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ITO/BFO/SRO capacitor. Eb and Et are the built-in field 

at the bottom- and top-electrode interfaces, respectively. 

Ebi is the unswitchable built-in field in the film bulk 

possibly due to nonuniform distribution of defects. Qsc 

denotes the gap-state charge density. 
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Figure 1.36 Intensity dependent I-V characteristics in (a) undoped and 

(b) MnO2 Doped sample 0.895PbTiO3-

0.105La(Zn2/3Nb1/3)O3. 
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Figure 1.37 (O) Experimentally measured band gap of ferroelectrics 

versus their theoretical polarization (×) Estimated values 

for the materials proposed in this study. 
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Figure 1.38  (αhv)
2
 plotted as function of hv for the PbTiO3 (PT) and 

PbTi0.67Ni0.33O3 (PTN) ceramics. The inset shows the 

mechanism of band-gap narrowing in such type of solid 

solutions. 
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Figure 1.39 P-E loops of PbTi1-xNixO3 (a) x=0 (b) x=0.20 thin films, 

(c) Compositional dependent photocurrent of PbTi1-

xNixO3 thin films. 
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Figure 1.40 XRD patterns for (1-x)Bi(Ni2/3Nb1/3)O3-xPbTiO3 with 

increasing PT content (b) Phase diagram showing Curie 

temperature. 
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Figure 1.41 J-V curve for 0.65PT-BNN samples with and without 

poling, inset display device structure.  
58 

Figure 1.42 (a) plots of (αhν)
2 

versus hν for the absorption spectra (1-

x)BaTiO3-xBaCo0.5Nb0.5O3-δ ceramics. Inset: The 

schematic diagram of band-gap structure in such 

materials [D. Zhenga et al (2019)]. (b) Plots of (αhν)
2
 vs. 

hν in the absorption spectra (1-x)BaTiO3-

xBaNb1/3Cr2/3O3-δ ceramics. Inset: the schematic pattern 

of band structure. 
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Figure 1.43 (a) Bandgap values versus BNNO fraction. Images of the 

KNbO3 and KBNNO pellets for x = 0.1 and x = 0.4 

compositions. (b) Photoresponse at 77 K under 4 

mW/cm
2
 of above-bandgap illumination. Reversal of 

poling voltage results in the reversal of photocurrent 

direction. (c) The inset shows the photoresponse versus 

applied bias at 77 K. 
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Figure 1.44 J-V characteristics of the device without poling and after 

poling at -1V and +1V under AM1.5 illumination, in 

comparison with those of the unpoled device in dark. 
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Figure 2.1 Schematic illustrations of steps of synthesis process to get 

phase pure ferroelectric perovskite solid solution using 

Mechano-chemical solid-state ceramic method. 
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Figure 2.2 The XRD patterns of 0.65PbTiO3-0.35Bi(Ni2/3Nb1/3)O3 

powders obtained after calcination at different 

temperatures for 6.5 hours duration. XRD peaks 

corresponding to perovskite phase are marked with “P” 

and intermediate/secondary phase peaks are marked with 
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asterisk (*). 

 

Figure 2.3 SEM images of as synthesized polycrystalline 

0.65PbTiO3-0.35Bi(Ni2/3Nb1/3)O3 ceramic calcined at (a) 

700°C (c) 850°C (e) 900°C and corresponding EDS 

spectra in the right panel (b), (d), (f) respectively, showing 

the presence of elements as per the composition. 

 

70 

Figure 2.4 The XRD patterns of 0.65PbTiO3-0.35Bi(Ni2/3Nb1/3)O3 

powders obtained after calcination at 850°C temperature 

with varying the calcination time duration. 
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Figure 2.5 XRD patterns of sintered 0.65PT-0.35BNNO samples 

with varying the sintering temperature and time. 
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Figure 2.6 XRD patterns of xPT-(1-x)BNNO samples for 

compositions x = 0.87, 0.77, 0.70, 0.67, 0.66, 0.65, 

0.64,0.63,0.60,0.55 and 0.50. 
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Figure 2.7 Scanning electron micrographs and EDX spectra of  

0.65PT-0.35BNNO samples sintered at (a) 990°C, (b) 

1040°C and (c) 1090°C. 
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Figure 2.8 Elemental mapping of 0.77PT-0.23BNNO solid solution. 76 

Figure 2.9 Image of a Pulsed laser deposition unit during its 

operation. 
78 

Figure 2.10 Schematic diagram of Pulsed laser deposition unit. 78 

Figure 2.11 (a) Illustration of magnetron sputtering system and 

process (b) Image of a rf-magnetron sputtering unit during 

its operation. 
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Figure 2.12 (a) Schematic illustrations of spin coating process and (b) 

effect of annealing temperature on spin coated films. 
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Figure 2.13 Schematic illustrations of thin film deposition steps by 

chemical solution deposition technique for (1-x)KNbO3-

xBa(Ni1/2Nb1/2)O3 ceramic. 
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Figure 2.14 Schematic illustrations of device Fabrication steps on Si 

substrate using silver paste and thin ferroelectric pellet. 
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Figure 2.15 Schematic illustration of device Fabrication steps on FTO 

glass substrate. 
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Figure 2.16 Sketch of bottom-top electrodes configuration for 

ferroelectric films. 
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Figure 2.17 Schematic illustration of device architecture on FTO glass 

substrate using MoO3 as hole transport layer and ZnO as 
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electron transport layer with ferroelectric layer. 

 

Figure 2.18 (a) XRD pattern (b) Transmittance (c) AFM topography 

image and (d) 3-D image of AZO thin film. 
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Figure 2.19 AFM  Topography image of SrRuO3 (SRO) thin film (a) 

single layer (b) 3 layers (c) 6 layers, (d), (e) , (f) showing 

their 3-D image, (g), (h), (i) showing their roughness 

profile respectively. (j) XRD pattern of single layer SRO 

films (k) XRD pattern of 6 layer SRO films (l) resistivity 

of SRO films with varying number of layers. 
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Figure 2.20 Sawyer-Tower circuit for measurement of ferroelectric 

polarization. 

 

94 

Figure 2.21 Schematic diagram of atomic force microscopy system. 97 

Figure 2.22 Schematic illustration of I-V measurement from C-AFM 

system. 
98 

Figure 3.1 Powder XRD patterns of xPbTiO3-(1-x)Bi(Ni2/3Nb1/3)O3 

solid solution (a) Full range profile (b) the magnified 

profiles of (111), (200) and (210) reflections . 

 

103 

Figure 3.2 Room temperature Raman scattering spectra of xPbTiO3-

(1-x)Bi(Ni2/3Nb1/3)O3 solid solution for compositions (x = 

0.87 to 0.50). 

 

107 

Figure 3.3 The Scanning electron microscopy (SEM) images of PT-

BNN for (a) x = 0.70 and (b) x = 0.63 compositions, Dark 

HRTEM image for (c) x = 0.70 and (d) x = 0.60 and 

showing the Corresponding SAED pattern. 

 

109 

Figure 3.4 Temperature dependent permittivity of xPT-(1-x)BNN as 

a function of frequency for compositions (a) x = 0.87 to 

(f) x = 0.50 and temperature dependent dielectric loss for 

compositions (g) x = 0.87 and (h) x = 0.50. 
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Figure 3.5 (a) Curie temperature and (b) Dielectric permittivity of 

xPT-(1-x)BNN as a function compositions measured at 

100kHz frequency. 
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Figure 3.6 Room temperature P-E hysteresis loops of the xPT-(1-

x)BNN for various compositions x = (a) 0.87, (b) 0.77 (c) 

0.70 (d) 0.65 (e) 0.625 (f) 0.50. 

 

115 

Figure 3.7  Room temperature I-E hysteresis loops of the xPT-(1-

x)BNN for various compositions x = (a) 0.65, (b) 0.625. 
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Figure 3.8 Temperature dependent P-E hysteresis loops of the 

0.65PT-BNN measured at 5 Hz frequency and 30kV/cm 

applied field. 

 

116 

Figure 3.9 Composition dependent variations of (a) absorption 

spectra (b) direct band gap estimation using the Tauc plot 

(αhυ)
2
 vs hυ for xPbTiO3-(1-x)Bi(Ni2/3Nb1/3)O3solid 

solution for compositions in the range (0.55 ≤ x ≤ 0.87). 
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Figure 3.10 Composition dependent variations of  Indirect band gap 

estimation using the Tauc plot (αhυ)
0.5

 vs hυ (c) for 

xPbTiO3-(1-x)Bi(Ni2/3Nb1/3)O3 solid solution. 

 

119 

Figure 3.11 Schematic diagram of density of electronic states (a) Ideal 

Situation for  PbTiO3 (b) With presence of oxygen 

vacancies (c) with effect of  Ni states and oxygen 

vacancies xPbTiO3-(1-x)Bi(Ni2/3Nb1/3)O3.   

 

119 

Figure 3.12 The Tauc plot (αhυ)
2
 vs hυ for 0.65PT-BNN solid solution 

(a) without and with Ni doping (b) y = 0.04, (c) y = 0.07 

and (d) y = 0.1. P-E hysteresis loops of 0.65PT-BNN 

doped with Ni (e) y =0.04 (f) y =0.07. 

 

122 

Figure 3.13 Powder X-ray diffraction patterns of 0.65P T-BNN with 

and without Co doping. Inset is showing the change in 

position of diffraction peak with Co doping. 

 

124 

Figure 3.14 The Tauc plot (αhυ)
2
 vs hυ for 0.65PT-BNN solid solution 

with extra Co doping (a) y = 0.3 (c) y = 0.6 (e) y = 1.0 and 

corresponding P-E hysteresis loop in (b), (d) and (f). 
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Figure 3.15 (a) The Tauc plot (αhυ)
2
 vs hυ and (b)  optical band gap 

for 0.65PT-BCN solid solution. (c) Nyquist plots of 

impedance spectra of 0.90PT-BCN and (d) 0.60PT-BCN. 

The inset shows the equivalent circuit model grain 

boundary resistance (Rgb) and bulk resistance (Rg) 
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Figure 3.16 Powder XRD patterns of (1-y) 0.65PT-BNN-yNZFO 

particulate composites for compositions with  y = 0, 0.05, 

0.10, 0.50 , 0.75 and 1.0. 

 

129 

Figure 3.17 Tauc plot (αhυ)
2
 vs hυ for 0.65PT-BNN-yNZFO 

composites with y = (a) 0.05 (c) 0.10 (e) 0.50 and (g) 0.75  

and corresponding P-E hysteresis loop in (b), (d), (f) and 

(h). 
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Figure 3.18 Tauc plot (αhυ)
2
 vs hυ for (a) 0.65PT-BNN, (b) CZFO 

and 0.65PT-BNN-yCZFO composites with y = (c) 0.05 

(d) 0.10 (e) 0.50 and (f) 0.75   
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Figure 3.19 Powder X-ray diffraction patterns of 0.65P  T-BNN with 

and without CuO doping. Inset is showing the change in 

position of diffraction peak with CuO doping. 

 

134 

Figure 3.20 The Tauc plot (αhυ)
2
 vs hυ for 0.65PT-BNN solid solution 

with and without CuO doping. Two different slopes 

provide two characteristic threshold gap. (a) The first 

threshold band gap Eg1,   Inset is showing the simplified 

energy band diagram of system. (b) Second threshold 

band gap Eg2. 

 

135 

Figure 3.21 Linear J-V Characteristic of Solar cells in dark and under 

light with Device structure: AZO/0.65PT-BNN-CuO/ /Ag, 

the inset is schematic design of device.  
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Figure 3.22 (a) A schematic energy level diagram for AZO/PT-

BNNC/Ag Hetero-structure showing the internal photo-

electric process (b) Internal electric field distribution 

showing the dotted arrow which represents the applied 

polarization direction and big blue arrow shows the 

depolarization field direction. 
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Figure 3.23 AFM topography image of 65PTBNNO thin film with 

thickness (a) 20 nm and (b) 200 nm. 
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Figure 3.24 (a) PFM Amplitude image (b) PFM Phase image of 

65PTBNN thin film. Arrows indicate the domain walls. 
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Figure 3.25 Real time measurement image of device during laser light 

illumination and Schematic diagram of 

AZO/65PTBNNO/LSMO/STO heterojunction device. 
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Figure 3.26 I-V characteristics of AZO/65PTBNNO/LSMO/STO 

heterojunction in dark and under 520 nm laser light 

illumination.  
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Figure 4.1 Comparison of XRD patterns of 0.60PbTiO3–

0.40Bi(Co0.5Ti0.5)O3 ceramic powders calcined at various 

temperatures for 5 hours. 

 

148 

 

Figure 4.2 Calcination temperature dependent lattice parameters for 

0.60PbTiO3–0.40Bi (Co0.5Ti0.5)O3 ceramic. 

 

148 

Figure 4.3 SEM images of as synthesized polycrystalline 

0.60PbTiO3–0.40Bi (Co0.5Ti0.5)O3 ceramic calcined for 5 

hours at (a) 600°C (b) 700°C (c) 850°C (d) 950°C. 
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Figure 4.4 HR-TEM images of as synthesized polycrystalline 

0.60PbTiO3-0.40Bi(Co0.5Ti0.5)O3 particles calcined at (a) 
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600°C (b) 850°C and SAED pattern for particles of 

samples calcined at (c) 600°C (d) 850°C. 

  

Figure 4.5 Elemental Mapping and EDAX for 0.60PbTiO3–0.40Bi 

(Co0.5Ti0.5)O3 particles calcined at 850°C. 
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Figure 4.6 Powder x-ray diffraction patterns of xPbTiO3-(1-

x)Bi(Co1/2Ti1/2)O3 solid solution in the composition range 

(0.55 ≤ x ≤ 0.80) sintered at 1000 
o
C for 2 hours. The 

inset shows the zoomed portion for 2θ=43°-49°, to show 

tetragonal splitting of diffraction peaks with increasing the 

Bi(Co1/2Ti1/2)O3 contents.  

 

152 

Figure 4.7 Rietveld fit for the XRD pattern of sintered sample of 

0.60PbTiO3–0.40Bi(Co0.5Ti0.5)O3 ceramic. Dots indicate 

experimental XRD data, while calculated XRD pattern is 

shown by continuous line. The lower curve shows the 

difference between experimental and calculated XRD 

patterns. Vertical bars indicate position of Bragg’s peaks. 
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Figure 4.8 The Scanning electron microscopy (SEM) images of (a) 

0.70PT-BCT and (c) 0.65PT-BCT ceramics, (b) and (d) 

showing the corresponding Energy dispersive X-ray 

spectroscopy (EDS) spectrum. 
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Figure 4.9 Room temperature P-E hysteresis loops of the 0.80PT-

0.20BCT as a function of (a) frequency with fixed applied 

electric field 5kV/cm (b) P-E loops as a function of 

Electric Field with fixed frequency 100Hz. 
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Figure 4.10 Room temperature P-E hysteresis loops of the 0.60PT-

0.40BCT (a) and (b) as a function of frequency; P-E loop 

as a function of Electric Field at a fixed frequency (c) 1 

Hz and (d) 10 Hz. 
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Figure 4.11 Composition dependent variations of (a) absorption 

spectra (b) Indirect band gap estimation plots using the 

Tauc equation (αhυ)
0.5

 vs hυ (c) direct band gap 

estimation plots using the Tauc equation (αhυ)
2
 vs hυ for 

xPbTiO3-(1-x)Bi(Co1/2Ti1/2)O3 solid solution in the 

composition range (0.80 ≤ x ≤ 0.55)  and (d) The Tauc 

plot (αhυ)
2
 vs hυ for undoped PbTiO3. 
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Figure 4.12 Composition dependent direct band gap estimation plots 

using the Tauc equation (αhυ)
2
 vs hυ for xPbTiO3-(1-

x)Bi(Co1/2Ti1/2)O3 solid solution with compositions (a) x = 

0.80 (b) x = 0.70 (c) x = 0.60 and (d) x = 0.55 

respectively. The tangent line drawn for linear region is 

used to estimate the band gap. 
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Figure 4.13 Schematic diagram of density of electronic states (a) Ideal 

situation for PbTiO3 (b) With presence of oxygen 

vacancies (c) with presence of Co states and oxygen 

vacancies for xPbTiO3-(1-x)Bi(Co1/2Ti1/2)O3.  

 

161 

Figure 4.14 Powder x-ray diffraction patterns of 0.60PbTiO3-

0.40Bi(CoyTi1-y)O3 with varying Co/Ti concentration, 

y=0.45, 0.50, 0.55  and 0.60. 
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Figure 4.15 SEM Image of 0.60PbTiO3-0.40Bi(CoyTi1-y)O3 solid 

solution with composition (a) y=0.50 and (c) 0.60 and 

Elemental mapping of Co in 0.60PbTiO3-0.40Bi(CoyTi1-

y)O3 sample with composition (b) y = 0.50 and (d) y = 

0.60. In inset, respective EDS spectra is shown. 
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Figure 4.16 The Tauc equation (αhυ)
2
 vs hυ plots for 0.60PbTiO3-

0.40Bi(CoyTi1-y)O3 solid solution with composition (a) 

y=0.45 and (b) 0.50 (c) 0.55 and (d) 0.60. The tangent line 

extrapolation on the linear region is used to estimate the 

band gap. 
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Figure 4.17 Schematic diagram of density of electronic states for 

0.60PbTiO3-0.40Bi(CoyTi1-y)O3 solid solution with 

composition (a) y=0.45 and (b) 0.50 (c) 0.60. The 

increasing CBM tailing is shown by dotted lines and state 

created by oxygen vacancies are drawn in yellow colour 

area.  
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Figure 4.18 (a) XRD pattern (b) SEM image of as deposited PT-BCT 

thin films 
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Figure 4.19 Cross-section SEM image of as deposited PT-BCT thin 

film on FTO glass Substrate. Inset is showing EDX 

spectra of  PT-BCT film.   
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Figure 4.20 (a) Tauc plots and band gap (b) Urbach Energy of as 

deposited PT-BCT thin films.. 
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Figure 4.21 (a) AFM topography image, (b) grain size distribution 

obtained from AFM image and corresponding histogram 

(c) 3-D microstructure (d) AFM roughness profile for 

0.60PbTiO3-0.40Bi(Co0.60Ti0.40)O3 thin film. 

  

172 

Figure 4.22 AFM/PFM images for 0.60PbTiO3-0.40Bi(Co0.60Ti0.40)O3 

thin film, (a) AFM topography image, (b) PFM Amplitude 

and (c) PFM Phase image for negatively poled film; (d) 

Topography, (E) PFM amplitude and (f) PFM phase 

image for unpoled film; (g) Topography (b) PFM 
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Amplitude and (c) PFM Phase image for positively poled 

film. 

 

Figure 4.23 (a) AFM topography image and corresponding (b) Cross 

section profile which is showing grain boundaries (G.B.);  

(c) PFM phase image and their (b) Cross section profile 

which is showing domain walls (D.W.); for 0.60PbTiO3-

0.40Bi(Co0.60Ti0.40)O3 thin film. The arrows are used to 

indicate the position of D.W. and G.B. in profile image. 
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Figure 4.24 Time dependent photocurrent response of  

Ag/PTBCT/FTO device under light illumination. 
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Figure 4.25 J-V characteristics of Ag/PT-BCT/FTO heterojunction in 

dark and light illumination. The Inset shows same graph 

as the semi-log J-V plot. 
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Figure 4.26 A schematic energy level diagram for Ag/PT-BCT/FTO 

Heterostructure showing the internal photo-electric 

process. 
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Figure 4.27 Typical time-zero current-voltage data and various fits of 

data to determine the conduction mechanism in Ag/PT-

BCT/FTO heterostructure (a) Space-charge-limited 

conduction (SCLC), (b) Poole-Frenkel (PF) emission, (c) 

Schottky Emission model, and (d) Fowler-Nordheim (F-

N) tunneling. 

 

177 

Figure 4.28 (a) J-V plots for PT-BCT based diode on a semilog scale. 

The slopes of linear fit are used to extract ideality factor 

and saturation current (b) logJ vs logV curve for positive 

applied voltage region (c) logJ vs logV curve for positive 

applied voltage region to extract charge mobility µ (d) 

Plot d(V)/d(lnJ) vs J with linear fit to extract series 

resistance and ideality factor (e) H(J) vs J plot under dark 

condition (f) H(J) vs J plot under light condition to extract 

to barrier potential height ΦB, inset is showing d(V)/d(lnJ) 

vs J plot. 

 

185 

Figure 4.29 (a) Schematic diagram of PT-BCT/FTO device structure 

with C-AFM measurement system (b) Local I-V curve 

and inset showing the measurement points on the surface 

(c) Dark I-V curve (d) I-V curve under light of 

0.60PbTiO3-0.40Bi(Co0.60Ti0.40)O3 film surface measured 

using platinum tip. 

 

189 

Figure 4.30 (a) Schematic diagram of PT-BCT/FTO device structure 

with C-AFM measurement system showing the strain 

gradient induced flexoelectric effect using Pt tip. 

Schematic energy band diagram of PT-BCT/FTO 
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heterostructure when Pt tip is in contact with film under 

conditions (b) without poling (c) with positive poling (d) 

with negative poling. The field at interface is termed as 

Ebi, depolarization field due to poling Epol and field due 

spontaneous polarization P generated by strain gradient is 

termed as Eflexo. 

 

Figure 5.1 Powder x-ray diffraction patterns of xBaTiO3-(1-

x)Bi(Ni2/3Nb1/3)O3 solid solution in the composition range 

(0.60 ≤ x ≤ 0.92).  

 

196 

Figure 5.2 Rietveld fit for the XRD patterns of xBaTiO3-(1-

x)Bi(Ni2/3Nb1/3)O3 ceramics with x=0.92, 0.85, 0.80, 0.75, 

0.70 and 0.60. Dots indicate experimental XRD data, 

overlapping calculated XRD pattern is shown by 

continuous line. The lower curve shows the difference 

between experimental and calculated XRD patterns. 

Vertical bars indicate position of Bragg’s peaks. 

 

197 

Figure 5.3 Variations of Bond length (a) Bi/Ba-O and (b) Ni/Nb/Ti-O 

for cubic phase of various compositions of xBaTiO3-(1-

x)Bi(Ni2/3Nb1/3)O3 obtained after Rietveld refinement. 

 

200 

Figure 5.4 The Scanning electron microscopy (SEM) images of (a) 

0.92BT-0.08BNN, (c) 0.80BT-0.20BNN and (e) 0.60BT-

0.40BNN ceramics, (b), (d) and (f) showing the 

Corresponding Energy dispersive X-ray spectroscopy 

(EDS) spectrum. 

 

202 

Figure 5.5 The EDS elemental map of xBaTiO3-(1-

x)Bi(Ni2/3Nb1/3)O3 ceramics with compositions x=0.92 

(left panel) and x=0.60 (right panel). 
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Figure 5.6 Room temperature P-E hysteresis loops for the xBaTiO3-

(1-x)Bi(Ni2/3Nb1/3)O3 ceramics with  the compositions (a) 

x=0.92 (b) x=0.75 (c) x=0.60 and (d) x=0.50 recorded at 

different applied electric field.   
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Figure 5.7 Nyquist plots (Z’ vs Z’’) for (a) 0.92BT-0.08BNN (b) 

0.80BT-0.20BNN (c) 0.60T-0.40BNN and (d) 0.50BT-

0.50BNN compositions measured at different 

temperatures. 
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Figure 5.8 Composition dependent variations of (a) absorption 

spectra; (b) Estimated indirect band gap using the Tauc 

plot (αhυ)
0.5

 vs hυ; (c) and (d) Estimated direct band gap 

using the Tauc plot (αhυ)
2
 vs hυ, for xPbTiO3-(1-

x)Bi(Ni1/2Ti1/2)O3 solid solution in the composition range 

(0.50 ≤ x ≤ 0.92); (e) Direct band gap Eg2 and (f) the Tauc 
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plot (αhυ)
2
 vs hυ for undoped BaTiO3. The tangent line 

for linear region is used to estimate the band gap. 

 

Figure 5.9 Direct band gap for (a) Varying Ni doping in BaTi(1-

x)NixO3 solid solution (b) Varying Ni and Nb co-doping in 

BaTi(1-x)(Ni1/3Nb2/3)xO3 solid solution. 
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Figure 5.10 Schematic diagram of density of electronic states (a) Ideal 

Situation for BaTiO3 (b) With presence of oxygen 

vacancies (c) with presence of Ni
2+

 3d states (d) For 

higher doping percentage of BNN and (e) Eg1 and Eg2 

band gap in xBT-(1-x)BNN.   
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Figure 5.11 A Schematic illustration of various fabrication process 

steps of AZO/BT-BNN/Ag heterojunction device on 

silicon substrate.   

 

215 

Figure 5.12 A schematic representation of the AZO/BT-BNN/Ag 

heterojunction device. 
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Figure 5.13 J-V curves of AZO/BT-BNN/Ag devices in dark and 

under different light intensity after positive poling.  

 

218 

Figure 5.14 Photovoltaic mechanisms in AZO/BT-BNN/Ag 

heterojunction device in (a) dark and (b) under light 

conditions. The photocurrent is mentioned as Iph and E is 

electric field. 
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Figure 5.15 Schematics of energy band diagram and photovoltaic 

mechanism of AZO/BT-BNN/Ag/Si device under various 

light illumination intensity (a) 50mW/cm
2
 (b) 70mW/cm

2
 

and (c) 100mW/cm
2
. Ef, Ecb and Evb represent Fermi 

energy level, conduction band and valence band 

respectively. Dotted arrow represents the applied 

polarization direction and big blue arrow shows the 

depolarization field direction. 
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Figure 5.16 J-V curve of 0.60BaTiO3-0.40Bi(Ni2/3Nb1/3)O3 ceramic 

device with unpoled, positively and negatively poled 

samples showing switchable photovoltaic effect. Black 

open squares are for the J-V curve in dark, red line 

indicates the J-V curve of device before poling, blue filled 

triangles and magenta filled circles indicate J-V curves of 

devices with negative and positive poling. 
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Figure 5.17 Schematic of energy band diagram with internal electric 

field distribution and mechanism of the photovoltaic effect 

of AZO/BT-BNN/Ag device with interfacial layers in (a) 

Unpoled state (b) positively poled state and (c) negatively 

poled state. Built-in-field formed at AZO/BT-BNN and 
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BT-BNN/Ag interface is termed as Et and Eb. 

Depolarization field is termed as Ed which is opposite to 

applied polarization P. Ef, Ecb and Evb are Fermi energy 

level, conduction band and valence band respectively. 

Large red coloured arrows represent the random direction 

of polarization in unpoled state. 

 

Figure 5.18 Composition dependent J-V curves of AZO/BT-BNN/Ag 

devices after positive poling. J-V characteristic curves of 

heterostructure with BT-BNN layer having different band 

gap demonstrating the photovoltaic effect.  
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Preface 

The efforts for reducing large consumption of fossil fuels and continuously increasing 

demand of low-cost photoactive materials for solar energy have stimulated research towards 

perovskite ferroelectric photovoltaic materials. Even though, the crystalline silicon solar cells 

are available with high efficiency, but due to its high production cost, the other category of 

photovoltaic materials have attracted attention, for developing low-cost alternative of silicon 

solar cells. Various ferroelectric perovskite materials fulfill essential requirements as 

photovoltaic materials for device applications [Yuan et al (2014)]. The huge interest towards 

ferroelectric perovskites in photovoltaic area is closely related to their long-term stability and 

large-scale materials availability, potential for polarization driven charge carriers separation, 

high open circuit voltages and chemical stability [Butler et al (2015)]. In this direction, 

various perovskite ceramics such as BaTiO3, BiFeO3 and transition elements doped PbTiO3 

have shown considerable promise for ferroelectric photovoltaic applications [Koch et al 

(1975); Choi et al (2009)].  Emergence of bulk photovoltage, switchable photovoltaic nature, 

spontaneous polarization driven internal electric field for charge separation and multiferroic 

character are the key parameters, which can revolutionize optoelectronic technologies 

[Matsuo et al (2017)]. There are a number of studied highlighting the ferroelectric 

photovoltaic phenomenon in perovskite materials such as BaTiO3, PbTiO3, and LiNbO3 

[Bhatnagar et al (2013)]. Bhatnagar et al have demonstrated the bulk photovoltaic effect in 

BiFeO3 films [Huang et al (2017)]. Recently, the bulk photovoltaic effect and switchable 

diode effect in ferroelectrics have been recognized as the most outstanding features that make 

these materials very promising candidates for solar cells. However, the low photocurrent 

densities in wide band gap ferroelectric materials have restricted their application in 

photovoltaic devices, so far. Thus, development of new low band gap ferroelectric materials 

has drawn great attention of researchers.  
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The main obstacle in limiting the application of ferroelectric perovskite oxides in 

photovoltaic cells is their wide band gap and low charge mobility. Due to wide band gap (> 

3.0 eV), the ferroelectric photoactive layer cannot absorb visible part of incident solar spectra 

and thus shows very low photocurrent. The reason behind wide band gap in ABO3 type 

perovskite oxides is large difference in electro-negativity between transition metal atoms and 

oxygen ions in the unit cell. Recently, transition element doped perovskites have shown 

attractive properties for the ferroelectric photovoltaic applications because of their 

comparatively lower band gap than other undoped conventional ferroelectric perovskite 

oxides [Qi et al (2011)]. The Ni and Nb-doped KNbO3 have been widely studied due to its 

high spontaneous polarization and great promise for application as solar energy harvesting 

material. Band gap tuning of KNbO3 produced a semiconducting solid solution [KNbO3]1-x-

[Ba(Ni0.5Nb0.5)O3]x (KNBO-BNN) having a lower band gap of 1.1 eV without losing the 

ferroelectricity [Grinberg et al (2013)]. However, this solid solution exhibited low photo-

current [Grinberg et al (2013)]. Another reason for lower photocurrent in these solar cell 

materials is absorption reduction in photoactive layer due to nano-meter thin film 

construction for fabrication of solar cell. Different theoretical studies have pointed out that 

nanostructured materials could improve thin film device efficiency due to their extremely 

high surface to volume ratio [Tang et al (2014); Ferry et al (2011)]. Variously engineered 

nanostructures were integrated into the thin films solar cell to increase the absorption in 

photoactive layer by trapping the light within the surface. The trapping of light inside device 

is made possible by increasing the optical path length of incident photons. Indeed, multiple 

studies have already shown the potential application of nanostructured ZnO as the functional 

element for sensors, photo-diodes, transistors, and light-emitting diodes, but, their light 

scattering/trapping properties still require in-depth study [Xu et al (2014)]. With the objective 

of designing and developing new low band gap ferroelectric systems, in the present thesis, we 
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have investigated the optical band gap of transition element doped PbTiO3, BaTiO3, KNbO3 

based solid solutions. We have investigated the photovoltaic properties of these new 

materials in their thin film form also. Our studies have resulted into many new and important 

findings that can open up new possibilities in the direction of development of low cost 

photovoltaic materials that can replace silicon based solar cells.  

 The significant investigations and important findings of the present thesis are listed below:  

1. Band gap tuning of xPbTiO3-(1-x)Bi(Ni2/3Nb1/3)O3 ceramics, Observation of 

microscopic domain switching and Photo-voltaic effect in PLD grown thin films  

Solid solution of xPbTiO3-(1-x)Bi(Ni2/3Nb1/3)O3 [PT-BNN] system with compositions 

(x= 0.87, 0.77, 0.70, 0.67, 0.66, 0.65, 0.64, 0.63, 0.625, 0.62, 0.60, 0.55 and 0.50) were 

successfully prepared by solid state ceramic synthesis and characterized for crystal structure, 

microstructure and optical properties. The PT-BNN shows morphotropic phase boundary 

(MPB) region in the composition range of x = 0.65 to x =0.60, where tetragonal and 

rhombohedral phases coexist. The crystallographic structural transitions as a function of 

composition, in PT-BNN solid solution has been further confirmed by Raman spectroscopy 

analysis. Composition dependent dielectric properties are also studied. Curie temperature for 

xPT-(1-x)BNN compositions decreases from 456°C (x = 0.87) to 181°C (x = 0.50). 

Composition 0.65PT-0.35BNN in the MBP region shows the highest value of dielectric 

permittivity and remnant polarization (Pr = 25.6 µC/cm
2
) and a direct band gap of Eg = 2.3 

eV. We have investigated in details the band gap tuning in xPbTiO3–(1–x)Bi(Ni2/3Nb1/3)O3 

(PT-BNN) ceramic by compositional variation in the composition range 0.50 ≤ x ≤ 0.87. The 

absorption spectra of PT-BNN exhibits three absorption shoulders, with one lying in the near-

infrared (NIR) region. The presence of absorbance peak in NIR range makes this solid 

solution applicable in NIR-related fields. The multi-absorbance peaks are originated in 

absorption spectra due to presence of Ni ions which promotes formation of oxygen vacancies. 
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The band gap of PbTiO3 is significantly reduced by solid solution formation with 

Bi(Ni2/3Nb1/3)O3. This work provides good insights for the band gap tuning of PbTiO3 by 

varying the concentration of Bi(Ni2/3Nb1/3)O3. The band gap of this solid solution system has 

been shown to be directly influenced by transition elements (Ni, Co, Cu) doping and altering 

the stoichiometric ratio of Ni and Nb in Bi(Ni2/3Nb1/3)O3 component. The Co-doping in 

0.65PT-0.35BNN provides the lowest band gap (Eg = 1.55 eV) but ferroelectric polarization 

is also decreased. When Ni is replaced by Co, the new solid solution system 0.58PbTiO3-

0.42Bi(Co2/3Nb1/3) shows a lower band gap of 1.3 eV. The reduced band gap is attributed to 

the extra Co-dz
2
 state and Co-d

2
x-y states created between conduction band (CB) and valance 

band (VB).  

We have demonstrated that the multiferroic particulate composites of 0.65PT-

0.35BNN with spinel Ni0.65Zn0.35Fe2O4 (or Co0.5Zn0.5Fe2O4) also effectively provide a lower 

band gap. The lowest band gap of Eg = 1.39 eV is obtained for (0.25)[0.65PT-0.35BNN]-

0.75Co0.5Zn0.5Fe2O4 composite. CuO doped 0.65PT-0.35BNN also provide a lower band gap 

and bulk photo-voltaic effect in ceramic pellets form. Ceramic pellets of 0.65PT-0.35BNN 

composition shows an open circuit voltage (Voc) ~ 4.13V which increases to 5.1 V for 0.3% 

CuO doped 0.65PT-0.35BNN composition.   

The epitaxial PT-BNN films were grown on single crystalline substrate by pulsed 

laser deposition (PLD) technique and were analyzed using atomic force microscopy, 

piezoresponse force microscopy (PFM). The photovoltaic effect is studied in PT-BNN thin 

films prepared by PLD. The temperatures dependent short-circuit current and open circuit 

voltage is measured and data is analyzed. 

2. Band gap tuning of (Co, Bi) doped PbTiO3 ceramics and Observation of Photo-voltaic 

effect in magnetron sputtered thin films 
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We have successfully demonstrated the development of xPbTiO3-(1-x)Bi(Co1/2Ti1/2)O3 [PT-

BCT] (x= 0.80,0.70, 0.65, 0.60, 0.55) solid solution using the conventional solid-state 

reaction technique. Phase identification and structural characterization of PT-BCT powders 

were made by X-Ray diffraction technique. Changing the concentration of Bi(Co1/2Ti1/2)O3 

(BCT) has significant effect on the crystal structure, microstructure, and optical properties of 

the PT-BCT solid solution. Optical band gap of PT-BCT reduces from 2.9 eV to 1.83 eV with 

40% BCT (x = 0.60) concentration. The PT-BCT material shows two direct band gaps. The 

direct band gap Eg1 arises from p-d charge-transfer excitations. The band gap at lower energy 

side Eg2 arises from hybridization of Co (3dz
2
+O2pz) and Co-- 3d excitations The band gap 

tuning is done by varying the doping percentage of Co (y= 0.45, 0.5, 0.55, 0.60) in 

0.60PbTiO3-0.40Bi(CoyTi1-y)O3. The optical band gap is found to reduce from 3.2 eV to 1.65 

eV as the Co concentration increases in 0.60PT-BCT. The reduced band gap makes the 

xPbTiO3-(1-x)Bi(Co1/2Ti1/2)O3 a promising multiferroic material for ferro-photovoltaics 

applications. The 0.60PbTiO3-0.40Bi(Co0.60Ti0.40)O3 (PT-BCT) thin films were deposited on 

FTO coated glass substrates by magnetron sputtering. The local ferroelectric switching is 

observed in optimum composition of PT-BCT thin films. The current-voltage (I-V) 

characteristics of as prepared Ag/PT-BCT/FTO device were measured in dark and under light 

illumination. The development of switchable electronic devices for future and photo-ferroic 

solar  devices basic understanding of charge transport properties in ferroelectric thin films is 

crucial. We have analysed different charge transfer mechanism models and the new insight 

will widen the basic understanding of light induced charge transport process in ferroelectric 

films deposited on TCO electrode. We also report the strain-gradient induced flexo-

photovoltaic effect in PT-BCT/FTO heterostructure measured using conducting Pt-tip. The 

results of these studies could provide interesting opportunities for designing thin film 

ferroelectric solar cells and help in analyzing the charge transport mechanism. 
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3. Development of xBaTiO3-(1-x)Bi(Ni2/3Nb1/3)O3 ceramics as new narrow band gap 

ferroelectric materials for photovoltaic applications 

The main obstacle limiting BaTiO3 as photo-absorbing layer in solar cells is its wide 

band gap which restricts the full absorption of solar spectrum. We have developed and 

investigated a new low band gap perovskite system xBaTiO3-(1-x)Bi(Ni2/3Nb1/3)O3 (BT-

BNN) with compositions (0.50 ≤ x ≤ 0.92). Refined structural parameters and bond lengths 

for xBT-(1-x)BNN solid solutions obtained by Rietveld structure refinement confirms the 

cubic structure with space group Pm3m for studied compositions. We have carried out 

detailed investigation to develop lead free semiconducting ferroelectric material. The direct 

band gap is significantly reduced from 3.2 eV to 2.19 eV for BNN modified BaTiO3. We 

have chosen Ni
3+

 as non-do transition-metal ion (3d
4
) along with Nb

5+
(4d

0
) to reduce the band 

gap and support ferroelectric states. In this work, we have compared the effect of Ni-only 

substitution and Ni-Nb co-substitution at the Ti-site of BaTiO3 for lowering optical band gap. 

The presence of Ni-3d states, both at the top of the valence band and at the bottom of the 

conduction band reduces the overall band gap of BT-BNN. The P-E measurement of BT-

BNN samples reveals that the saturation polarization is reduced than BaTiO3 but it retains the 

ferroelectric nature after BNN substitution. We have demonstrated light intensity dependent, 

polarization direction dependent photovoltaic behaviour and bulk photo-voltage in BT-BNN 

ceramics. The current- voltage (I-V) characteristics of as prepared AZO/BT-BNN/Ag/Si 

device was measured and the PV mechanism in dark and under light illumination is explained 

using the schematic energy band diagrams. The highest photo-current (Jsc~1.5 µA/cm
2
) is 

obtained for 0.70BT-0.30BNN composition. Open circuit voltage Voc highly depends on the 

polarization of material and it reduced from -3.23 V to -1.38 V with increasing BNN doping 

concentration in BaTiO3. From obtained experimental results, it can be concluded that Voc 

directly depends on remnant polarization of material and Jsc is related to both band gap and 



  

xxxvii 
 

polarization. Our discovery of switchable ferroelectric diode effect in lead free 

polycrystalline ceramic BT-BNN may provide an opportunity for designing new electronic 

devices. The observed polarization and band gap dependent photo-current, switchable 

photovoltaic effect of BT-BNN will be of great interest for future ferroelectric photovoltaic 

devices. 

4. Photovoltaic behaviour of Magnetron Sputtered and Solution processed (1-x)KNbO3-

xBa(Ni1/2Nb1/2)O3-δ  Thin Films and Enhancement in photo-current by application of 

ZnO nano-structures as light trapping  layer  

The ceramic solid solution of (1-x)KNbO3-xBa(Ni1/2Nb1/2)O3-δ (KNBNN) with 

compositions x = 0.05, 0.10,0.15, 0.20, and 0.25 were synthesized by solid state reaction 

method. The UV-visible absorption spectra of KNBNN reveal that the band gap of KNBNN 

samples shrink from 3.1 eV to 2.19 eV. A sputtering target of 0.9KNBNN composition was 

prepared and films were deposited on FTO glass substrates. First time magnetron sputtered 

and sol-gel based 0.90KNbO3-0.10Ba(Ni1/2Nb1/2)O3-δ  thin Films were grown and their 

photoelectrical properties were measured. We have applied magnetron sputtering and sol-gel 

techniques to grow KNBNN films as their fabrication process is user friendly cost effective 

and can be implemented for industrial production. The ferroelectric nature of as deposited 

films was confirmed by piezoforce microscopy (PFM). A low short circuit photo-current 

density of 0.026 mA/cm
2
 was obtained for Au/KNBN/FTO devices after poling which 

increased for Ag/KNBN/FTO devices. The low open circuit voltage of device is due to 

polycrystalline nature of films as polycrystalline films contain defects or grain boundaries 

that act as recombination centers to trap the photon generated charge carriers. The observed 

photovoltaic effect in Ag/KNBNN/FTO device can be attributed to depolarization field in 

KNBNN thin film and Schottky barriers at KNBNN/Ag and KNBNN/FTO interfaces.  

Further, in this work, we have grown ZnO nanostructures on glass and FTO substrates and 
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explained the growth mechanism using AFM. The surface morphology of the as-grown ZnO 

nanoparticles, nanowalls and nanorods on glass and FTO coated glass substrates were 

analyzed using SEM, HRTEM and AFM.  It was observed that as grown ZnO nanostructures 

reduce the reflectance of FTO coated substrates. So, ZnO nanostructures can be sandwiched 

between an electrode layer and photo-active layer to trap light inside solar cells. Our 

investigations reveal that a variation in growth geometry of ZnO nanostructures strongly 

influences their light-harvesting properties as well as the current collection efficiency of 

devices. The AFM analysis indicated that larger surface area, rougher surface and lower 

density of interconnected ZnO nanowalls make them a better candidate for light harvesting in 

solar cells. We have analyzed the possible built-in-field (Ebi) at interfaces of different layers 

in device and depolarization field (Edp) within KNBNN layer. The photocurrent for devices 

with ZnO nanowalls shows increased Jsc = 0.067 mA/cm
2
 as compared to devices with ZnO 

nanorods and nanoparticls. Single layer KNBNN junction solar cell in negative poled 

condition, shows Jsc = 0.01286 mA/cm
2
. The photocurrent density of device for ZnO as light 

trapping layer in the form of nanowalls, nanorods and nanoparticles follows the sequence 

JNW-KNBNN> JNR-KNBNN > JNP-KNBNN, which is consistent with their percentage reflectance. 

These results indicate that efficient light trapping is the main factor that affected the 

photocurrent in these devices.  

  The present findings are not only beneficial to study the growth mechanism of ZnO 

nanostructures but also provide the clear evidence that optimal geometry of ZnO 

nanostructures is highly effective in improving the efficiency of solar cells. The results 

presented in our work can provide a guideline to develop light trapping methodology needed 

to achieve higher efficiencies in solar cells.  

The thesis is organized into 7 chapters.  
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Chapter 1: gives an introduction to basic concepts of semiconductors and multiferroic 

materials including the light induced photoelectric phenomenon such as bulk photovoltaic 

effect, photo-dielectric effect and photo-polarization. A concise review of the recent progress 

on the understanding of ferroelectric photovoltaic effect, band gap tuning of ferroelectric 

materials and device design strategies to enhance the photocurrent are also presented. 

Chapter 2: describes the preparation methods used for bulk ceramics ferroelectric solid 

solutions, thin films by PLD, RF sputtering and chemical solution deposition by spin coating 

method. A brief description of various characterization techniques used in the present thesis 

is presented. The details of ferroelectric photovoltaic device fabrication and their 

characterization is also given. 

Chapter 3: presents the composition dependent structural, morphological, Dielectric, 

ferroelectric and optical properties for xPbTO3-(1-x) Bi(Ni2/3Nb1/3)O3 solid solutions in the 

composition range 0.50 ≤ x ≤ 0.87. The impact of calcinations and sintering temperature on 

the structural, morphological and optical properties is also discussed. This chapter also 

describes the growth procedure, microscopic domain switching and photovoltaic properties of 

xPbTO3-(1-x)Bi(Ni2/3Nb1/3)O3 thin films. 

Chapter 4: describe the structural, morphological, ferroelectric and optical properties of 

xPbTiO3-(1-x)Bi(Co1/2Ti1/2)O3 (PT-BCT) samples with composition (x=0.8, 0.70, 0.65, 0.60, 

0.55). The mechanism of band gap narrowing in PT-BCT with Co-doping is analyzed. The 

charge transport mechanisms and photovoltaic effect in the magnetron sputtered PT-BCT thin 

film based devices are investigated. 

Chapter 5: describes the detailed procedure to prepare a new low band gap lead free 

ferroelectric material xBaTiO3-(1-x)Bi(Ni2/3Nb1/3)O3  (0.50 ≤ x ≤ 0.97). The results of 

structural, morphological, dielectric, ferroelectric and optical properties investigations are 
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presented. Polarization direction dependent photovoltaic behaviour in BT-BNN based devices 

is studied and anomalous photovoltaic mechanism in this system is explained. 

Chapter 6:  Describe the growth of (1-x)KNbO3-xBa(Ni1/2Nb1/2)O3-δ (KNBO-BNN) thin 

films using magnetron sputtering and sol-gel based spin coating and their photovoltaic 

properties. This chapter also presents the growth of ZnO nanostructures, their anti-reflection 

properties and applications in KNBO-BNN based ferroelectric solar cells as light trapping 

layer. 

Chapter 7: summarizes the main findings of the present work and lists a few suggestions for 

future investigations. 

 

 


