LIST OF CONTENTS

	List of Contents	Page No.
	ACKNOWLEDGEMENTS	vi
	LIST OF TITLES	X
	LIST OF SCHEMES	xiii
	LIST OF TABLES	XV
	LIST OF FIGURES	xvi
	LIST OF NOTATIONS, SYMBOLS AND ABBREVIATIONS	xvii
	PREFACE	xxi
	GENERAL EXPERIMENTAL METHODS	xxii
Title No.	List of Titles	Page No.
	CHAPTER-1	1-27
	Introduction	
1.1	Brief history of sulfoximine	1
1.2	Structure and properties of sulfoximines	2
1.3	Biological applications of sulfoximines	3
1.4	Synthesis of sulfoximines	7
1.5	Applications of sulfoximines in organic synthesis	10
1.6	Reactions of sulfoximine	16
1.7	Summary and Objectives of the thesis	22
1.8	References	23
	CHAPTER-2	28-52
Co	pper catalyzed N-arylation of sulfoximines with aryldiazonium salt	s in the
2.1	presence of DABCO under mild conditions Introduction	28
2.2	Results and Discussion	29
2.3	Substrates Scope	31
2.4	Plausible Reaction Mechanism	33
2.5	Conclusion	35
2.6	Experimental Section	35
2.7	Analytical data for <i>N</i> -aryl sulfoximines	36
2.8	Spectral data	48
2.9	References	49

	CHAPTER-3	53-87
	Molybdenum hexacarbonyl-mediated imino-carbonylative ac	cylation of
3.1	NH-sulfoximines with aryl iodides Introduction	53
3.2	Results and Discussion	55
3.3	Substrates Scope	58
3.4	Plausible Reaction Mechanism	61
3.5	Conclusion	62
3.6	Experimental Section	62
3.7	Analytical data for <i>N</i> -acyl sulfoximines	63
3.8	Spectral data	83
3.9	References	85
	CHAPTER-4	88-123
5	Selenium dioxide promoted $lpha$ -keto N -acylation of sulfoximines	under mild
4.4	reaction conditions	0.0
4.1	Introduction	88
4.2	Results and Discussion	90
4.3	Substrates Scope	92
4.4	Plausible Reaction Mechanism	97
4.5	Conclusion English and Specification	98
4.6	Experimental Section	99
4.7	Analytical data of α -keto N -acyl sulfoximines	101
4.8	Spectral data	119
4.9	References	120
	CHAPTER-5	124-161
Cop	per-promoted dehydrogenative cross-coupling reaction of dia with sulfoximines	lkyl phosphites
5.1	Introduction	124
5.2	Results and Discussion	126
5.3	Substrates Scope	129
5.4	Plausible Reaction Mechanism	131
5.5	Conclusion	133
5.6	Experimental section	134
5.7	Analytical data for N-(dialkylphosphite)sulfoximines	135
5.8	Spectral data	157

5.9	References	158
	CHAPTER-6	162-165
	Summary and conclus	ions 162
	LIST OF PUBLICATIO	NS 166

LIST OF SCHEMES

Scheme	Titles	Page
No.		No
1.1	Synthesis of methionine sulfoximine	7
1.2	Synthesis of <i>N</i> -protected sulfoximine	8
1.3	Synthesis of NH- sulfoximine via deprotection	9
1.4	Direct synthesis of NH- sulfoximine	9
1.5	Generation of sulfoximine ylide and its applications	10
1.6	Synthesis of chiral epoxide and cyclopropane	10
1.7	Synthesis of (R)-phenylethanol	11
1.8	Asymmetric synthesis of unsaturated bicyclic tetrahydrofurans	11
1.9	Asymmetric synthesis of bicyclic amino acids	12
1.10	Trifluoromethylation of 34 to 35 assisted by sulfoximine reagent 36	13
1.11	Conversion of chalcones to 38 assisted by sulfoximine ligand 39	13
1.12	Conversion of 40 to 41 assisted by N,N-type sulfoximine ligand 42	14
1.13	Hydrogenations of 43 to 44 assisted by N,P-type sulfoximine ligand 45	14
1.14	Rh-catalysed oxidative annulations of 1,2-benzothiazine	15
1.15	Ru-catalysed oxidative C–H alkenylations of 46	16
1.16	Oxidation of 3 to 48	16
1.17	Oxidation of <i>N</i> -protected sulfoximine to sulfone	17
1.18	Reduction of sulfoximine	17
1.19	Reductive deimination of sulfoximines by different methods	17
1.20	α-Chlorination of methyl protected sulfoximines	18
1.21	α-Lithiation of sulfoximine	18
1.22	α -Arylation of N -benzyl sulfoximine	18
1.23	<i>N</i> -Alkylation of <i>NH</i> - sulfoximine	19
1.24	Pd catalyzed first report of N-arylation of sulfoximine	20
1.25	Metal catalyzed <i>N</i> -arylation of sulfoximine	20
1.26	Pd catalyzed N-alkenylation of sulfoximine	20
1.27	Cu catalyzed <i>N</i> - alkynylation of <i>NH</i> - sulfoximine	21
1.28	<i>N</i> -Alkynylation of <i>NH</i> - sulfoximine.	21
2.1	<i>N</i> -Arylation of sulfoximines using aryldiazonium tetrafluoroborates	29
2.2	Plausible mechanism for the <i>N</i> -arylation of sulfoximines	34
2.3	Control experiment with TEMPO	34
3.1	N -Acylation of sulfoximines using $Mo(CO)_6$	54
3.2	<i>N</i> -Acylation of various sulfoximine with alkyl iodides	60
3.3	Ortho-hydroxylation of N-benzoyl sulfoximine	61
3.4	Plausible mechanism for carbonylative acylation of sulfoximine	61
4.1	α-Ketoacylation of sulfoximines in the presence of SeO ₂	90

4.2	α-Ketoacylation of 1a with different acyl sources	94
4.3	Gram-scale coupling reaction	96
4.4	Reduction of α-ketoamide 3aa with NaBH ₄	97
4.5	Grignard reaction of α-ketoamide 3aa	97
4.6	Plausible reaction mechanism	97
4.7	α-Ketoacylation of sulfoximine with phenylglyoxal	98
5.1	Dehydrogenative coupling of dialkyl phosphites with sulfoximines	126
5.2	Coupling reaction in the presence of radical scavenger	131
5.3	Coupling reaction under inert condition	132
5.4	Coupling reaction under oxygen atmosphere	132
5.5	Coupling reaction with copper(I) salts	132
5.6	Plausible Mechanism of the Reaction	133
6.1	<i>N</i> -Arylation of sulfoximines using aryldiazonium tetrafluoroborates.	163
6.2	<i>N</i> -Acylation of sulfoximines using Mo(CO) ₆	163
6.3	α -Ketoacylation of sulfoximines in the presence of SeO ₂ .	164
6.4	Dehydrogenative coupling of dialkyl phosphites with sulfoximines.	164
6.5	Dehydrogenative coupling of dialkyl phosphites with sulfoximines	165

LIST OF TABLES

Table No.	Titles	Page No.
2.1	Optimization of the reaction conditions	30
2.2	<i>N</i> -Arylation of various sulfoximines with 4-methylbenzendiazonium tetrafluoroborate	32
2.3	<i>N</i> -Arylation of (<i>S</i> , <i>S</i>)- methylphenyl sulfoximine with various diazonium salts	33
3.1	Optimization of the reaction conditions for imino-carbonylation	56
3.2	Scope of aryl source for Mo(CO) ₆ -mediated carbamoylation reaction	57
3.3	N-Acylation of sulfoximine with various aryl iodides	58
3.4	N-Acylation of various sulfoximine with 4-iodoanisol	60
4.1	Optimization of the reaction conditions	91
4.2	α -Ketoacylation of <i>S,S</i> -methylphenylsulfoximine with various acetophenones	92
4.3	α-Ketoacylation of various sulfoximines with acetophenone	93
4.4	α-Ketoacylation of selected sulfoximines with phenylacetaldehyde and phenylacetylene	95
4.5	α -Ketoacylation of <i>S,S</i> -methylphenylsulfoximine (1a) with arylacetylenes	96
5.1	Optimization of the reaction conditions	127
5.2	N-Phosphorylation of sulfoximine with different dialkyl phosphites	129
5.3	<i>N</i> -Phosphorylation of various sulfoximines with diethyl and dibutyl phosphite	130

LIST OF FIGURES

Figure	Titles	Page
No.		No.
1.1	Structures of L-methionine and related compounds	1
1.2	Characteristic of sulfoximine towards its versatility	2
1.3	Biologically relevant sulfoximine compounds	4
1.4	Structure of lead compound AMG 3969 and clinical candidate GKRP disruptor.	4
1.5	Structure of lead compound ZK 304709 and clinical candidate BAY1000394.	5
1.6	Structure of lead compound BAY 958 and clinical candidate BAY 1143572.	5
1.7	Structure of lead compound AZ 20 and clinical candidate AZD 6738.	6
1.8	Structure of natural compound calcitrol and its sulfone and sulfoximine derived analogue.	6
2.1	Structures of some biologically important sulfoximines	28
2.2	¹ H-NMR spectrum of compound 3ba in CDCl ₃	48
2.3	¹³ C-NMR spectrum of compound 3ba in CDCl ₃	48
3.1	Structures of some biologically and chemically relevant sulfoximines	53
3.2	¹ H NMR spectrum of 3aa in CDCl ₃	83
3.3	¹³ C NMR spectra for 3aa in CDCl ₃	83
3.4	¹ H NMR spectrum of 3ae in CDCl ₃	84
3.5	¹³ C NMR spectra for 3ae in CDCl ₃	84
4.1	Structures of some bioactive α-ketoamides and sulfoximines	88
4.2	¹ H NMR spectrum of 3aa in CDCl ₃	119
4.3	¹³ C-NMR spectrum of compound 3aa in CDCl ₃	119
5.1	Structures of some important phosphoramidates	124
5.2	¹ H NMR spectrum for 3ba in CDCl ₃	157
5.3	¹³ C NMR Spectra for 3ba in CDCl ₃	157
5.4	³¹ P NMR Spectra for 3ba in CDCl ₃	158
6.1	A: Sulfoximine containing drug active molecules; B : Synthesis and <i>N</i> -functionalization of sulfoximines	162