{0.5})O_3$ ceramic. Dots indicate experimental XRD data, while calculated XRD pattern is shown by continuous line. The lower curve shows the difference between experimental and calculated XRD patterns. Vertical bars indicate position of Bragg's peaks.	153
Figure 4.8	The Scanning electron microscopy (SEM) images of (a) 0.70PT-BCT and (c) 0.65PT-BCT ceramics, (b) and (d) showing the corresponding Energy dispersive X-ray spectroscopy (EDS) spectrum.	156

Figure 4.9	Room temperature P-E hysteresis loops of the 0.80PT- 0.20BCT as a function of (a) frequency with fixed applied electric field 5kV/cm (b) P-E loops as a function of Electric Field with fixed frequency 100Hz.	156
Figure 4.10	Room temperature P-E hysteresis loops of the 0.60PT- 0.40BCT (a) and (b) as a function of frequency; P-E loop as a function of Electric Field at a fixed frequency (c) 1 Hz and (d) 10 Hz.	157
Figure 4.11	Composition dependent variations of (a) absorption spectra (b) Indirect band gap estimation plots using the Tauc equation $(\alpha h \upsilon)^{0.5}$ vs h υ (c) direct band gap estimation plots using the Tauc equation $(\alpha h \upsilon)^2$ vs h υ for xPbTiO ₃ -(1-x)Bi(Co _{1/2} Ti _{1/2})O ₃ solid solution in the composition range (0.80 $\leq x \leq 0.55$) and (d) The Tauc plot $(\alpha h \upsilon)^2$ vs h υ for undoped PbTiO ₃ .	160
Figure 4.12	Composition dependent direct band gap estimation plots using the Tauc equation $(\alpha h\nu)^2$ vs h ν for xPbTiO ₃ -(1- x)Bi(Co _{1/2} Ti _{1/2})O ₃ solid solution with compositions (a) x = 0.80 (b) x = 0.70 (c) x = 0.60 and (d) x = 0.55 respectively. The tangent line drawn for linear region is used to estimate the band gap.	160

Figure 4.13	Schematic diagram of density of electronic states (a) Ideal situation for $PbTiO_3$ (b) With presence of oxygen vacancies (c) with presence of Co states and oxygen vacancies for $xPbTiO_3$ - $(1-x)Bi(Co_{1/2}Ti_{1/2})O_3$.	161
Figure 4.14	Powder x-ray diffraction patterns of $0.60PbTiO_3$ - $0.40Bi(Co_yTi_{1-y})O_3$ with varying Co/Ti concentration, y=0.45, 0.50, 0.55 and 0.60.	164
Figure 4.15	SEM Image of $0.60PbTiO_3-0.40Bi(Co_yTi_{1-y})O_3$ solid solution with composition (a) y=0.50 and (c) 0.60 and Elemental mapping of Co in 0.60PbTiO_3-0.40Bi(Co_yTi_{1-y})O_3 sample with composition (b) y = 0.50 and (d) y = 0.60. In inset, respective EDS spectra is shown.	165
Figure 4.16	The Tauc equation $(\alpha h \upsilon)^2$ vs h υ plots for 0.60PbTiO ₃ - 0.40Bi(Co _y Ti _{1-y})O ₃ solid solution with composition (a) y=0.45 and (b) 0.50 (c) 0.55 and (d) 0.60. The tangent line extrapolation on the linear region is used to estimate the band gap.	166
Figure 4.17	Schematic diagram of density of electronic states for $0.60PbTiO_3$ - $0.40Bi(Co_yTi_{1-y})O_3$ solid solution with composition (a) y=0.45 and (b) 0.50 (c) 0.60. The increasing CBM tailing is shown by dotted lines and state created by oxygen vacancies are drawn in yellow colour area.	166
Figure 4.18	(a) XRD pattern (b) SEM image of as deposited PT-BCT thin films	168
Figure 4.19	Cross-section SEM image of as deposited PT-BCT thin film on FTO glass Substrate. Inset is showing EDX spectra of PT-BCT film.	168
Figure 4.20	(a) Tauc plots and band gap (b) Urbach Energy of as deposited PT-BCT thin films	169
Figure 4.21	 (a) AFM topography image, (b) grain size distribution obtained from AFM image and corresponding histogram (c) 3-D microstructure (d) AFM roughness profile for 0.60PbTiO₃-0.40Bi(Co_{0.60}Ti_{0.40})O₃ thin film. 	172
Figure 4.22	AFM/PFM images for $0.60PbTiO_3$ - $0.40Bi(Co_{0.60}Ti_{0.40})O_3$ thin film, (a) AFM topography image, (b) PFM Amplitude and (c) PFM Phase image for negatively poled film; (d) Topography, (E) PFM amplitude and (f) PFM phase image for unpoled film; (g) Topography (b) PFM	173

	Amplitude and (c) PFM Phase image for positively poled film.	
Figure 4.23	(a) AFM topography image and corresponding (b) Cross section profile which is showing grain boundaries (G.B.); (c) PFM phase image and their (b) Cross section profile which is showing domain walls (D.W.); for $0.60PbTiO_3$ - $0.40Bi(Co_{0.60}Ti_{0.40})O_3$ thin film. The arrows are used to indicate the position of D.W. and G.B. in profile image.	173
Figure 4.24	TimedependentphotocurrentresponseofAg/PTBCT/FTOdeviceunder light illumination.	176
Figure 4.25	J-V characteristics of Ag/PT-BCT/FTO heterojunction in dark and light illumination. The Inset shows same graph as the semi-log J-V plot.	176
Figure 4.26	A schematic energy level diagram for Ag/PT-BCT/FTO Heterostructure showing the internal photo-electric process.	177
Figure 4.27	Typical time-zero current-voltage data and various fits of data to determine the conduction mechanism in Ag/PT- BCT/FTO heterostructure (a) Space-charge-limited conduction (SCLC), (b) Poole-Frenkel (PF) emission, (c) Schottky Emission model, and (d) Fowler-Nordheim (F- N) tunneling.	177
Figure 4.28	(a) J-V plots for PT-BCT based diode on a semilog scale. The slopes of linear fit are used to extract ideality factor and saturation current (b) logJ vs logV curve for positive applied voltage region (c) logJ vs logV curve for positive applied voltage region to extract charge mobility μ (d) Plot d(V)/d(lnJ) vs J with linear fit to extract series resistance and ideality factor (e) H(J) vs J plot under dark condition (f) H(J) vs J plot under light condition to extract to barrier potential height Φ_B , inset is showing d(V)/d(lnJ) vs J plot.	185
Figure 4.29	(a) Schematic diagram of PT-BCT/FTO device structure with C-AFM measurement system (b) Local I-V curve and inset showing the measurement points on the surface (c) Dark I-V curve (d) I-V curve under light of $0.60PbTiO_3$ - $0.40Bi(Co_{0.60}Ti_{0.40})O_3$ film surface measured using platinum tip.	189
Figure 4.30	(a) Schematic diagram of PT-BCT/FTO device structure with C-AFM measurement system showing the strain gradient induced flexoelectric effect using Pt tip. Schematic energy band diagram of PT-BCT/FTO	190

	heterostructure when Pt tip is in contact with film under conditions (b) without poling (c) with positive poling (d) with negative poling. The field at interface is termed as E_{bi} , depolarization field due to poling E_{pol} and field due spontaneous polarization P generated by strain gradient is termed as E_{flexo} .	
Figure 5.1	Powder x-ray diffraction patterns of xBaTiO ₃ -(1- x)Bi(Ni _{2/3} Nb _{1/3})O ₃ solid solution in the composition range $(0.60 \le x \le 0.92)$.	196
Figure 5.2	Rietveld fit for the XRD patterns of $xBaTiO_3$ -(1- x)Bi(Ni _{2/3} Nb _{1/3})O ₃ ceramics with x=0.92, 0.85, 0.80, 0.75, 0.70 and 0.60. Dots indicate experimental XRD data, overlapping calculated XRD pattern is shown by continuous line. The lower curve shows the difference between experimental and calculated XRD patterns. Vertical bars indicate position of Bragg's peaks.	197
Figure 5.3	Variations of Bond length (a) Bi/Ba-O and (b) Ni/Nb/Ti-O for cubic phase of various compositions of xBaTiO ₃ -(1- x)Bi(Ni _{2/3} Nb _{1/3})O ₃ obtained after Rietveld refinement.	200
Figure 5.4	The Scanning electron microscopy (SEM) images of (a) 0.92BT-0.08BNN, (c) 0.80BT-0.20BNN and (e) 0.60BT-0.40BNN ceramics, (b), (d) and (f) showing the Corresponding Energy dispersive X-ray spectroscopy (EDS) spectrum.	202
Figure 5.5	The EDS elemental map of $xBaTiO_3$ -(1- x)Bi(Ni _{2/3} Nb _{1/3})O ₃ ceramics with compositions x=0.92 (left panel) and x=0.60 (right panel).	203
Figure 5.6	Room temperature P-E hysteresis loops for the xBaTiO ₃ - (1-x)Bi(Ni _{2/3} Nb _{1/3})O ₃ ceramics with the compositions (a) $x=0.92$ (b) $x=0.75$ (c) $x=0.60$ and (d) $x=0.50$ recorded at different applied electric field.	205
Figure 5.7	Nyquist plots (Z' vs Z'') for (a) 0.92BT-0.08BNN (b) 0.80BT-0.20BNN (c) 0.60T-0.40BNN and (d) 0.50BT- 0.50BNN compositions measured at different temperatures.	206

T ! Z 0		200
Figure 5.8	Composition dependent variations of (a) absorption	209
	spectra; (b) Estimated indirect band gap using the Tauc	
	plot $(\alpha h \upsilon)^{0.5}$ vs h υ ; (c) and (d) Estimated direct band gap	
	using the Tauc plot $(\alpha h \upsilon)^2$ vs h υ , for xPbTiO ₃ -(1-	
	x)Bi(Ni _{1/2} Ti _{1/2})O ₃ solid solution in the composition range	
	$(0.50 \le x \le 0.92)$; (e) Direct band gap E_{g2} and (f) the Tauc	

	plot $(\alpha h \upsilon)^2$ vs h υ for undoped BaTiO ₃ . The tangent line for linear region is used to estimate the band gap.	
Figure 5.9	Direct band gap for (a) Varying Ni doping in $BaTi_{(1-x)}Ni_xO_3$ solid solution (b) Varying Ni and Nb co-doping in $BaTi_{(1-x)}(Ni_{1/3}Nb_{2/3})_xO_3$ solid solution.	211
Figure 5.10	Schematic diagram of density of electronic states (a) Ideal Situation for $BaTiO_3$ (b) With presence of oxygen vacancies (c) with presence of Ni^{2+} 3d states (d) For higher doping percentage of BNN and (e) E_{g1} and E_{g2} band gap in xBT-(1-x)BNN.	213
Figure 5.11	A Schematic illustration of various fabrication process steps of AZO/BT-BNN/Ag heterojunction device on silicon substrate.	215
Figure 5.12	A schematic representation of the AZO/BT-BNN/Ag heterojunction device.	215
Figure 5.13	J-V curves of AZO/BT-BNN/Ag devices in dark and under different light intensity after positive poling.	218
Figure 5.14	Photovoltaic mechanisms in AZO/BT-BNN/Ag heterojunction device in (a) dark and (b) under light conditions. The photocurrent is mentioned as I_{ph} and E is electric field.	218
Figure 5.15	Schematics of energy band diagram and photovoltaic mechanism of AZO/BT-BNN/Ag/Si device under various light illumination intensity (a) 50 mW/cm ² (b) 70 mW/cm ² and (c) 100 mW/cm ² . E _f , E _{cb} and E _{vb} represent Fermi energy level, conduction band and valence band respectively. Dotted arrow represents the applied polarization direction and big blue arrow shows the depolarization field direction.	219
Figure 5.16	J-V curve of 0.60BaTiO ₃ -0.40Bi(Ni _{2/3} Nb _{1/3})O ₃ ceramic device with unpoled, positively and negatively poled samples showing switchable photovoltaic effect. Black open squares are for the J-V curve in dark, red line indicates the J-V curve of device before poling, blue filled triangles and magenta filled circles indicate J-V curves of devices with negative and positive poling.	221
Figure 5.17	Schematic of energy band diagram with internal electric field distribution and mechanism of the photovoltaic effect of AZO/BT-BNN/Ag device with interfacial layers in (a) Unpoled state (b) positively poled state and (c) negatively poled state. Built-in-field formed at AZO/BT-BNN and	224

	BT-BNN/Ag interface is termed as E_t and E_b . Depolarization field is termed as E_d which is opposite to applied polarization P. E_f , E_{cb} and E_{vb} are Fermi energy level, conduction band and valence band respectively. Large red coloured arrows represent the random direction of polarization in unpoled state.	
Figure 5.18	Composition dependent J-V curves of AZO/BT-BNN/Ag devices after positive poling. J-V characteristic curves of heterostructure with BT-BNN layer having different band gap demonstrating the photovoltaic effect.	228
Figure 6.1	X-Ray Diffraction patterns of 0.90 KNbO ₃ - 0.10 Ba(Ni _{1/2} Nb _{1/2})O _{3-δ} solid solutions sintered at 990 °C to 1125°C. The impurities are marked with * sign.	236
Figure 6.2	X-ray diffraction patterns of $(1-x)KNbO_3-xBa(Ni_{1/2}Nb_{1/2})O_{3-\delta}$ ceramic solid solutions with compositions of (x = 0.05, 0.10, 0.15, 0.20, 0.25).	237
Figure 6.3	Composition dependent variations of absorption spectra for $(1-x)KNbO_3-(x)Ba(Ni_{1/2}Nb_{1/2})O_{3-\delta}$ solid solution in the composition range $(0.0 \le x \le 0.25)$.	241
Figure 6.4	$\begin{array}{ll} Composition \mbox{ dependent optical band gap for (1-x)KNbO_3-} \\ (x)Ba(Ni_{1/2}Nb_{1/2})O_{3-\delta} & \mbox{ solid solution in the composition} \\ range \ (0.0 \le x \le 0.25). \end{array}$	241
Figure 6.5	$\begin{array}{llllllllllllllllllllllllllllllllllll$	242
Figure 6.6	Direct band gap for $0.9KNbO_3$ - $(0.10)Ba(Ni_{1/2}Nb_{1/2})O_{3-\delta}$ solid solution. Inset is showing direct band gap (E _{g2}).	242

Figure 6.7	Schematic diagram of density of electronic states (a) Ideal Situation for KNbO ₃ (b) With presence of oxygen vacancies in KNbO ₃ (c) with effect of Ni ²⁺ 3d states for KNBNN (d) higher doping percentage of BNN in KNBNN and (e) E_{g1} and E_{g2} band gap in 0.90KNBNN composition.	243
Figure 6.8	(a) Raman scattering spectra for the sample 0.90KNBNN. Inset is showing the enlarged view of lower range Raman shift data (100-350 cm ⁻¹).(b) Temperature dependent relative permittivity of 0.9KNBNN sample. Inset is showing the temperature dependent dielectric loss.	245

Figure 6.9	Schematic drawing of 0.9KNBNN thin film deposition configuration using magnetron sputtering (a) Sputtering process (b) Image of running sputtering process showing the plasma formation (c) Device configuration using FTO substrate and (d) KNBNN film deposited of silicon wafer with parallel electrode.	247
Figure 6.10	(a) XRD patterns of magnetron sputtered 0.9KNBNN thin films grown on (a) quartz substrate and (b) on FTO coated glass substrate shown in inset.	249
Figure 6.11	(a) Cross-section HRSEM image of 0.9KNBNN thin film deposited on FTO coated Glass substrate and (b) HRSEM image of magnetron sputtered 0.9KNBNN thin films.	250
Figure 6.12	(a) UV-visible absorption spectra of magnetron sputtered 0.9KNBNN thin films and (b) Tauc plot for absorption spectra showing direct band gap. Inset is showing the schematic presentation of intraband electronic transition in material.	251
Figure 6.13	AFM Topography images of magnetron sputtered 0.9KNBNN thin films deposited at (a) 50W, (d) 100W and (g) (50W+100W) in two step and their respective roughness profile is shown in (b) (e), (h). Fig (c), (f), and (i) are showing the respective 3-D images.	253
Figure 6.14	(a) Topography, (b) PFM amplitude and (c) PFM phase of 0.9KNBNN thin film obtained at 0V. Topography (d) Amplitude (e), phase image (f) obtained at +5V and topography (g), amplitude (h), phase image (i) obtained at -5V.	255
Figure 6.15	The PFM phase image of 0.9KNBNN film (a) obtained at +5V and section profile (b) shows the position of domain wall (D.W.). Section profile of phase image obtained at +5V.	256
Figure 6.16	The MFM (a) amplitude and (b) phase image of 0.9KNBNN film.	257
Figure 6.17	(a) Semilog plots of Au/KNBNN/Si device in Dark and light (b) Time dependent photocurrent response of Ag/KNBNN/FTO device under light illumination. (c) Rising edge and (d) decaying edge after enlarging the I-t curve.	259
Figure 6.18	J-V curve of (a) Au/KNBNNN/FTO (c) Ag/KNBNN/FTO heterojunction devices in dark and under light illumination. (b) and (d) shows the semilog plots of curves	260

	presented in (a) and (b).	
Figure 6.19	 (a) XRD pattern (b) SEM image (c) AFM topography (d) 3-D image of AFM (e) PFM image showing ferroelectric domains and (f) Tauc plots for band gap of sol-gel deposited 0.9KNBNN thin films. 	262
Figure 6.20	Schematic Diagram of ZnO nanoparticles synthesis and their coating on substrates.	265
Figure 6.21	Schematic Diagram of ZnO nanostructures process set-up.	266
Figure 6.22	(a) TEM image of ZnO Nano-particles (b) HRTEM image(c) SAED pattern of ZnO nanoparticles.	267
Figure 6.23	 (a) HRSEM Image of as grown ZnO Nanorods on FTO glass substrate (b) HRTEM image of single Nanorod (c) & (d) HRTEM image of ZnO Nanorod showing its hexagonal shape (e) Surface of Nanorod confirming crystalline nature (f) SAED pattern of ZnO nanorods. 	268
Figure 6.24	(a) AFM surface morphology (b) roughness profile and(c) 3-D image of ZnO nanorods grown on FTO substrate.	269
Figure 6.25	(a) HRSEM Image of as grown ZnO Nanowalls on glass substrate (b) Enlarged view of nanowalls (c) Shape of nanowall showing the side width (d) HRSEM image showing the single ZnO nanowall (e) HRTEM image of ZnO Nanowalls and (f) SAED pattern of ZnO nanowalls.	271
Figure 6.26	XRD profiles of (a) ZnO particles coated film (b) ZnO Nanorods and (c) ZnO nanowalls. Inset of Fig showing the SEM image.	272
Figure 6.27	Schematic diagram showing synthesis steps of ZnO Nanorods growth process.	274
Figure 6.28	Schematic diagram showing synthesis steps of ZnO Nanowalls growth process.	274
Figure 6.29	SEM image of (a) initial stage (b) intermediate stage and (d) final stage of as grown ZnO nanowalls on glass substrate.	275
Figure 6.30	AFM image of (a) initial stage (b) after 30 minutes (c) intermediate stage and (d) final stage of as grown ZnO nanowalls on glass substrate.	276
Figure 6.31	(a) Transmittance and reflectance of as grown ZnO nanostructures (b) Percentage reflectance of KNBNN thin	278

	film with and without ZnO nanowalls.	
Figure 6.32	Schematic of illustration of light scattering from (a) ZnO Nanoparticles, (b) Nanorods and (c) nanowalls.	279
Figure 6.33	(a) A schematic representation of solar cell device structure with Ag/KNBNN/FTO heterostructure (b) and corresponding schematic energy level diagram for single junction showing the internal photo-electric process.	280
Figure 6.34	J-V characteristics of single KNBNN thin film with Ag/KNBNN/FTO heterojunction in dark and light illumination. The Inset shows (a) enlarged view of J-V curve and (b) Dark J-V for unpoled and negatively poled devices.	281
Figure 6.35	Schematic of solar cell device structure using ZnO Nanoparticles, Nanorods and nanowalls.	283
Figure 6.36	J-V characteristics of KNBNN based Ag/MoO ₃ /KNBNN/ZnONS/FTO heterojunction in dark and light illumination. The Inset shows the dark J-V curve for devices with varying the ZnO nanaoparticles, nanorods and nanowalls.	284
Figure 6.37	A schematic representation illustrating the corresponding schematic energy level diagram for multi- junction showing the internal photo-electric process.	286
Figure 6.38	Schematic energy level diagram for MoO ₃ /KNBNN/ZnO- Nanorods hetrojunction showing the internal photo- electric process.	287
Figure 6.39	Schematic energy level diagram for MoO ₃ /KNBNN/ZnO- Nanowalls hetrojunction showing the internal photo- electric process.	287
Figure 6.40	Illustration of the schematic energy level diagram for (a) Ag/KNBNN/FTO (b) Ag/KNBNN/ZnO NS/FTO (c) Ag/MoO ₃ /KNBNN/ZnO NS/FTO multi- junction showing the internal photo-electric process.	288

Table No.	Captions	Page No.
Table 3.1	Refined lattice parameters (a, b, c) and unit cell volume (V) for PT-BNN ceramics.	105
Table 3.2	Comparative Band gap	142
Table 4.1	Refined Lattice parameters of $(1-x)Bi(Co_{1/2}Ti_{1/2})O_3$ - xPbTiO ₃ for the majority phases in the composition range $0.55 \le x \le 0.80$.	153
Table 4.2	Rietveld refined structural parameters of $(1-x)Bi(Co_{1/2}Ti_{1/2})O_3$ -xPbTiO ₃ for the majority phases in the composition range $0.55 \le x \le 0.80$	154
Table 4.3	Rietveld refined structural parameters of $(1-x)Bi(Co_{1/2}Ti_{1/2})O_3-xPbTiO_3$ for the majority phases in the composition range $0.55 \le x \le 0.80$.	154
Table 4.4	Experimentally observed and theoretically calculated atomic percentages for the Pb, Ti, Bi, Co, and O atoms present in $0.70PbTiO_3$ - $0.30Bi(Co_{1/2}Ti_{1/2})O_3$ obtained from EDS measurements.	155
Table 5.1	Refined structural parameters and bond lengths for xBT-(1- x)BNN solid solutions obtained by using Rietveld refined structural parameters.	199
Table 6.1	Deposition parameters for 0.9KNBNN thin films by Magnetron Sputtering	246