
Chapter 3

Construction of Matched Wavelets

3.1 Matched Wavelets

In many applications, e.g., signal coding and compression, it is desirable to have max-

imum correlation between the underlying signal and the analysis wavelet or the corre-

sponding scaling function. This would result in general to a sparse discrete wavelet trans-

form and provides better understanding of the signal structure. The signal-dependent

wavelet design is referred to as matched wavelet. The wavelet decomposition with

matched wavelet typically uses only one or two wavelet scales.

3.1.1 Motivation: Signal Detection

In a wavelet decomposition, a signal, f(x), is decomposed into a sum of weighted

wavelets

f(x) =
∞∑
j=0

djkψj,k(x) (3.1.1)

where the wavelet coefficients can be calculated as follows:

djk = 〈f(x), ψj,k(x)〉 (3.1.2)

where 〈·, ·〉 stands for the inner product and ψj,k(x) = 2j/2ψ(2jx− k) are the wavelets.

In theory of signal detection, one approach for using the wavelet coefficients to detect

patterns in a signal is designing a wavelet that matches the signal of interest. Then, one

may look for the maximum energy coefficient in the wavelet coefficients at each scale to

find the location of patterns.
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The projection equation for the wavelet coefficients, given in eq. (3.1.2), can be

rewritten in the frequency domain applying Parsevals identity

djk = 〈f(x), ψj,k(x)〉 = 〈F (ω),Ψj,k(2
−jω)〉 (3.1.3)

where Ψj,k(2
−jω) = 2−j/2e−i2

−jωkΨ(2−jω) is the Fourier Transform of ψj,k(x). The

energy of dkj at a particular scale, j0, and translation, k0, is given by its squared magnitude

|dj0k0
|2 = |〈F (ω),Ψj0,k0(2−j0ω)〉|2 (3.1.4)

Applying the CauchySchwarz inequality to the right side of eq. (3.1.4) gives

|dj0k0
|2 = |〈F (ω),Ψj0,k0(2−j0ω)〉|2 ≤ 〈F (ω), F (ω)〉〈Ψj0,k0(2−j0ω),Ψj0,k0(2−j0ω)〉

(3.1.5)

where the equality holds for

F (ω) = KΨj0,k0(2−j0ω) (3.1.6)

where both F and Ψ are complex spectra. Therefore, |dk0
j0
|2 is maximized when the

complex frequency spectrum of ψj0,k0 is identical to that of f(x). Rewriting (3.1.6) in

terms of amplitude and phase gives

|F (ω)|eiθF (ω) = K2−j0/2|Ψ(2−j0ω)|ei(θψ(2−j0ω)−2−j0ωk0) (3.1.7)

where θF (ω) and θΨ(ω) are the phase of F (ω) and Ψ(ω) , respectively. The above equa-

tion (3.1.7) gives the condition for of maximum projection coefficient at (j0, k0). If the

signal matches exactly with an orthonormal wavelet, then djk = δk,k0 · δj,j0 . The wavelet

decomposition produces only one coefficient at (j0, k0). Even if this is not the case, that

is, the match is not exact, most of energy of the signal will be captured in few coeffi-

cients. This result provides the need for a wavelet matched to a signal of interest in both

magnitude and phase. The signal-dependent wavelet design is referred to as matched

wavelet.

3.1.2 Some Algorithms to Design Matched Wavelets

In general, there are two criterions for matching the wavelet to signal, namely- energy

matching and waveform matching. Energy matching means that the wavelet matches the
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signal by spectrum energy. On the other hand, waveform matching implies the similarity

between the scaling (or wavelet) function and input signal. The more similar the scaling

φ(t) or wavelet function ψ(t) is to the input signal, the fewer the items needed to ap-

proach the input signal is. It means the similarity between the wavelet function and input

signal need to be optimized. The former is used in other applications, such as signal

denoising, where the spectrum energy of wavelet matching that of signal is required. The

latter is used in some applications, such as image compression, where wavelet with high

vanishing moment is required.

Chapa (1995); Chapa et al. (2000) have developed two sets of equations for de-

signing a wavelet directly from a signal of interest. The first set derives expressions

for continuous matched wavelet spectrum amplitudes, while the second set of equations

provides a direct discrete algorithm for calculating close approximations to the optimal

complex wavelet spectrum. Gupta et al. (2002) obtained the matched wavelet by max-

imizing the projection of the signal onto the scaling subspace. They proposed several

other techniques to construct matched wavelets with some desired properties from a sig-

nal of interest (see Gupta et al., 2003a;2003b;2005a;2005b). Misiti et al. (2003) ap-

proximated a given pattern using least squares optimization under constraints, leading

to an admissible wavelet well suited for the pattern detection using continuous wavelet

transform(CWT). Bahrampour et al. (2008, 2009) used variational methods to design

wavelets matching to a specified signal. Mansour (2014) proposed a new construc-

tion technique for matched wavelet and matched scaling function that is based on a new

parametrization of compactly supported orthonormal wavelets where the coefficients of

the wavelet filter are the solution of a linear system of equations and are a continuous

function of an arbitrary vector of half its length. Their proposed model provided a more

general optimization framework where matched wavelets is a special case.

We have adopted the approach of Chapa et al. (2000) for design matched wavelets

which is presented in the next section.
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3.2 Matching a Wavelet to a Specified Signal by Chapa’s

Algorithm

In this section, we review the algorithm for designing wavelets matched to a specified

signal, which was proposed by Chapa et al. (2000). In their technique, wavelets were

assumed to be bandlimited. Using the conditions of an orthonormal multiresolution anal-

ysis (OMRA), they proposed an algorithm of matching of wavelets to the desired signal

in frequency domain. The matching was done on the magnitude and phase independently

of one another.

3.2.1 Orthonormal MRAs

For an MRA to be orthonormal: 1) {ψj,k : k ∈ Z} and {φj,k : k ∈ Z must be orthonormal

bases of Wj and Vj , respectively;

2) At any scale j, Vj and Wj must be orthogonal, i.e., Wj ⊥ Vj

3) Wj’s must be orthogonal, i.e., Wj ⊥ Wk, for j 6= k.

where φ is scaling function of MRA and ψ is the associated wavelet function. These

requirements lead to the following conditions on φ and ψ:

〈φj,k, φj,m〉 = δk,m

〈φj,k, ψj,m〉 = 0 (3.2.1)

〈ψj,k, ψl,m〉 = δj,l · δk,m

Taking the Fourier transform of the first condition in eq. (3.2.1) gives,

∞∑
m=−∞

|Φ(ω + 2πm)|2 = 1. (3.2.2)

This is called Poisson summation formula. Since φ(x) ∈ V0 ⊂ V1 and ψ(x) ∈ W0 ⊂ V1,

they can be expressed as a linear combination of the basis of V1:

φ(x) = 2
∞∑

k=−∞

hkφ(2x− k)

ψ(x) = 2
∞∑

k=−∞

gkφ(2x− k)
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In the frequency domain the above equations are given as

Φ(ω) = H
(ω

2

)
Φ
(ω

2

)
(3.2.3)

Ψ(ω) = G
(ω

2

)
Φ
(ω

2

)
(3.2.4)

where H(ω) and G(ω) are the Fourier transforms of sequences hk and gk, the quadrature

mirror filters (QMF) for OMRA. Note that both H(ω) and G(ω) are 2π-periodic.

For Orthonormal MRAs, we must have

|H(ω)|2 + |G(ω)|2 = 1 (3.2.5)

H(ω)H(ω + π) +G(ω)G(ω + π) = 0 (3.2.6)

Taking gk = (−1)kh1−k guarantees eq. (3.2.6) to be satisfied always. Taking the Fourier

transform of above relation gives

G(ω) = e−iωH(ω + π) (3.2.7)

3.2.2 Finding the scaling function from a wavelet

In order to derive an expression for |Φ| in terms of |Ψ|, the following conditions are

required:

Φ(0) = 1 (3.2.8)

〈φj,k, φj,m〉 = δk,m (3.2.9)

φ(x) = 2
∞∑

k=−∞

hkφ(2x− k) (3.2.10)

Others conditions are required for φ(x) to generate an orthonormal MRA. Substituting

eq. (3.2.3) and eq. (3.2.4) into eq. (3.2.5) gives a relationship between |Φ(ω)| and |Ψ(ω)|

in the context of an MRA:

|Φ(ω)|2 = |Ψ(2ω)|2 + |Φ(2ω)|2

Since the matching algorithm is performed on sampled data (in the frequency domain),

there is a need to develop an equation for finding the sampled scaling function spectrum

from the sampled wavelet spectrum.
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Theorem 3.2.1 (Finding |Φ(k)| from |Ψ(k)|) In an orthonormal MRA, let Φ(k4ω) and

Ψ(k4ω) be the sampled scaling function and wavelet spectra, respectively, with sample

spacing4ω = π/2l. Any sample of |Φ| at ω = kπ/2l can be expressed by the following

recursive equation:∣∣∣∣Φ(πk2l
)∣∣∣∣2 =

∣∣∣∣Φ( πk

2l−1

)∣∣∣∣2 +

∣∣∣∣Ψ( πk

2l−1

)∣∣∣∣2 for k 6= 0 (3.2.11)

which leads to the following closed form solution∣∣∣∣Φ(πk2l
)∣∣∣∣2 =

l∑
p=0

∣∣∣∣Ψ( πk

2p−1

)∣∣∣∣2 for k 6= 0. (3.2.12)

3.2.3 Properties of Matching Spectrum Amplitude

The next step is to derive constraints on |Ψ| that are necessary and sufficient to guarantee

φj,k is an orthonormal basis of Vj

Theorem 3.2.2 (Guaranteeing Orthonormality) The following condition on |Ψ| is both

necessary and sufficient to guarantee that 〈φj,k, φj,m〉 = δk,m , where φj,k is derived from

|Φ(ω)|:
∞∑

m=−∞

∞∑
n=0

∣∣Ψ ((2n+1ω + 2πm)
)∣∣2 = 1. (3.2.13)

While eq. (3.2.12) and eq. (3.2.13) provide a method for deriving an orthonormal

function,φ(x) , from a given wavelet, there is no guarantee that φ(x) generates an MRA.

In order for φ(x) to generate an MRA, it must satisfy its 2-scale relation, which given in

the frequency domain is

Φ(ω) = H
(ω

2

)
Φ
(ω

2

)
(3.2.14)

Repeated substitution of this recursive equation gives

Φ(ω) = H
(ω

2

)
H
(ω

4

)
H
(ω

8

)
· · · (3.2.15)

Eq. (3.2.15) indicates that there must be a certain structure in φ in order for it to be a

scaling function. Incorporating the infinite product into the conditions developed thus

far would be very difficult. A simple way to guarantee that eq. (3.2.15) is satisfied is to

assume Φ(ω) is bandlimited. However, one is not free to choose any bandlimits.
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Theorem 3.2.3 (Bandlimited Φ and Ψ) In a multiresolution analysis, the spectrum of a

bandlimited scaling function, Φ(ω), has maximum support given by

|ω| ≤ 4π

3

. In an orthonormal MRA with a bandlimited scaling function, the corresponding or-

thonormal wavelet has a maximum bandlimit of

2π

3
≤ |ω| ≤ 8π

3

From eq. (3.2.4), it is clear that a bandlimited scaling function that generates an orthonor-

mal MRA gives rise to a bandlimited wavelet.

In order to complete the groundwork for the spectrum amplitude matching algorithm,

a set of equations for sampled spectra, is needed.

Theorem 3.2.4 (Guaranteeing an Orthonormal MRA) Let Y (k) = |Ψ(k 4 ω)|2, k ∈

Z, where 4ω = 2π/2l. The necessary and sufficient condition on Y to guarantee that

|Φ(n)|, found in Theorem 3.2.1, generates an orthonormal MRA is given as follows,:

∞∑
m=−∞

l∑
p=0

Y

(
2l

2p
(k + 2l+1m)

)
= 1 (3.2.16)

where

2l/3 < | 2
l

2p
(k + 2l+1m)| < 2l+2/3 (3.2.17)

Because the wavelets being designed are assumed to be real, the magnitude of the wavelet

spectrum is even, |Ψ(ω)| = |Ψ(−ω)|, and only the spectra for positive frequency indices,

k, in the passband need be matched. The conditions in Theorem 3.2.4 for k > 0 generate

a set of L linear equality constraints in Y (k) of the form

L∑
i=1

αikY (k) = 1 for k = {d2l/3e, · · · , b2l+2/3c} (3.2.18)

where αik ∈ {0, 1, 2} The condition in eq. (3.2.18) can be expressed in vector notation

as

AY = 1 (3.2.19)

where A is a L× 2l matrix given by

A = {αij ∈ {0, 1, 2} : i = 1, · · · , L; j = 1, · · · , 2l}

and 1 is a L× 1 vector given by 1 = {1 1 · · · 1}
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3.2.4 Matching Spectrum Amplitude

By virtue of the bandlimits given in Theorem 3.2.3, the desired signal must be dilated in

such a way that the energy in this passband is a maximum. This dilated spectrum, F (ω),

is the starting point for the matching algorithm.

Theorem 3.2.5 (Matched Wavelet Amplitude) Let W and Y be vectors containing the

samples of |F (k4 ω)|2 and |Φ(k4 ω)|2, respectively, in the passband, i.e.,

W = {|F (k4 ω)|2; k = d2l/3e, · · · , b2l+2/3c}

Y = {|Φ(k4 ω)|2; k = d2l/3e, · · · , b2l+2/3c}

where F (ω) is the spectrum of the dilated signal for which we desire a matched wavelet

and Ψ(ω) is the matched wavelet spectrum. If the error to be minimized is given by

E =
(W − aY)T (W − aY)

WTW

then the optimal wavelet power spectrum is given by the following expression:

Y =
1

a
W + AT (AAT )−1

(
1− 1

a
AW

)
(3.2.20)

where

a =
1T (AAT )−1AW

1T (AAT )−11
(3.2.21)

where (AAT ) is full rank. The match error is given by

E =

(
1− 1

a
AW

)T
(AAT )−1

(
1− 1

a
AW

)
1
a2WTW

.

The resultant wavelet is orthonormal, and the scaling function it generates by way of

eq.(3.2.12)generates an orthonormal MRA.

3.2.5 Matching Spectrum Phase

The next set of equations provides a closed form solution for finding group delay (nega-

tive derivative of the phase) of the matched wavelet from the group delay of the signal of

interest. First we will develop an expression for the group delay of Ψ(ω) in terms of the

group delay of the scaling function spectrum, Φ(ω). We have

Ψ(2ω) = e−iω
Φ(2ω + 2π)

Φ(ω + π)
Φ(ω), (3.2.22)
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therefore the phase Ψ is given by

θΨ(ω) = −ω
2
− θΦ(ω + 2π) + θΦ(

ω

2
+ π) + θΦ(

ω

2
) (3.2.23)

where θΨ(ω) and θΦ(ω) are the phases of Ψ and Φ, respectively. Denoting the negative

of the group delays as ΛΨ and ΛΦ, setting ΓΨ(ω) = ΛΨ(ω) + 1/2 we get

ΓΨ(ω) = −ΛΦ(ω + 2π) +
1

2
ΛΦ(

ω

2
+ π) +

1

2
ΛΦ(

ω

2
) (3.2.24)

Next, an expression for the group delay of Ψ(ω) is obtained in terms of the group delay

of H(ω), which we will denote as λ(ω).

By repeated substitutions of equations in (3.2.3), (3.2.4) and (3.2.7) we get the fol-

lowing infinite products:

Ψ(ω) =
∞∏
m=1

H
( ω

2m

)
(3.2.25)

Ψ(ω) = e−i
ω
2H
(ω

2
+ π
) ∞∏
m=2

H
( ω

2m

)
(3.2.26)

where H(ω) is 2π-periodic.

Taking the phase of both sides gives

θΦ =
∞∑
m=1

θH

( ω
2m

)
θΨ = −ω

2
− θH

(ω
2

+ π
)

+
∞∑
m=2

θH

( ω
2m

)
(3.2.27)

Taking derivative of both sides the negative of the group delays are found as follows:

ΛΦ(ω) =
∞∑
m=1

2−mλ
( ω

2m

)
(3.2.28)

ΓΨ(ω) = ΛΨ(ω) + 1/2 = −1

2
λ
(ω

2
+ π
)

+
∞∑
m=2

2−mλ
( ω

2m

)
(3.2.29)

where ΛΦ(ω) = dθΦ(ω)
dω

, λΨ(ω) = dθΨ(ω)
dω

, λ(ω) = dθH(ω)
dω

are 2π-periodic. Moreover, they

are even functions. Due to additional periodicity constraint on λ(ω), the group delays of

desired signal and wavelet cannot be matched directly. To solve this problem, one period

of λ(ω) is modelled as λT (ω) and expressed as a polynomial of even order R,

λT (ω) =

R/2∑
r=0

crω
2r
∏( ω

2π

)
(3.2.30)

where ∏
(ω) =

 1 if −1/2 ≤ ω < 1/2

0 otherwise
(3.2.31)
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Therefore we can construct λ(ω) by replicating λT (ω) every 2π,

λ(ω) =
∞∑

k=−∞

λT (ω − 2πk) =
∞∑

k=−∞

R/2∑
r=0

cr(ω − 2πk)2r
∏(

ω − 2πk

2π

)
(3.2.32)

Let N be the number of samples in F (n 4 ω) with sampling frequency 4ω = 2π/T ,

then the discrete form of eq. (3.2.32) is given by

λ(n) =

R/2∑
r=0

cr

P/2−1∑
k=−P/2

(n− kT )2
∏(

n− kT
T

)
(3.2.33)

where P = N/T is the number of periods over N samples and −N/2 ≤ n < N/2. In

vector notation

λ = Bc (3.2.34)

where the elements of B are given as

bn,r =

P/2−1∑
k=−P/2

(n− kT )2
∏(

n− kT
T

)
. (3.2.35)

Note that λ is a N × 1 vector, B is a N × (R/2 + 1) matrix and c is a (R/2 + 1) × 1

vector. Substituting eq. (3.2.34) in eq. (3.2.29) and eq. (3.2.28) we get matrix equations

for ΓΨ and ΛΦ

ΓΨ = DΨcΛΦ = DΦc (3.2.36)

where

DΨ = −1

2
B(q+T )/2 +

∞∑
m=2

2−mB(q/2m) (3.2.37)

and

DΦ =
∞∑
m=1

2−mB(q/2m) (3.2.38)

Now, the expression for ΓΨ will be derived such that it is closest to the desired signal’s

group delay,ΓF , in a least squares sense. Let γ be the unweighted error to be minimized,

γ =

N/2−1∑
n=−N/2

(ΓF (n)− ΓΨ(n))2. (3.2.39)

Since the wavelet phase need only match that of the desired signal in the passband, weight

the error function by a normalized weighting function. Let Ω(n) = Y (n)/
∑
Y (n),

where Y (n) are the elements of Y obtained in Theorem 3.2.5. The weighted error func-

tion becomes

γΩ =

N/2−1∑
n=−N/2

[Ω(n)(ΓF (n)− ΓΨ(n))]2 (3.2.40)
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Rewriting (3.2.40) in vector notation gives

γ = (ΓF −DΨc)
T (ΓF −DΨc) (3.2.41)

where ΓF and DΨ are obtained by taking the non-zero entries only in weighted ΓF and

DΨ. Setting5cγ = 0, the vector,ĉ, which minimizes γ, is found to be equal to

ĉ = (DΨ
T
DΨ)−1DΨ

T
ΓF (3.2.42)

With this best estimate of c, the group delay of the wavelet can be obtained as

ΓΨ = DΨĉ. (3.2.43)

Also, the best estimates of λ,ΛΨ,ΛΦ can be calculated from

λ = Bĉ (3.2.44)

ΛΨ =
(
DΨĉ−DΨĉ

)
− 4ω

2
(3.2.45)

ΛΦ = DΦĉ−DΦĉ (3.2.46)

where DΨĉ and DΦĉ are means of DΨĉ and DΦĉ, respectively. Both ΛΦ and ΛΨ can be

summed to obtain the discrete phases of Φ and Ψ that when combined with the magni-

tudes from Theorem 3.2.5 give the full estimate of Φ(n4ω) and Ψ(n4ω) which satisfy

all conditions for an orthonormal MRA. The QMF filters, h and g, corresponding to the

matched wavelet and its scaling function can be found using eq. (3.2.3) and (3.2.4) and

the inverse Fourier Transform.

3.3 Example

In this section, the performance of the magnitude and phase matching algorithm is demon-

strated by an example. We take Daubechies wavelet (Db4) as desired signal, fD (shown

in Figure 3.1). The matched wavelet is obtained by taking the inverse Fourier transform

of its discrete complex spectra Ψ(n) =
√
Y (n)eiθΨ(n). In order to use eq. (3.2.20) to find

Y (n), the values of W, A and a are required.

In this example, we set N = 512, 4ω = 2π/16 so that l = 4. With value of l = 4,

the non-zero frequency indices in eq. (3.2.18) are k = {6, 7, · · · , 21}. The constraints in

eq. (3.2.16) and (3.2.17) in Theorem 3.2.4 generate L = 11 in 16 unknowns, resulting in

constraint matrix A.
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Figure 3.1: Daubechies Wavelet-Db4

The first step of the matching algorithm is to dilate the signal such that there is a

maximum amount of energy in the wavelet passband. The passband taken in this example

was 2π/3 ≤ |ω| ≤ 8π/3 to ensure orthonormal wavelets. We have also used suitable

zero-padding to the signal to get its spectrum in the passband.

The desired signal power spectrum, W (n) : n = −256, · · · , 255, is given as

W (n) =

 |FD(n4 ω)|2 for |n| = {6, 7, · · · , 21}

0 otherwise.

where FD(n4 ω) is the Fourier transform of fD. Y (k) is found using eq. (3.2.20) and

(3.2.21) where W = {W (k) : k = 6, 7, · · · , 21}. The results of the spectrum match in

the passband are shown in Figure (3.2). The full matched wavelet spectrum is constructed

by reflecting Y (k) onto the negative axis, and taking its square root.

The first step in finding the matched phase is to find the group delay of the desired

signal,ΓF , which is done using the following process:

1. Calculate F θ
D(n4 ω) = FD(n4 ω)/|FD(n4 ω)|.

2. Interpolate across samples of F θ
D(n4 ω) where |FD(n4 ω)| = 0.

3. ΛF = | 41 F θ
D(n4 ω)| where41 is the first difference operator.

Next, the matrixDΨ is calculated from eq. (3.2.37). We have takenN = 512 andR =

16 for this example. Therefore,DΨ is a 512×9 matrix. The polynomial coefficient vector,
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Figure 3.2: Spectrum match of matched wavelt and Db4 in passband

ĉ, is calculated using eq. (3.2.42) where DΨ and ΛF are weighted by the normalized

matched spectrum, Y , calculated above. The group delay of matched wavelet function is

calculated from eq. (3.2.45). The matched wavelet phase θΨ(n) is found by integrating

(or summing) ΛΨ(n). The matched wavelet function are each found by taking the inverse

Fourier Transform of its complex spectra. The desired signal (Daubechies wavelet) with

its constructed matched wavelet function is shown in Figure 3.3. Few values of filter

coefficient g is given in Table (3.1).
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Figure 3.3: Wavelet Matched to Db4 wavelet in passband
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k g(k) k g(k)

-8 0.0018 0 -0.0024

-7 0.0015 1 0.0013

-6 -0.0031 2 -0.0012

-5 -0.0037 3 0.0008

-4 0.0124 4 -0.0005

-3 -0.0136 5 -0.0003

-2 0.0061 6 -0.0002

-1 0.0005 7 0.0006

Table 3.1: g(k) for the matched wavelet for D4


