CERTIFICATE

It is certified that the work contained in the thesis titled "Stability Analysis, Design, and Simulation of X-band Gyro-twystron Amplifiers" by "Anshu Sharan Singh" has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive, Candidacy and SOTA for the award of Ph. D. Degree.

Dr. M. Thottappan Supervisor Department of Electronics Engineering IIT (BHU), Varanasi

DECLARATION BY THE CANDIDATE

I, Anshu Sharan Singh, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of Dr. M. Thottappan from "23/07/2014" to "24/09/2019", at the Department of Electronics Engineering, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not will fully copied any other's work, paragraphs, text, data, results, *etc.*, reported in journals, books, magazines, reports, dissertations, theses, *etc.*, or available at websites and have not included them in this thesis and have not cited as my own work.

Date:

Place:

Signature of the Student Anshu Sharan Singh

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my knowledge.

Date: Place: Dr. M. Thottappan Supervisor Department of Electronics Engineering IIT (BHU), Varanasi

> Signature of Head of Department "SEAL OF THE DEPARTMENT"

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Stability Analysis, Design, and Simulation of X-band Gyrotwystron Amplifiers

Name of the Student: Anshu Sharan Singh

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University), Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Doctor of Philosophy.

Date:

Signature of the Student

Place:

Anshu Sharan Singh

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENTS

I express my immense gratitude to my supervisor Dr. M. Thottappan, for his excellent guidance and motivation. The completion of this research work is indeed an outcome of his constant tireless support, valuable ideas, and suggestions during my research work. The insightful discussions with him always provided me with great enthusiasm.

I wish to extend my sincere gratitude towards my research performance evaluation committee (RPEC) members, Prof. R. Mahanty and Dr. Smrity Dwivedi, for their encouragement and insightful comments. I would also like to thank all the faculty members, especially to Dr. Somak Bhattacharyya for their kind cooperation and encouragement during this journey.

I would like to express my special thanks to Dr. Madan Singh Chauhan, Dr. Yuvraj, Dr. Gargi Dixit, Dr. Swati, Dr. Manpuran Mahto, Dr. Amit Arora, and Mr. Siva V. Rao for their valuable assistance at my initial stage of research work.

I am thankful to my colleagues Mr. Rajan Agrahari, Mr. Vikram Kumar, Mr. Akhilendra Singh, Mr. Arjun Kumar, Mr. Sudheer Bhaskar, Dr. Debanjan Sadhya, Dr Gaurav Modanwal, Dr. Lalit Chandra, Dr. Mayank Agarwal, Dr. Chandan Kumar, Mr. Ashis Bahera, and Mr. Praveen Kumar Sahu for their personal and technical support.

I am very much thankful to many research scholars of the CRMT laboratory for providing a stimulating and friendly environment. My thanks go to Mr. Mumtaz A. Ansari, Mr. Akash, Mr. Rajanish Kumar Singh, Mr. Vineet Singh, Mr. Prabhakar Tripathi, Mr. Shyam Gopal Yadav, Mr. Vikram Rawat, Mr Gundu Venkatesh, Mr Saurabh Sharma, Mr. V.V. Reddy, Mr. Veerababu, Mr. Soumojit Shee. Mr. Sambit Ghosh, Mr. Deepti, Mr. Nilotpal, Mr. Nishith and Mr. Priytesh Jain.

I am thankful to the UGC, GoI, New Delhi for the financial assistantship during Ph.D. through the UGC-NET JRF/SRF fellowship (UGC Ref. no. 3956/NET-JUNE 2013).

Finally, I heartily express sincere thanks to my family. For their unconditional love, extreme patience and constant support over the years. They provide me strength and confidence to attain this task.

(Anshu Sharan Singh)

Date:

х

Dedicated To My Mother Anju Devi

(1st July 1967 to 09th November 2017)

CONTENTS

LIST OF FIGURES	
LIST OF TABLES	
ABBREVIATIONS	
LIST OF SYMBOLS	
PREFACE	

Chapter 1:	Introduction and Literature Review1		
1.1	Back ground and Motivation		
1.2	Microwave Tubes Development		
1.3	Gyro-twystron Amplifier: Structure and Physics9		
	1.3.1 MIG and input coupler10		
	1.3.2 RF Interaction region11		
	1.3.3 Output Section		
	1.3.4 Working Principle		
1.4	Literature review		
	1.4.1 Gyrotron devices16		
	1.4.2 Gyro-twystron		
1.5	Advantages of Gyro-twystron over other Gyrotron Devices		
1.6	Applications of Gyro-twystron Amplifier		
	1.6.1 RADAR		
	1.6.2 Particle accelerators		
1.7	Problem Definition		
1.8	Significance of the Present Work		
1.9	Outline of Thesis		
1.10	Conclusion		
Chapter 2:	Multimode Analysis of Conventional Gyro-twystron Amplifier*37		
2.1	Introduction		
2.2	Design Methodology of Gyro-twystron40		
	2.2.1 Interaction structure design		
	2.2.2 Beam present design issues		
2.3	Multimode analysis of Gyro-twystron47		

	2.3.1 Input Resonating Cavity	9
	2.3.2 Field-Free Drift Region	8
	2.3.3 Output Waveguide Section	9
2.4	Numerical Benchmarking	3
2.5	Conclusion	5
Chapter 3:	Particle-in-Cell Simulation of Gyro-twystron Amplifier* 67	7
3.1	Introduction	9
3.2	Electromagnetic simulation70	0
	3.2.1 Numerical techniques	0
	3.2.2 3-D simulation tool72	2
3.3	Simulation Study of Conventional Gyro-twystron	4
	3.3.1 Modelling	4
	3.3.2 Beam absent study (cold simulation)	7
	3.3.3 PIC simulation	8
	3.3.4 Result and discussion	2
3.4	Conclusion	4
Chapter 4:	Stability and Design Studies of Periodically Dielectric Loaded Gyro-twystron Amplifier*	5
Chapter 4: 4.1	Stability and Design Studies of Periodically Dielectric Loaded Gyro-twystron Amplifier*	5 7
4.1 4.2	Stability and Design Studies of Periodically Dielectric Loaded Gyro-twystron Amplifier*	5 7 7
4.1 4.2	Stability and Design Studies of Periodically Dielectric Loaded Gyro-twystron Amplifier*	5 7 7 7
4.1 4.2	Stability and Design Studies of Periodically Dielectric Loaded Gyro-twystron Amplifier*	5 7 7 7 8
4.1 4.2	Stability and Design Studies of Periodically Dielectric Loaded Gyro-twystron Amplifier* Introduction 87 Design Methodology 4.2.1 Pre-bunching section 87 4.2.2 Analysis of parasites 88 4.2.3 Design of dielectric-loaded section	5 7 7 7 8
4.1 4.2	Stability and Design Studies of Periodically Dielectric LoadedGyro-twystron Amplifier*Introduction87Design Methodology4.2.1 Pre-bunching section874.2.2 Analysis of parasites884.2.3 Design of dielectric-loaded section974.2.4 Beam Present Design Issues	5 7 7 8 1 8
4.1 4.2 4.3	Stability and Design Studies of Periodically Dielectric LoadedGyro-twystron Amplifier*Introduction87Design Methodology4.2.1 Pre-bunching section874.2.2 Analysis of parasites884.2.3 Design of dielectric-loaded section914.2.4 Beam Present Design Issues92Results and Discussion100	5 7 7 8 1 8 0
4.1 4.2 4.3 4.4	Stability and Design Studies of Periodically Dielectric LoadedGyro-twystron Amplifier*85Introduction87Design Methodology874.2.1 Pre-bunching section874.2.2 Analysis of parasites884.2.3 Design of dielectric-loaded section974.2.4 Beam Present Design Issues98Results and Discussion100Conclusion101	5 7 7 8 1 8 0
4.1 4.2 4.3 4.4 Chapter 5:	Stability and Design Studies of Periodically Dielectric Loaded Gyro-twystron Amplifier* 85 Introduction 87 Design Methodology 87 4.2.1 Pre-bunching section 87 4.2.2 Analysis of parasites 88 4.2.3 Design of dielectric-loaded section 97 4.2.4 Beam Present Design Issues 98 Results and Discussion 100 Conclusion 107 Multimode Analysis of Periodic Dielectric Loaded Gyro-twystro 107	5 7 7 8 1 8 0 1 5 0 3
4.1 4.2 4.3 4.4 Chapter 5: 5.1	Stability and Design Studies of Periodically Dielectric Loaded Gyro-twystron Amplifier*	5 7 7 8 1 8 0 1 5 5
4.1 4.2 4.3 4.4 Chapter 5: 5.1 5.2	Stability and Design Studies of Periodically Dielectric Loaded Gyro-twystron Amplifier* 85 Introduction 87 Design Methodology 87 4.2.1 Pre-bunching section 87 4.2.2 Analysis of parasites 88 4.2.3 Design of dielectric-loaded section 97 4.2.4 Beam Present Design Issues 98 Results and Discussion 100 Conclusion 101 Multimode Analysis of Periodic Dielectric Loaded Gyro-twystron 102 Analytical model 102	5 7 7 8 1 8 0 1 5 5 5
4.1 4.2 4.3 4.4 Chapter 5: 5.1 5.2 5.3	Stability and Design Studies of Periodically Dielectric Loaded Gyro-twystron Amplifier* Introduction 87 Design Methodology 87 4.2.1 Pre-bunching section 87 4.2.2 Analysis of parasites 88 4.2.3 Design of dielectric-loaded section 97 4.2.4 Beam Present Design Issues 98 Results and Discussion 100 Conclusion 101 Multimode Analysis of Periodic Dielectric Loaded Gyro-twystro Amplifier* 102 Introduction 103 Introduction 104 Coupler and RF window 111	5 7 7 8 1 8 0 1 5 5 5 1
4.1 4.2 4.3 4.4 Chapter 5: 5.1 5.2 5.3	Stability and Design Studies of Periodically Dielectric Loaded Gyro-twystron Amplifier* Introduction 87 Design Methodology 87 4.2.1 Pre-bunching section 87 4.2.2 Analysis of parasites 88 4.2.3 Design of dielectric-loaded section 91 4.2.4 Beam Present Design Issues 92 Results and Discussion 100 Conclusion 101 Multimode Analysis of Periodic Dielectric Loaded Gyro-twystro Amplifier* 102 Analytical model 103 Stability and Periodic Of the Input coupler	5 7 7 8 1 8 0 1 5 5 1 1

5.4	RF Interaction Structure	115
	5.4.1 Modelling and Cold Simulation	115
	5.4.2 Hot Simulation Results	117
5.5	Parametric Analysis and Validation	122
5.6	Conclusion	123
Chapter 6:	Performance Improvement Studies of Gyro-twystron Us Intermediate Cavity	ing an 125
6.1	Introduction	127
6.2	Design Methodology	128
	6.2.1 Magnetron Injection Gun (MIG)	128
	6.2.2 RF Interaction Structure	132
	6.2.3 Particle Collector	134
6.3	Beam Wave Interaction Study	136
	6.3.1 Modelling and Cold Simulation	136
	6.3.2 PIC Simulation and Validation	139
6.4	Conclusion	140
Chapter 7:	Conclusion, Summary and Future Scope	143
7.1	Summary and Conclusion	145
7.2	Limitations of the Present Work and Scope for Further Stud	ies148
REFERENCI	ES	149

AUTHOR'S RELEVANT PUBLI	CATIONS	

LIST OF FIGURES

Figure 1.1 Block diagram of the microwave tube	5
Figure 1.2 Taxonomy of microwave tubes	.7
Figure 1.3 Variant of gyrotron devices	8
Figure 1.4 Schematic of gyro-twystron amplifier	9
Figure 1.5 Dispersion diagram of gyro-twystron amplifier1	.4
Figure 1.6 Cyclotron resonance maser mechanism1	5
Figure 1.7 Phase bunching in cylindrical interaction structure1	5
Figure 2.1. SOC of the input cavity of gyro-twystron4	1
Figure 2.2 Start oscillation current Vs waveguide length unloaded gyro- twystron	4
Figure 2.3 Limiting current and depressed voltage variation over the ratio of waveguide radius over the beam radius4	6
Figure 2.4. Coupling coefficient of TE modes over beam position4	17
Figure 2.5 Coupling coefficient of TE_{01} mode over the guiding centre radius4	17
Figure 2.6 Arrangement of the gyrating electrons in Larmor orbit in the Cartesian as well as cylindrical coordinate systems	9
Figure 2.7 Growth of RF output power in desired mode as well as competing mode along the axial position of waveguide	54
Figure 2.8 Normalized energy and electron along the axial position of waveguide (b) phase of the electron along the axial position of waveguide6	54
Figure 2.9. Comparison of RF power variation over the beam current	55
Figure 3.1 Particle in cell simulation7	'2
Figure 3.2 Simulation procedure for beam wave interaction study7	'3
Figure 3.3 CST model of X-band unloaded gyro-twystron7	'5
Figure 3.4 (a) Mesh view, and (b) boundary condition of CST model of X-band unloaded gyro-twystron	'5
Figure 3.5 Relative dielectric properties of BeO-SiC in X-band7	6'
Figure 3.6 Different view of electric field confinement with quality factor7	'6
Figure 3.7 The resonating frequency of the input cavity with the contour plot7	7
Figure 3.8 Electric field distribution in a drift tube7	'8
Figure 3.9 Field distribution in output waveguide section7	'8
Figure 3.10 Particle perspective view of gyro-twystron with particle emitter model	/9

Figure 3.11 Normalized momentum of particles Vs Axial length of gyro- twystron
Figure 3.12 (a) Temporal output signal response (b) the temporal output power growth TE_{01} mode
Figure 3.13 (a) The temporal output signal response (b) the temporal output power growth TE_{02} mode
Figure 3.14 The frequency response of developed RF output power81
Figure 3.15 RF power variation over the beam current
Figure 4.1 Variation of SOC with the magnetic field at the input cavity
Figure 4.2 The longitudinal view of PDL waveguide92
Figure 4.3 Normalized azimuthal electric field variation over (a) space harmonic number in vacuum region (b) modal harmonic number in the dielectric region
Figure 4.4 Dispersion of lossy PDL gyro-twystron amplifier
Figure 4.5 Propagation loss as a function of frequency for dielectric waveguide (complex permittivity of BeO-SiC is 31-13j)
Figure 4.6 Propagation loss Vs radial thickness of the dielectric material and (b) SOC Vs axial length for operating TE_{01} mode
Figure 4.7 (a) SOC variation with the loss for different modes and (b) SOC variation with propagation loss for different beam-velocity pitch factor
Figure 4.8(a) Coupling coefficient variation with the ratio of the beam to waveguide radii (b) variations in the depressed voltage and limiting current with the ratio of the waveguide to beam radii (at $r_w=19.5 \text{ mm}$)
Figure 4.9 (a) Temporal variation of RF output power and (b) spectrum of output signal and contour (inner figure) of desired TE_{01} operating mode (at 4% of velocity spread)
Figure 4.10 RF output power Vs (a) radial thickness (b) length of dielectric rings (complex permittivity is 31-13j)
Figure 4.11 RF output power Vs loss tangent for practical dielectrics (for fixed $r_{th}=1.1 \text{ mm and } w_d=2mm$)100
Figure 4.12(a) RF output power variation over the frequency (b) RF output power variation over the beam current (for fixed RF input of 85kW)100
Figure 5.1 The transverse and longitudinal view of PDL waveguide107
Figure 5.2 Field amplitude variation along the axial length of waveguide111
Figure 5.3 RF output power growth along the axial direction of the waveguide. 111
Figure 5.4 (a) Schematic and (b) CST model of mode launcher with electric field distribution

Figure	5.5 (a) Vector plot of TE ₁₀ mode (port 1) an input coupler and (b) Scattering coeffic	d TE ₀₁ mode (port 2) of the input coupler113
Figure	e 5.6 (a) Reflectivity of RF window Vs freque	ency and (b) its CST model.115
Figure	5.7(a) CST model and E-field distribution o (b) Scattering parameters of RF window	f TE ₀₁ mode in RF window and w115
Figure	e 5.8 Modeled gyro-twystron RF interaction c	ircuit with particle emitter116
Figure	5.9 Confinement of E-field at the resonant fi cavity.	requency of the input
Figure	5.10 Transmission loss on different modes i	n the drift tube117
Figure	5.11 Particles' normalized momentum variat 4 % spread in particles velocity)	tion over the axial length (with
Figure	5.12 RF output signal amplitude developed the drive input power of 85 kW).	in TE ₀₁ and TE ₀₂ modes (with
Figure	5.13 RF output power developed in TE ₀₁ mo interaction structure (V _b =440 kV, I _b =22 spread).	ode monitored at the end of RF 20 A with 4% velocity
Figure	5.14 Frequency spectrum of the output sign	al in TE ₀₁ mode
Figure	5.15 Thermal loss distribution and (b) temper BeO-SiC rings. (for fixed r _{th} =1 mm and	erature rise in the last four l w _d =2 mm)120
Figure	5.16 Variation of (a) saturated RF output po drive power (the beam voltage is fixed	wer and (b) gain over the RF at 440 kV)121
Figure	5.17 The variation of (a) RF output power (l current (the drive input power is fixed a	b) efficiency over the beam at 85 kW)121
Figure	5.18 (a) Gain over the frequency for different Comparison of multimode and PIC simular twystron (V _b =440kV, I _b =220 A with ur and 4% velocity spread).	t RF drive power (b) ulation response of PDL gyro- nity beam velocity pitch factor
Figure	e 6.1 Schematic of two cavity gyro-twystron.	
Figure	6.2 Variation of Electric field and the ratio of cathode radius and (b) beam voltage	of current density (a) over
Figure	e 6.3 Electron beam trajectory in the emitter	section130
Figure	6.4 Variation of Pitch factor and velocity sp voltage and (b) beam voltage	read (a) over modulating anode
Figure	e 6.5 Variation of velocity spread over emitter	r surface roughness132
Figure	e 6.6 Resonating frequency Vs axial length of	TE01 operated cavity133
Figure	6.7 SOC Variation of cavities with a magnet length for operating TE_{01} mode	ic field (b) SOC Vs waveguide
Figure	6.8 Variation of total efficiency of Gyro-twy efficiency and (b) depressed potential	vstron over (a) electronic

Figure	6.9 Variation of total efficiency of Gyro-twystron over beam voltage and depressed potential
Figure	6.10 Variation of pitch factor and cyclotron wavelength over the magnetic decompression ratio (b) beam radius and magnetic field over the magnetic decompression ratio
Figure	6.11 CST model of two-cavity gyro-twystron137
Figure	6.12 (a) Energy distribution profile of particles in two-cavity gyro- twystron (b) the energy variation along with the axial position137
Figure	6.13 Axial variation of (a) normalised energy (b) phase of particles of two- cavity X-band gyro-twystron
Figure	6.14 Axial variation of RF output power in TE_{01} mode
Figure	6.15 Temporal variation of RF output power (b) the frequency spectrum of two-cavity X-band gyro-twystron
Figure	6.16 Comparison of analytical and PIC simulation RF output power of two cavity gyro-twystron

LIST OF TABLE

Table 2.1 Design parameters of gyro-twystron	62
Table 4.1 Design parameters of PDL gyro-twystron	97
Table 5.1 Structural parameters of PDL gyro-twystron	110
Table 5.2 Structural parameters of input coupler	113
Table 5.3 Structural parameters of RF window	114
Table 6.1 Design parameters of two cavity gyro-twystron	134

ABBREVIATIONS

Abbreviation	Full Form
BeO-SiC	Beryllium Oxide-Silicon Carbide
BWOs	Backward Wave Oscillations
CARM	Cyclotron Auto-Resonance Maser
CPI	Communication and Power Industries
CRM	Cyclotron Resonance Maser
CST	Computer Simulation Technologies
DC	Direct Current
ECRM	Electron Cyclotron Resonance Maser
EM	Electromagnetic
FDTD	Finite-Difference Time-Domain
FEM	Finite-Element Method
FIT	Finite Integration Technique
GHz	Gigahertz
MW	Megawatt
Gyro-amplifier	Gyrotron Amplifier
Gyro-BWO	Gyrotron Backward Wave Oscillator
Gyro-TWAs	Gyrotron Travelling Wave Amplifiers
Gyro-TWT	Gyrotron Travelling Wave Tube
IAP	Institute of Applied Physics
LHC	Large Hadron Collider
MHz	Megahertz
MIG	Magnetron Injection Gun

MoM	Method of Moments
MW	Megawatt
NRL	Naval Research Laboratory
OFHC	Oxygen free High conductivity
PBA	Perfect Boundary Approximation
PBG	Photonic Band Gap
PDL	Periodic Dielectric Loading
PIC	Particle-in-Cell
PML	Perfect Matched Layer
RF	Radio Frequency
SOC	Start Oscillation Current
SSDs	Solid State Devices
SWSs	Slow wave Structures
TE	Transverse Electric
TM	Transverse Magnetic
TeV	Tera Electron Volt
THz	Terahertz
TWAs	Travelling Wave Amplifiers
TWTs	Travelling Wave Tubes
UDL	Uniform Dielectric Loading
VEDs	Vacuum Electronic Devices

LIST OF SYMBOLS

Symbol	Details
γ	Relativistic mass factor
α	Pitch factor
V_b	Beam voltage
I_b	Beam current
r_{w}	Radius of waveguide
r_g	Electron guiding centre radius
r _{cav}	Radius of cavity
rL	Larmor radius
r _d	Radius of drift tube
L_c	Length of cavity
L_d	Length of drift tube
L_{wg}	Length of waveguide
V_t	Transverse electron velocity
\mathcal{V}_{z}	Axial electron velocity
ω	Angular frequency of RF wave
${\it \Omega}$	Electron cyclotron frequency
С	Velocity of light in free space
λ	Operating wavelength
е	Electron charge
me	Mass of electron
B_0	DC magnetic field
S	Electron beam harmonic number

m_q, n_q	Azimuthal, and radial indices of q^{th} mode
N_q	Total number of modes
q	Particular number of mode
р	Normalized momentum of electrons
p_t	Transverse momentum of electrons
p_z	Axial momentum of electrons
heta	Phase of electron
I_o	Normalized beam current
μ	Normalized interaction length
J_t	Transverse AC current density
H_{mn}	Azimuthal coupling coefficient
χ_{mn}	The n^{th} zero of J_m (Bessel function)
Е	Complex permittivity
${\cal E}_0$	Free-space permittivity
μ_0	Free-space permeability
Isoc	Start oscillation current
F	Normalized field amplitude
X	Bunching parameter of the electron beam
η_{\perp}	Transverse efficiency
$\eta_{_{ele}}$	Electronic efficiency
Pin	Driver power at the input cavity
Ε	RF electric field
В	RF magnetic field
E_0	Electric field amplitude at the input cavity
Q	Quality factor
Q_{cpl}	Coupling quality factor

k_t	Transverse propagation constant
k _z	Axial propagation constant
eta_{t}	Normalized transverse electron velocity
β_z	Normalized axial electron velocity
V_d	Voltage depression
I_l	Limiting current
G	Gain
Sd	Skin depth
σ	Conductivity
t_w	Window thickness
r _{win}	Radius of window
Erw	Relative permittivity of RF window

The work of the present thesis focus on the beam-wave interaction study of the gyrotwystron amplifier. The thesis aims to develop studies on the most unexplored gyrotron variant of vacuum electron device (VED), i.e. gyro-twystron, to create a solid theoretical background for future experimental studies. In addition to VEDs, the historical developments of gyro-twystron is scrutinised to bring out the research gap and problems. The Identification of oscillations and its suppression have been done, in a series of works on the gyro-twystron amplifier, and the part of these works has been published in *IEEE Transaction on Electron Devices*. Further, the aim, introduction and scope of the thesis are briefly discussed below.

As compared to solid state devices, VEDs generates high RF power to serve the various applications from space exploration to nuclear researches. At higher frequencies, the fabrication difficulties and operational limitation of conventional microwave tubes push the research and development activities towards Gyrotron devices. With high power generation/ amplification and handling capabilities, gyrotron devices find applications in plasma heating, ceramic sintering, RADAR and particle accelerator application. Gyrotron oscillator finds application in plasma heating in popularly known thermonuclear fusion reactors while its amplifier counterparts are found suitable for RADAR and particle accelerator applications.

Gyro-twystron amplifier derived from the gyroklystron and gyro-TWT amplifier (TWystron) and combines the advantages of both amplifiers thereby possess high powerbandwidth product and gain-bandwidth product. A slow-wave counterpart of Gyrotwystron have a successful services history in the US AN/TPS RADAR system and renders as a veteran tube. Despite these aspects, the gyro-twystron is the most unexplored device in gyrotron family. These advantages and applications attract authors to extend the study of gyro-twystron to answer the challenges of vacuum electronics.

For the megawatt-class operation, the stability of gyro-twystron is an issue as the output waveguide section is vulnerable to parasitic instabilities and backward wave oscillations. A nonlinear multimode code has been developed to investigate the growth of operating as well as competing modes in RF interaction structure of X-band gyro-twystron and predicted the second harmonic TE₀₂ is most troublesome mode. To suppress the second TE₀₂, the periodic dielectric rings are introduced in the output waveguide section of gyro-twystron, and the design and stability study of PDL waveguide has been made. A multimode study of PDL gyro-twystron has been made to investigate the suppression of parasitic modes in addition to the growth of operating mode. A study has also been made for the performance improvement of the gyro-twystron amplifier by introducing an intermediate cavity. The particle emitter and collector is designed/optimized to improve the electron beam quality for beam-wave interaction and improve the energy extraction at collector electrode, respectively. The work of author is supported by UGC, Government of India, New Delhi through the UGC-NET JRF Fellowship under Grant 3956/NET-JUNE 2013.

XXX