Content	Page No.
Title of Thesis	i
Certificate	ii
Declaration by the Candidate	iii
Certificate by the Supervisor(s)	iv
Copyright Transfer Certificate	V
Dedication	vi
Acknowledgment	vii-viii
Contents	ix-xiv
List of Figures	xv-xviii
List of symbols/ Abbreviation	xix-xxi
Preface	xxii-xxvii
CHAPTER – 1	1-49
Introduction	
1.1History of Perovskite	1
1.2 Classification of Perovskite	3
(a) Calcium Titanate CaTiO ₃	5
(b) Barium Titanate (BaTiO ₃)	5

(c) SrTiO ₃	6
1.3. APPLICATIONS OF PEROVSKITE OXIDES	6-8
1.4. Complex Perovskite	10
1.3. Ceramic Materials	11
1.4. Composite Material	12
1.5. Capacitors	13
1.7. Dielectric Materials	14
1.8. Electronic polarization	16
1.9. Orientation polarization	16
1.10. Space charge polarization	17
1.11. Atomic or ionic polarization	17
1.12. Dielectric Constant	18
1.13. Dielectric loss	19
1.14. Impedance	20
1.15. Magnetic Properties	23
1.15.1. Origne of magnetism	24
1.15.2. Types of Magnetic Materials	27
(I)Paramagnets	27

		CONTENT
(II)	Diamagnets	29
(III)	Ferromagnets	30
(IV)	Anti-ferromagnets	31
(V)	Ferrimagnetism	32
(VI)	Griffith's Phase (T _G)	32
(VI	II) Super-paramagnets	34
1.15.3.Hy	esteresis loop	35
1.15.4. Ai	im of the present study	38
Reference	es of chapter 1	40-49
СНАРТЕ	$\mathbf{E}\mathbf{R} - 2$	50-62
Experimo	ental Procedure	
2.1. Expe	eriment	50
2.2. Sym	thesis of Materials	51
(a) Se	emi wet Route	51
(b) Cł	hemical method	51
2.3. Calci	nation Process	51

		ONTENT
2.4. Sintering Process		51-53
2.5. X-Ray diffraction Pattern		53-55
2.6. FTIR spectroscopy		55
2.7. Scanning Electron Microscopy (SEM) Analysis		55
2.8. Energy Dispersive X-ray Analysis (EDX)		56
2.9. Transmission Electron Microscopy (TEM) Analysis		57
2.10. X-ray Photoelectron Spectroscopy (XPS)		58
2.11. Raman spectroscopy		59
2.12. Atomic Force Microscopy (AFM) Analysis		60
2.13. Superconducting quantum interference device (SQUID)		60
2.14. Electric and Dielectric Measurement:		60-62
CHAPTER – 3		63-87
Studies on CaCu ₃ Mn ₄ O ₁₂ Ceramic		
3.1.Introduction		63
3.2.Experimental		64
3.3. Results and discussion		64
3.3.1 Microstructural studies		70
3.3.2Magnetic measurements		76
3.3.3. Dielectric studies		80
3.4. Conclusions		82
References	82-87	

CHAPTER – 4	88-110
Studies on CaCu _{2.9} Mn _{0.1} Ti _{3.9} Mn _{0.1} O ₁₂ Ceramic	
4.1. Introduction	88
4.2. Experimental	90
4.3. Results and discussion	91
4.3.1. Microstructural studies	95
4.3.2. Magnetic studies	100
4.3.3. Dielectric studies	102
4.4. Conclusions	104
4.5. References	106-110
CHAPTER – 5	111-126
CHAPTER-5	111-120
Studies on CaCu ₃ Ti ₃ O ₁₂ and CaCu ₃ Ti _{3.9} Mn _{0.1} O ₁₂ ceramics	111-120
	111
Studies on CaCu ₃ Ti ₃ O ₁₂ and CaCu ₃ Ti _{3.9} Mn _{0.1} O ₁₂ ceramics	
Studies on CaCu ₃ Ti ₃ O ₁₂ and CaCu ₃ Ti _{3.9} Mn _{0.1} O ₁₂ ceramics 5.1. Introduction	111
Studies on CaCu ₃ Ti ₃ O ₁₂ and CaCu ₃ Ti _{3.9} Mn _{0.1} O ₁₂ ceramics 5.1. Introduction 5.2. Experimental	111 112
Studies on CaCu ₃ Ti ₃ O ₁₂ and CaCu ₃ Ti _{3.9} Mn _{0.1} O ₁₂ ceramics 5.1. Introduction 5.2. Experimental 5.3. Results and discussion	111112113
Studies on CaCu ₃ Ti ₃ O ₁₂ and CaCu ₃ Ti _{3.9} Mn _{0.1} O ₁₂ ceramics 5.1. Introduction 5.2. Experimental 5.3. Results and discussion 5.3.1. Microstructural studies	111112113117
Studies on CaCu ₃ Ti ₃ O ₁₂ and CaCu ₃ Ti _{3.9} Mn _{0.1} O ₁₂ ceramics 5.1. Introduction 5.2. Experimental 5.3. Results and discussion 5.3.1. Microstructural studies 5.3.2. Magnetic properties	111112113117119

	CONTENTS
CHAPTER – 6	127-149
Studies on CaCu ₃ Ti ₄ O ₁₂ and CaCu ₂ Mn ₁ Ti ₄ O ₁₂ ceramics	
6.1. Introduction	127
6.2. Experimental	129
6.3. Results and discussion	130
6.3.1. Microstructural studies	131
6.3.2. Dielectric behavior	141
6.4. Conclusions	145
References	146-149
List of Publication	150-151

Figure 1.1. Classification of Perovskite.	Page No.
Figure 1.2. The structure of complex Perovskite.	3
Figure 1.3. Structure of dielectric capacitor. Figure 1.4. Shows parallel plate capacitors in circuit, including the alignment of charges in the dielectric material [Mark Howard (2015)].	9 13
Figure 1.5. Depict the polarized and nonpolarized plates of an applied electric field (Saint Jude (2012)). Figure 1.6. Flow chart for the origin of magnetism in the materials.	14 24
Figure 1.7. Shows the Paramagnetic nature of the material in the absence of applied magnetic field and in the presence of the magnetic field.	27
Figure 1.8. Paramagnetic structure of the materials.	28
Figure 1.9. Displays the diamagnetic materials disperse the line of force a magnetic field.	29
Figure 1.10. Diamagnetic structure. Figure 1.11. Ferromagnetism non-magnetized material and Magnetized material with the corresponding magnetic field.	30 31
Figure 1.12. Anti-ferromagnetic structure Figure 1.13. Ferromagnetism structure	31 32
Figure 1.14. Griffith's phase.	33
Figure 1.15. M-H hysteresis loop	35
Figure 1.16. Hysteresis loop or B-H curve Figure 1.17. Applications of magnetic materials Figure 2.1. Flow chart for the synthesis of complex perovskite by the semiwet route.	36 37 53
Figure 2.2. shows the basic concept of X-ray diffraction pattern. Figure 2.3. Powder X-ray diffract meter, Rigaku Miniflex600 (Japan).	54 54
Figure 2.4. Scanning Electron Microscope (ZEISS, model EVO-18 Research) used for microstructure of the surface of the ceramics. Figure 2.5. Transmission Electron Microscope (TEM, FEI TECANI G ² 20 TWIN, USA) used to determine particle structure.	56 58
Figure 2.6. The basic principle of Raman spectroscopy Figure 2.7. LCR meter (PSM 1735, Newton 4th Ltd, U.K.) used for dielectric properties measurement.	59 61

Figure 3.1. shows TGA graph of CaCu ₃ Mn ₄ O ₁₂ as- prepared powder. Figure 3.2. FTIR spectra of CCMO calcined powder at 600 °C for 6 h and sintered at 800 °C for 6 h different temperature.	66 67
Figure 3.3. XRD pattern for CaCu ₃ Mn ₄ O ₁₂ (CCMO) calcined at 600°C and sintered at 800°C 6 h respectively.	68
Figure 3.4. Raman spectra of CaCu ₃ Mn ₄ O ₁₂ Perovskite oxides sintered at 800°C for 6 h.	69
Figure 3.5.(a) SEM micrographs of calcined at 600°C for 6 h (b) SEM micrographs of sintered at 800°C 6 h showing the needle-like structure and (c) shows the elemental analysis of CCMO ceramic.	72
Figure 3.6. (a) Shows particle size of CCMO, (b) Shows cubical structure of CCMO, (c) Shows the histogram plot Of CCMO particle size and (d) Shows SEAD pattern of CCMO ceramic.	73
Figure 3.7. (a) AFM images of CCMO Ceramic sintered at 800°C for 6 h two-dimensional image showing grains and grain boundaries (b) Three-dimensional image of surface roughness of CCMO (c) Histogram of three-	74
dimensional particle roughness. Figure 3.8 (a) XPS graph of Calcium oxidation state peak recorded at	76
347.3 eV and 350.7 eV.	
(b) Shows the Copper oxidation state peak recorded at 934.54 eV and	
954.23 eV.	
(c) Shows the Manganese binding energy peak recorded at 641.4 eV and	
652.4eV.	
(d) Shows the Oxygen binding energy peak recorded at 529.7 and 531.6	
eV.	
Figure 3.9. (a) Temperature dependence of ZFC and FC magnetization plot, top insert indicates dM/dT vs T (b) depicts the M-H hysteresis loop recorded at 5 and 300 k.	80
(C) Shows inverse magnetic susceptibility $1/\chi$ (T) for CCMO measured in	
the range of 0 to 300 K. The onset temperature T_{G} ,where $1/\chi(T)$ deviates	
from the linear temperature dependence (solid green line) are indicated by	
the arrows, showing the signature of Griffith's Phase behavior.	
Figure 3.10. (a) and (b) display dielectric constant, the tangent loss against	82

frequencies of CCMO ceramic, (c) and (d) tangent loss against temperature at few selected frequencies.

Figure 4.1. TGA plot of dry powder (CaCu _{2.90} Mn _{0.10} Ti _{3.90} Mn _{0.10} O ₁₂	92
(CCMTMO) as-prepared powder.	
Figure 4.2 . FT-IR spectra of CCMTMO ceramic sintered 900°C for 12 h.	92
Figure 4.3.displays the XRD patterns of the sintered CCMTMO ceramic	94
sintered at 900°C for 12 h.	
Figure 4.4.displays the Raman shift of CCMTMO ceramic sintered at	95
900°C for 12 h.	
Figure 4.5.(a) displays the morphology and microstructure of sintered	96
CCMTMO ceramic and (b) displays Energy Disperse X-ray (EDX).	
Figure 4.6. (a) displays the HR-TEM image of sintered CCMTMO	97
ceramic (b) displays the SEAD pattern.	
Figure 4.7. (a) to (e) display the XPS spectrum of Ca,Cu,Mn,Ti and	99
oxygen respectively.	
Figure 4.8. (a) displays the magnetization versus magnetic field (b)	
magnetization versus temperature CCMTMO.	101
Figure 4.9. show (a) and (b) the dielectric constant of CCMTMO ceramic	103
versus temperature and frequency, respectively. (c) and (d) depicts the	
tangent loss of CCMTMO ceramic versus temperature and frequency	
respectively.	
Figure 5.1. (a) and (b) display the TGA graph of CCTO and CCTMO	114
respectively.	
Figure 5.2.(a) and (b) display the XRD graph of CCTO and CCTMO	115
respectively.	
Figure 5.3. depict the FT-IR spectra of CCTO and CCTMO sintered 900°C	116
for 12 h.	
Figure 5.4. shows the Raman spectra of CCTMO ceramic.	117
Figure 5.5. display (a) and (b) the HR-SEM of CCTO and CCTMO	118
ceramic sintered 900°C respectively. (c) and (d) EDX spectrum of CCTO	
and CCTMO ceramic respectively.	
Figure 5.6. display (a) The HR-SEM image of CCTMO ceramic (cubical	119
structure),(b) the SEAD pattern of CCTMO ceramic.	
Figure 5.7. display (a) the magnetization versus magnetic field (b)	120
magnetization versus temperature of CCTO and CCTMO.	
Figure 5.8. (a) and (c) show the dielectric constant versus frequency and	121
temperature respectively, figure (b) and (d) depicts the tangent loss versus	
frequency and temperature respectively.	
Figure 6.1. XRD patterns of (a) CCTO and (b) CCMTO sintered at 1100	131
°C for 8 h.	
Figure 6.2. SEM micrographs of (a) CCTO and (b) CCMTO sintered at	133
1100 °C for 8 h. EDX spectra of (c) CCTO and (b) CCMTO sintered at	
1100 °C for 8 h.	
Figure 6.3. HR-TEM images of the CaCu ₃ Ti ₄ O ₁₂ and CaCu ₂ Mn ₁ Ti ₄ O ₁₂ (a)and	134
(C)at sintered at 1100°C for 8 h and (b) and (d) Indexed SAED patterns of the	
sintered at 1100 °C for 8 h.	
Figure 6.4. (a) and (c) AFM images of CCMTO Ceramic sintered at	135
1100°C for 8 h two-dimensional image showing grains and grain	

(d) Histogram of three-dimensional particle roughness.	
Figure 6.5. (a) and (c) AFM images of CCMTO Ceramic sintered at 1100°C for 8 h two-dimensional image showing grains and grain boundaries (b) Three-dimensional image of surface roughness of CCTO	136
(D) Histogram of three-dimensional particle roughness.	
Figure 6.6. (a) to (d) XPS images of the CaCu ₃ Ti ₄ O ₁₂ and at sintered at 1100°C for 8 h.	138
Figure 6.6. (e) to (i) XPS images of the CaCu ₂ Mn ₁ Ti ₄ O ₁₂ and at sintered at 1100°C for 8 h.	139
Figure 6.7. (a) displays to cyclic voltammetry and (b) displays Electrochemical Impedance spectroscopy of the CaCu ₂ Mn ₁ Ti ₄ O ₁₂ and CaCu ₂ Mn ₁ Ti ₄ O ₁₂ at	141
sintered at 1100°C for 8 h.	153
Figure 6.8. (a) and (b) shows the Variations of dielectric constant (ε_r) against frequency at few selected frequency as well as at few selected. (c) and (d) dielectric loss $(\tan \delta)$ versus frequency of CCTO ceramic.	142
Figure 6.9. (a) and (b) show the variations of dielectric constant (ε_r) against temperature, (c) and (d) dielectric loss ($\tan \delta$) versus temperature of CCTO ceramic.	144

boundaries (b) Three-dimensional image of surface roughness of CCTO