CONTENTS

	List of List of List of List of	owledgements f Titles f Schemes f Figures f Tables f Abbreviations cal Experimental Considerations	Page No. v vii x xii xiii xiv
	Prefac	-	xix
		LIST OF TITLES	
Titles		CHAPTER-1 Overview of Barbituric Acid Derivatives	Page No.
1.1	Brief I	Introduction	1
1.2	Synthe	esis and Physical Properties of Barbituric Acid	4
	1.2.1	,	4
	1.2.2	Physical Properties of Barbituric Acid	7
		1.2.2.1 Tautomerization	7
1 2		1.2.2.2 Acid Base Properties	8
1.3	1 2 1	Chemical Properties Reactions at the <i>C-5</i> Position	10
	1.3.1 1.3.2	Substitution at Nitrogen	10 13
	1.3.2	_	13
	1.3.4	• •	16
	1.3.5	Other Reactions	17
1.4	Applic	cation of Barbituric Acid in Organic Synthesis	18
	1.4.1	Synthesis of Condensation Product	18
	1.4.2	Synthesis of Oxygen Containing Heterocyclic Compounds	20
		1.4.2.1 5-Membered Heterocyclic Compounds	20
		1.4.2.2 6-Membered Heterocyclic Compounds	22
	1.4.3	Synthesis of Nitrogen Containing Heterocyclic Compounds	25
		1.4.3.1 5-Membered Heterocyclic Compounds	25
1 5		1.4.3.2 6-Membered Heterocyclic Compounds	26
1.5		References	30

CHAPTER-2

Multi-component Synthesis of Chromeno[2,3-d]pyrimidine-triones Using an Efficient and Reusable (Sc(OTf)3) Catalyst Under Solvent-free Condition: A Greener Approach

2.1	Introdu	Introduction			
2.2	Results	Results and Discussion			
2.3	Conclu	lusion			
2.4	Experi	mental Section	64		
	2.4.1.	General Procedure for the Synthesis of Chromeno[2,3-d]pyrimidine-triones	64		
	2.4.2	Analytical Data	64		
	2.4.3	Spectral Data of Product 4a	73		
	2.4.4	Spectral Data of Product 4q	75		
	2.4.5	X-ray Crystallography Data of Product 41	77		
2.5	Refere	nces	78		
		CHAPTER-3			
Meta	l-free C-0	C Bond Formation via C-H Activation of Methylarenes Using	Lemon		
Juic	e as a Bio	degradable Catalyst: A Sustainable Pathway Towards the Syr of Chromenopyrimidine Derivatives	ıthesis		
3.1	Introdu	uction	84		
3.2		s and Discussion	86		
3.3	Conclu		97		
3.4		mental Section	97		
J. 1	3.4.1	General Procedure for Extraction of Lemon Juice	97		
	3.4.2	General Procedure for the Synthesis of Chromenopyrimidine Derivatives	97		
	3.4.3	Analytical Data	98		
	3.4.4	Spectral Data of Product 4g	107		
	3.4.5	Spectral Data of Product 4h	109		
3.5	Refere	nces	111		
		CHAPTER-4			
Vi	_	ht Assisted Synthesis of Dibarbiturates of Oxindole and Arylic arbituric Acid Derivatives Under Catalyst-free Condition	lene		
4.1	Introdu		115		
4.2		s and Discussion	117		
	4.2.1	Gram-Scale Synthesis of Dibarbiturates of Oxindole and Arylidene Barbituric Acid Derivatives	131		
4.3	Conclu		132		
4.4	•	mental Section	132		
	4.4.1	General Experimental Procedure for Synthesis of Dibarbiturates of Oxindole and Arylidene Barbituric Acid Derivatives	132		
	4.4.2	Analytical Data	132		
	4.4.3	Spectral Data of Product 3a	140		
	4.4.4	Spectral Data of Product 5a	142		
	4.4.5	Spectral Data of Product 6a	144		

	4.4.6	UV Spectr	a of Compound	ds				146
4.5	Refere	nces						148
Vi	_		CHA , Catalyst-free anopyrimidin		ot, Mult	_	ynthes	is of
5.1	Introdu	action						154
5.2	Result	s and Discus	sion					156
5.3	Conclu	ısion						167
5.4	Exper	imental Sect	ion					167
	5.4.1	General Naphthopy	Procedure ranopyrimiding	for es	the	Synthesis	of	167
	5.4.2							168
	5.4.3	Spectral Da	ata of Product 4	4h				177
	5.4.4	Spectral Da	ata of Product 4	4k				179
	5.4.5	UV Spectra	a of Compound	ls				181
5.5	Refere	nces						183
	Summ	ary and Co	nclusions					
	List of	f Research P	ublications					

LIST OF SCHEMES

Scheme		Page No.
1.1	Molecular structure of barbituric acid (H ₃ BA) and resonance structures	4
	of its deprotonated form	
1.2	Most common synthetic approaches for the preparation of barbituric	6
	acids	
1.3	Most common barbituric acids	7
1.4	Possible tautomeric structures of barbituric acid	8
1.5	Deprotonation of 5,5 disubstituted barbituric acids	9
1.6	Alkylation of barbituric acid at C-5 position	10
1.7	Substitution of barbituric/ thiobarbituric acid	10
1.8	Reduction of barbituric acid derivatives with triethylammonium	11
	formate (TEAF)	
1.9	Oxidative methylation of 5-benzylidene barbituric acids	11
1.10	Addition reaction with α , β -unsaturated ketones	12
1.11	Addition reaction with phenyl isocyanate	12
1.12	Japp-Klingemann reaction of barbituric acid	12
1.13	Reaction of barbituric acid with sodium nitrite	13
1.14	<i>N</i> -alkylation of barbituric acid derivatives	13
1.15	N- acylation of baribituric acid	14
1.16	Reduction of carbonyl group of barbituric acid	14
1.17	Reduction of carbonyl group of barbituric acid with NaBH ₄	15
1.18	O-methylation of barbituric acid	16
1.19	Photochemical ring-opening reaction of barbituric acid	16
1.20	Photochemical reaction of barbituric acid with amines	17
1.21	Intramolecular <i>O</i> -alkylation of 5,5-disubstituted barbiturates	17
1.22	Ring contraction of barbiturates	18
1.23	Isomerization of 1-aminobarbituric acid	18
1.24	Synthesis of 1,3-dicarbonyl substituted methylaminobenzene-	19
1 0 5	sulfonamide derivative	1.0
1.25	Synthesis of trisheterocyclic systems	19
1.26	Synthesis of benzylidene barbituric acid derivatives	20
1.27	Synthesis of 2" <i>H</i> -dispiro[indole-3,5'-furo[2,3- <i>d</i>] pyrimidine] system	20
1.28	Synthesis of furo[2,3-d]pyrimidine derivatives	21
1.29	Synthesis of substituted spirofuropyrimidines	21
1.30	Synthesis of furo(2,3- <i>d</i>)pyrimidine-2,4(1 <i>H</i> ,3 <i>H</i>)-dione derivatives	22
1.31	Synthesis of pyrano[2,3-d]pyrimidine-2,4,7-triones	22
1.32	Synthesis of spironaphthopyrano[2,3-d]pyrimidine-5,3'-indolines	23
1.33	Synthesis of 5-(2,3,4,5-tetrahydro-1 <i>H</i> -chromeno[2,3- <i>d</i>]pyrimidin-5-	23
1 24	yl)pyrimidione derivatives	24
1.34	Synthesis of novel chromeno[3',4':5,6]pyrano[2,3-d]pyrimidines	24
1.35	Synthesis of pyranopyrimidines	25
1.36	Synthesis of chromeno[2,3-d]pyrimidine-trione derivatives	25
1.37	Synthesis of spirooxindoles	26
1.38	Synthesis of 8,9- dihydro-8,8-dimethyl-5,10-diphenylpyrimido[4,5-	26
1.20	b]quinoline-2,4,6(1 <i>H</i> ,3 <i>H</i> ,5 <i>H</i> ,7 <i>H</i> ,10 <i>H</i>)-trione derivatives	27
1.39	Synthesis of spiro[dihydropyridine-oxindole] Synthesis of spiro[indelin_isoverselo[40,30:5,6]pyride[2,3]	27
1.40	Synthesis of spiro[indolin-isoxazolo[40,30:5,6]pyrido[2,3-d]pyrimidine]triones	27

1.41	Synthesis of some new pyrimidine-fused nucleoside analogues	28
1.42	Synthesis of 5-aryl-pyrimido[4,5- <i>b</i>]quinoline derivatives	28
2.1	Sc(OTf) ₃ catalyzed synthesis of substituted chromeno[2,3-	53
	d]pyrimidine-triones (4a-s)	
2.2	A plausible mechanism for the formation of chromeno[2,3-	63
	d]pyrimidine-triones catalyzed by Sc(OTf) ₃	
3.1	Lemon juice catalyzed one-pot synthesis of chromenopyrimidine	86
	derivatives	
3.2	Control experiments to establish mechanism of the reaction	95
3.3	Plausible reaction mechanism	96
4.1	Visible light mediated, catalyst-free synthesis of dibarbiturates of	117
	oxindole (3) and arylidene barbituric acid derivatives (5)	
4.2	Control experiments to establish mechanism of the reaction	128
4.3	Plausible reaction mechanism for dibarbiturates of oxindole (3)	129
4.4	Plausible reaction mechanism for arylidene barbituric acid derivatives	130
	(5)	
4.5	Gram-scale synthesis of dibarbiturates of oxindole (3a) and arylidene	131
	barbituric acid derivatives (5a) under visible light condition	
5.1	Visible light mediated synthesis of naphthopyranopyrimidines	156
5.2	Control experiments to establish mechanism of the reaction	165
5.3	Plausible mechanism for the synthesis of naphthopyranopyrimidines	166

LIST OF FIGURES

Figure		Page No.
1.1	Biologically active compounds containing barbituric acid moieties	2
1.2	Phenobarbital: an antiepileptic drug	2
1.3	Biological importance of barbituric acid derivatives	3
2.1	Naturally occurring chromene moieties	51
2.2	Single crystal XRD structure of product 4l	61
2.3	The reusability of the Sc(OTf) ₃ catalyst for the multicomponent	62
	reaction of barbituric acid, 4-nitrobenzaldehyde and dimedone	
2.4	¹ H NMR of product 4a	73
2.5	¹³ C NMR of product 4a	74
2.6	¹ H NMR of product 4q	75
2.7	¹³ C NMR of product 4q	76
3.1	¹ H NMR of product 4g	107
3.2	¹³ C NMR of product 4g	108
3.3	¹ H NMR of product 4h	109
3.4	¹³ C NMR of product 4h	110
4.1	Biologically active dibarbiturates of oxindole and arylidene barbituric	116
	acid derivatives	
4.2	Yield (%) vs visible light intensity for the synthesis of 3a	122
4.3	¹ H NMR of product 3a	140
4.4	¹³ C NMR of product 3a	141
4.5	¹ H NMR of product 5a	142
4.6	¹³ C NMR of product 5a	143
4.7	¹ H NMR of product 6a	144
4.8	¹³ C NMR of product 6a	145
4.9	UV spectrum of isatin in ethanol	146
4.10	UV spectrum of barbituric acid in ethanol	146
4.11	UV spectrum of benzaldehyde in ethanol	147
4.12	UV spectrum of reaction mixture in ethanol	147
5.1	Antagonists of neuropeptide S receptor	155
5.2	¹ H NMR of product 4h	177
5.3	¹³ C NMR of product 4h	178
5.4	¹ H NMR of product 4k	179
5.5	¹³ C NMR of product 4k	180
5.6	UV spectrum of 2-Naphthol in methanol	181
5.7	UV spectrum of 2,3-Dihydroxynaphthalene in methanol	181
5.8	UV spectrum of reaction mixture (A) in methanol	182
5.9	UV spectrum of reaction mixture (B) in methanol	182

LIST OF TABLES

Table		Page No.
2.1	Optimization of reaction conditions for the synthesis of 4a	55
2.2	Screening of substrates for the synthesis of chromeno[2,3-d]pyrimidinetriones	57
2.3	Reusability and recyclability of Sc(OTf) ₃ catalyst	62
3.1	Optimized reaction condition for the model reaction 4h	87
3.2	Screening of substrates for the synthesis of chromenopyrimidines	90
4.1	Optimized reaction condition for the model reaction 3a	118
4.2	Effect of the molar ratio of substrates on the yield of the product 3a	120
4.3	Effect of the molar ratio of substrates on the yield of the product 5a	120
4.4	Effect of time variation on the yield of the product 3a	121
4.5	Effect of time variation on the yield of the product 5a	121
4.6	Effect of the visible light intensity on the direction of the reaction 3a	122
4.7	Screening of substrates for the synthesis of dibarbiturates of oxindole	123
4.8	Screening of substrates for the synthesis of arylidene barbituric acid derivatives	126
5.1	Optimized reaction condition for the model reaction 4a	157
5.2	Effect of the molar ratio of substrates on the yield of the product 4a	159
5.3	Effect of the visible light intensity on the direction of the reaction 4a	159
5.4	Screening of substrates for the synthesis of naphthopyranopyrimidines	160