Table of contents

	Page Nos.
Certificates	ii-v
Acknowledgments	vi- vii
Table of contents	viii-xii
List of figures	xiii-xiv
List of schemes	XV
List of tables	xvi
Abbreviations	xvii-xviii
Preface	xix-xxi
Chapter 1: Introduction	1-24
1.1 General introduction	1
1.2 History and discovery of glycerol	3
1.3 Physical properties of glycerol	4
1.4 Importance of glycerol	5
1.5 Global production of glycerol	6
1.6 Need for value addition of glycerol	7
1.7 Value added products of glycerol	8
1.7.1 Esterification of glycerol	8
1.7.2 Dehydration of glycerol	9
1.7.3 Oxidation of glycerol	9
1.7.4 Etherification of glycerol	10
1.7.5 Acetalization of glycerol	11
1.7.6 Glycerol to synthesis gas	12
1.7.7 Polymerisation of glycerol	12
1.7.8 Halogenation of glycerol	13
1.7.9 Hydrogenolysis of glycerol	14
1.8 Importance of glycerol carbonate	15
1.9 Synthetic routes for glycerol carbonate from glycerol	17

1.9.1 Carboxylation of glycerol	17
1.9.2 Carbon monoxide + glycerol	18
1.9.3 Phosgene + glycerol	19
1.9.4 Urea +glycerol	19
1.9.5 Alkylene carbonate + glycerol	20
1.9.6 Di alkyl carbonate + Glycerol	20
1.10 Research gaps	22
1.11 Objectives	24
Chapter 2: Literature Review	25-35
2.1 Introduction	25
2.2 Glycerol production and consumption	25
2.3 Catalytic conversion of glycerol to various value-added products	26
2.4 Catalytic approach in glycerolysis reaction	26
2.5 Catalytic approach in carbonylation of glycerol	28
2.6 Catalytic approach in transesterification of glycerol	29
2.7. Reaction Mechanism involved in transesterification of glycerol	34
Chapter 3: Materials and Methodology	36-48
3.1 Introduction	36
3.2 Reagents and catalysts	36
3.3 Methods for preparation of catalysts	36
3.3.1 Wet impregnation method	36
3.3.2 Precipitation method	37
3.4 Methods adopted in present work for catalyst designing	38
3.4.1 Synthesis of Mg modified ZnO catalyst (Mg/ZnO)	38
3.4.2 Synthesis of bimetallic NiMgO _x catalyst	39
3.4.3 Synthesis of transition metal based spinels of MgO	39
3.5 Characterization of designed catalysts	40

3.5.1 TGA-DSC	40
3.5.2 X-ray diffraction pattern (XRD)	41
3.5.3 FT-IR Spectra	42
3.5.4 SEM-EDX Spectra	43
3.5.5 XPS Spectra	43
3.5.6 BET surface area	44
3.5.7 Basic strength by Hammett Indicator method	45
3.6 Activity study	46
3.6.1 Gas chromatography (GC) analysis	47
3.6.2 NMR Spectra	47
Chapter 4: Synthesis of glycerol carbonate using Mg doped ZnO heterogeneous base catalyst	49-7
4.1 Introduction	49
4.2 Synthesis of Mg modified ZnO catalyst (Mg/ZnO)	49
4.3 Characterization of Mg/ZnO catalyst	50
4.3.1 TGA-DSC	50
4.3.2 X-ray diffraction Pattern (XRD)	51
4.3.3 FT-IR	54
4.3.4 SEM-EDX	55
4.3.5 XPS Spectra	56
4.3.6 Surface area and Basicity study	57
4.4 Evaluation of catalyst for glycerol carbonate synthesis	59
4.5 Detailed study on activity of Mg modified ZnO catalyst	62
4.6 Optimization study of reaction parameters	65
4.6.1 Reaction temperature	65
4.6.2 Reaction time	66
4.6.3 DMC to glycerol molar ratio	66
4.6.4 catalyst loading percentage	67
4.6.5 Reusability of catalyst	69

4.7 Conclusions	71
Chapter 5: Synthesis of glycerol carbonate using bimetallic NiMgOx catalyst	72-93
5.1 Introduction	72
5.2 catalyst synthesis process	72
5.3 Characterization of catalyst	74
5.3.1 TGA-DSC	74
5.3.2 X-ray diffraction (XRD)	75
5.3.3 FT-IR Spectra	77
5.3.4 SEM-EDX	79
5.3.5 XPS	80
5.3.6 Basicity and Surface Area study	81
5.4 Evaluation of catalyst for glycerol carbonate synthesis	83
5.5 Detailed study of reaction mechanism in transesterification of glycerol	86
5.6 Optimization study of reaction parameters	87
5.6.1 Effect of catalyst loading percentage	87
5.6.2 Effect of DMC to glycerol molar ratio	88
5.6.3 Effect of reaction temperature	88
5.6.4 Effect of reaction time	89
5.6.5 Reusability of catalyst	90
5.7 Conclusion	92
Chapter 6: Comparative study of Mg based spinels like MgCr ₂ O ₄ and MgV ₂ O ₄ for glycerol carbonate synthesis	94-116
6.1 Introduction	94
6.2 Synthesis of Spinel like catalysts	95
6.3 Characterization of synthesized catalysts	96
6.3.1 TGA	96
6.3.2 X-ray diffraction	98
6.3.3 SEM-EDX spectra	100

6.3.4 BET surface area and Basicity study	102
6.3.5 XPS Spectra	104
6.4 Evaluation of catalyst for glycerol carbonate synthesis	106
6.5 Detailed study of reaction mechanism in transesterification of glycerol	109
6.6 Optimization study of reaction parameters	111
6.6.1 Reaction temperature	111
6.6.2 Reaction time	111
6.6.3 DMC to glycerol molar ratio	112
6.6.4 Catalyst loading percentage	112
6.6.5 Reusability of catalyst	113
6.7 Conclusion	116
Chapter 7: Overall conclusions & work summary	117-129
7.1 Synthesis of glycerol carbonate on Mg/ZnO catalyst	117
7.2 Synthesis of glycerol carbonate on NiMgOx catalyst	118
7.3 Synthesis of glycerol carbonate on spinels like MCO and MVO	119
7.4 Future scope	120
References	130-153
List of publications and conferences	154-156
Appendix	157-158

List of Figures

	Page no.
Chapter 1	
Fig 1.1 World energy consumption by end-use sector quadrillion Btu	2
Fig 1.2 Structure of Glycerol	3
Fig 1.3 Application of glycerol	6
Fig 1.4 Worldwide production of glycerol from biodiesel industries	7
Fig 1.5 Application of glycerol carbonate	17
Fig 1.6 Synthetic pathway for glycerol carbonate	22
Chapter 2	
Fig 2.1 Plausible reaction mechanism for glycerol carbonate synthesis	35
Chapter 4	
Fig 4.1 TGA-DSC curve of synthesized 3 wt % Mg/ZnO catalyst	51
Fig 4.2 XRD pattern of Mg/ZnO catalyst	53
Fig 4.3 FT-IR spectra of Mg/ZnO catalyst	54
Fig 4.4 SEM image of synthesized Mg/ZnO catalyst	56
Fig 4.5 EDX pattern of Mg/ZnO catalyst	56
Fig 4.6 XPS spectra of Mg/ZnO catalyst	57
Fig 4.7 ¹ H and ¹³ C NMR spectra of synthesized glycerol carbonate	61
Fig 4.8 Mechanistic path way of Mg/ZnO catalyst in glycerol transesterification	63
Fig 4.9 Effect of reaction parameters on the GL conversion percentage	68
Fig 4.10 Reusability study of Mg/ZnO catalyst	69
Chapter 5	
Fig 5.1 TGA-DSC curve of synthesized NiMgOx catalyst	75
Fig 5.2 XRD pattern of synthesized NiMgOx catalyst	77
Fig 5.3 FT-IR spectra of NiMgOx catalyst	78
Fig 5.4 SEM-EDX pattern of NiMgOx catalyst	80

Fig 5.5 XPS spectra of synthesized NiMgOx catalyst	81
Fig 5.6 N ₂ adsorption /desorption isotherm of NiMgOx catalyst	82
Fig 5.7 ¹ H and ¹³ C NMR spectra of glycerol carbonate synthesized	85
Fig 5.8 Plausible reaction mechanism of glycerol catalysed by NiMgOx catalyst	87
Fig 5.9 Effect of reaction parameters on transesterification of glycerol	90
Fig 5.10 Reusability study of NiMgOx catalyst	91
Fig 5.11 Comparative XRD and SEM study of fresh and reused catalyst	92
Chapter 6	
Fig 6.1 TGA graph of synthesized spinel catalyst	97
Fig 6.2 XRD pattern of MVO and MCO spinels	99
Fig 6.3 SEM-EDX pattern of spinels catalyst	101
Fig 6.4 BET-surface area of synthesized spinels catalyst	103
Fig 6.5 XPS spectra of MCO spinel catalyst	105
Fig 6.6 XPS spectra of MVO spinel catalyst	106
Fig 6.7 ¹ H and ¹³ C NMR spectra of synthesized glycerol carbonate	108
Fig 6.8 Plausible reaction mechanism of glycerol transesterification	110
Fig 6.9 Optimization study of reaction parameters by use of MCO catalyst	113
Fig 6.10 Reusability graph of MCO spinel catalyst	115
Fig 6.11 XRD and SEM-EDX pattern of reused MCO catalyst	115
Chapter 7	
Fig 7.1 Corelation of activity of catalysts with glycerol carbonate yield percentage	120

List of Schemes

	Page no.
Scheme 4.1 Synthesis of Mg/ZnO catalyst via wet impregnation method	50
Scheme 5.1 Synthesis of NiMgOx catalyst by Co-precipitation route	73
Scheme 6.1 Synthesis of MCO and MVO via Co-precipitation route	96

List of Tables

	Page no.
Chapter 1	
Table 1.1 General properties of Glycerol	4
Table 1.2 Physical properties of glycerol carbonate	16
Chapter 4	
Table 4.1 Properties of Mg/ZnO catalyst at different calcination temperature	58
Table 4.2 Catalyst screening for synthesis of glycerol carbonate	64
Table 4.3 Effect of Mg loading and catalytic performance of Mg/ZnO catalyst	65
Table 4.4 Catalyst deactivation Test	70
Chapter 5	
Table 5.1 Properties of Synthesized 1:1, 1:2, 1:3 Ni Mg catalysts	83
Chapter 6	
Table 6.1 Structural parameters and phase composition of synthesized spinels	100
Table 6.2 Basicity of synthesized catalysts	104
Chapter 7	
Table 7.1 Summary of the experimental work	128