| Content | Page No. | |---|------------| | Title of Thesis | i | | Certificate | ii | | Declaration by the Candidate | iii | | Certificate by the Supervisor(s) | iv | | Copyright Transfer Certificate | V | | Dedication | vi | | Acknowledgment | vii-viii | | Contents | ix-xiv | | List of Figures | xv-xviii | | | | | List of symbols/ Abbreviation | xix-xxi | | Preface | xxii-xxvii | | | | | | | | | | | | | | CHAPTER – 1 | 1-49 | | Introduction | | | 1.1History of Perovskite | 1 | | 1.2 Classification of Perovskite | 3 | | (a) Calcium Titanate CaTiO ₃ | 5 | | | | | (b) Barium Titanate (BaTiO ₃) | 5 | | (c) SrTiO ₃ | 6 | |--|-----| | 1.3. APPLICATIONS OF PEROVSKITE OXIDES | 6-8 | | 1.4. Complex Perovskite | 10 | | 1.3. Ceramic Materials | 11 | | 1.4. Composite Material | 12 | | 1.5. Capacitors | 13 | | 1.7. Dielectric Materials | 14 | | 1.8. Electronic polarization | 16 | | 1.9. Orientation polarization | 16 | | 1.10. Space charge polarization | 17 | | 1.11. Atomic or ionic polarization | 17 | | 1.12. Dielectric Constant | 18 | | 1.13. Dielectric loss | 19 | | 1.14. Impedance | 20 | | 1.15. Magnetic Properties | 23 | | 1.15.1. Origne of magnetism | 24 | | 1.15.2. Types of Magnetic Materials | 27 | | (I)Paramagnets | 27 | | | | CONTENT | |------------|------------------------------------|---------| | (II) | Diamagnets | 29 | | (III) | Ferromagnets | 30 | | (IV) | Anti-ferromagnets | 31 | | | | | | | | | | | | | | (V) | Ferrimagnetism | 32 | | (VI) | Griffith's Phase (T _G) | 32 | | (VI | II) Super-paramagnets | 34 | | | | | | 1.15.3.Hy | esteresis loop | 35 | | 1.15.4. Ai | im of the present study | 38 | | Reference | es of chapter 1 | 40-49 | | СНАРТЕ | $\mathbf{E}\mathbf{R} - 2$ | 50-62 | | Experimo | ental Procedure | | | 2.1. Expe | eriment | 50 | | 2.2. Sym | thesis of Materials | 51 | | (a) Se | emi wet Route | 51 | | (b) Cł | hemical method | 51 | | 2.3. Calci | nation Process | 51 | | | | ONTENT | |--|-------|--------| | 2.4. Sintering Process | | 51-53 | | 2.5. X-Ray diffraction Pattern | | 53-55 | | 2.6. FTIR spectroscopy | | 55 | | 2.7. Scanning Electron Microscopy (SEM) Analysis | | 55 | | 2.8. Energy Dispersive X-ray Analysis (EDX) | | 56 | | 2.9. Transmission Electron Microscopy (TEM) Analysis | | 57 | | 2.10. X-ray Photoelectron Spectroscopy (XPS) | | 58 | | 2.11. Raman spectroscopy | | 59 | | 2.12. Atomic Force Microscopy (AFM) Analysis | | 60 | | 2.13. Superconducting quantum interference device (SQUID) | | 60 | | 2.14. Electric and Dielectric Measurement: | | 60-62 | | CHAPTER – 3 | | 63-87 | | Studies on CaCu ₃ Mn ₄ O ₁₂ Ceramic | | | | 3.1.Introduction | | 63 | | 3.2.Experimental | | 64 | | 3.3. Results and discussion | | 64 | | 3.3.1 Microstructural studies | | 70 | | 3.3.2Magnetic measurements | | 76 | | 3.3.3. Dielectric studies | | 80 | | 3.4. Conclusions | | 82 | | References | 82-87 | | | CHAPTER – 4 | 88-110 | |--|---| | Studies on CaCu _{2.9} Mn _{0.1} Ti _{3.9} Mn _{0.1} O ₁₂ Ceramic | | | 4.1. Introduction | 88 | | 4.2. Experimental | 90 | | 4.3. Results and discussion | 91 | | 4.3.1. Microstructural studies | 95 | | 4.3.2. Magnetic studies | 100 | | 4.3.3. Dielectric studies | 102 | | 4.4. Conclusions | 104 | | 4.5. References | 106-110 | | CHAPTER – 5 | 111-126 | | CHAPTER-5 | 111-120 | | Studies on CaCu ₃ Ti ₃ O ₁₂ and CaCu ₃ Ti _{3.9} Mn _{0.1} O ₁₂ ceramics | 111-120 | | | 111 | | Studies on CaCu ₃ Ti ₃ O ₁₂ and CaCu ₃ Ti _{3.9} Mn _{0.1} O ₁₂ ceramics | | | Studies on CaCu ₃ Ti ₃ O ₁₂ and CaCu ₃ Ti _{3.9} Mn _{0.1} O ₁₂ ceramics 5.1. Introduction | 111 | | Studies on CaCu ₃ Ti ₃ O ₁₂ and CaCu ₃ Ti _{3.9} Mn _{0.1} O ₁₂ ceramics 5.1. Introduction 5.2. Experimental | 111
112 | | Studies on CaCu ₃ Ti ₃ O ₁₂ and CaCu ₃ Ti _{3.9} Mn _{0.1} O ₁₂ ceramics 5.1. Introduction 5.2. Experimental 5.3. Results and discussion | 111112113 | | Studies on CaCu ₃ Ti ₃ O ₁₂ and CaCu ₃ Ti _{3.9} Mn _{0.1} O ₁₂ ceramics 5.1. Introduction 5.2. Experimental 5.3. Results and discussion 5.3.1. Microstructural studies | 111112113117 | | Studies on CaCu ₃ Ti ₃ O ₁₂ and CaCu ₃ Ti _{3.9} Mn _{0.1} O ₁₂ ceramics 5.1. Introduction 5.2. Experimental 5.3. Results and discussion 5.3.1. Microstructural studies 5.3.2. Magnetic properties | 111112113117119 | | | CONTENTS | |---|----------| | CHAPTER – 6 | 127-149 | | Studies on CaCu ₃ Ti ₄ O ₁₂ and CaCu ₂ Mn ₁ Ti ₄ O ₁₂ ceramics | | | 6.1. Introduction | 127 | | 6.2. Experimental | 129 | | 6.3. Results and discussion | 130 | | 6.3.1. Microstructural studies | 131 | | 6.3.2. Dielectric behavior | 141 | | 6.4. Conclusions | 145 | | References | 146-149 | | List of Publication | 150-151 | | Figure 1.1. Classification of Perovskite. | Page No. | |--|----------------| | Figure 1.2. The structure of complex Perovskite. | 3 | | Figure 1.3. Structure of dielectric capacitor. Figure 1.4. Shows parallel plate capacitors in circuit, including the alignment of charges in the dielectric material [Mark Howard (2015)]. | 9 13 | | Figure 1.5. Depict the polarized and nonpolarized plates of an applied electric field (Saint Jude (2012)). Figure 1.6. Flow chart for the origin of magnetism in the materials. | 14
24 | | Figure 1.7. Shows the Paramagnetic nature of the material in the absence of applied magnetic field and in the presence of the magnetic field. | 27 | | Figure 1.8. Paramagnetic structure of the materials. | 28 | | Figure 1.9. Displays the diamagnetic materials disperse the line of force a magnetic field. | 29 | | Figure 1.10. Diamagnetic structure. Figure 1.11. Ferromagnetism non-magnetized material and Magnetized material with the corresponding magnetic field. | 30
31 | | Figure 1.12. Anti-ferromagnetic structure Figure 1.13. Ferromagnetism structure | 31
32 | | Figure 1.14. Griffith's phase. | 33 | | Figure 1.15. M-H hysteresis loop | 35 | | Figure 1.16. Hysteresis loop or B-H curve Figure 1.17. Applications of magnetic materials Figure 2.1. Flow chart for the synthesis of complex perovskite by the semiwet route. | 36
37
53 | | Figure 2.2. shows the basic concept of X-ray diffraction pattern. Figure 2.3. Powder X-ray diffract meter, Rigaku Miniflex600 (Japan). | 54
54 | | Figure 2.4. Scanning Electron Microscope (ZEISS, model EVO-18 Research) used for microstructure of the surface of the ceramics. Figure 2.5. Transmission Electron Microscope (TEM, FEI TECANI G ² 20 TWIN, USA) used to determine particle structure. | 56
58 | | Figure 2.6. The basic principle of Raman spectroscopy Figure 2.7. LCR meter (PSM 1735, Newton 4th Ltd, U.K.) used for dielectric properties measurement. | 59
61 | | Figure 3.1. shows TGA graph of CaCu ₃ Mn ₄ O ₁₂ as- prepared powder.
Figure 3.2. FTIR spectra of CCMO calcined powder at 600 °C for 6 h and sintered at 800 °C for 6 h different temperature. | 66 67 | |---|-------| | Figure 3.3. XRD pattern for CaCu ₃ Mn ₄ O ₁₂ (CCMO) calcined at 600°C and sintered at 800°C 6 h respectively. | 68 | | Figure 3.4. Raman spectra of CaCu ₃ Mn ₄ O ₁₂ Perovskite oxides sintered at 800°C for 6 h. | 69 | | Figure 3.5.(a) SEM micrographs of calcined at 600°C for 6 h (b) SEM micrographs of sintered at 800°C 6 h showing the needle-like structure and (c) shows the elemental analysis of CCMO ceramic. | 72 | | Figure 3.6. (a) Shows particle size of CCMO, (b) Shows cubical structure of CCMO, (c) Shows the histogram plot Of CCMO particle size and (d) Shows SEAD pattern of CCMO ceramic. | 73 | | Figure 3.7. (a) AFM images of CCMO Ceramic sintered at 800°C for 6 h two-dimensional image showing grains and grain boundaries (b) Three-dimensional image of surface roughness of CCMO (c) Histogram of three- | 74 | | dimensional particle roughness. Figure 3.8 (a) XPS graph of Calcium oxidation state peak recorded at | 76 | | 347.3 eV and 350.7 eV. | | | (b) Shows the Copper oxidation state peak recorded at 934.54 eV and | | | 954.23 eV. | | | (c) Shows the Manganese binding energy peak recorded at 641.4 eV and | | | 652.4eV. | | | (d) Shows the Oxygen binding energy peak recorded at 529.7 and 531.6 | | | eV. | | | Figure 3.9. (a) Temperature dependence of ZFC and FC magnetization plot, top insert indicates dM/dT vs T (b) depicts the M-H hysteresis loop recorded at 5 and 300 k. | 80 | | (C) Shows inverse magnetic susceptibility $1/\chi$ (T) for CCMO measured in | | | the range of 0 to 300 K. The onset temperature T_{G} ,where $1/\chi(T)$ deviates | | | from the linear temperature dependence (solid green line) are indicated by | | | the arrows, showing the signature of Griffith's Phase behavior. | | | Figure 3.10. (a) and (b) display dielectric constant, the tangent loss against | 82 | frequencies of CCMO ceramic, (c) and (d) tangent loss against temperature at few selected frequencies. | Figure 4.1. TGA plot of dry powder (CaCu _{2.90} Mn _{0.10} Ti _{3.90} Mn _{0.10} O ₁₂ | 92 | |--|-----| | (CCMTMO) as-prepared powder. | | | Figure 4.2 . FT-IR spectra of CCMTMO ceramic sintered 900°C for 12 h. | 92 | | Figure 4.3.displays the XRD patterns of the sintered CCMTMO ceramic | 94 | | sintered at 900°C for 12 h. | | | Figure 4.4.displays the Raman shift of CCMTMO ceramic sintered at | 95 | | 900°C for 12 h. | | | Figure 4.5.(a) displays the morphology and microstructure of sintered | 96 | | CCMTMO ceramic and (b) displays Energy Disperse X-ray (EDX). | | | Figure 4.6. (a) displays the HR-TEM image of sintered CCMTMO | 97 | | ceramic (b) displays the SEAD pattern. | | | Figure 4.7. (a) to (e) display the XPS spectrum of Ca,Cu,Mn,Ti and | 99 | | oxygen respectively. | | | Figure 4.8. (a) displays the magnetization versus magnetic field (b) | | | magnetization versus temperature CCMTMO. | 101 | | Figure 4.9. show (a) and (b) the dielectric constant of CCMTMO ceramic | 103 | | versus temperature and frequency, respectively. (c) and (d) depicts the | | | tangent loss of CCMTMO ceramic versus temperature and frequency | | | respectively. | | | Figure 5.1. (a) and (b) display the TGA graph of CCTO and CCTMO | 114 | | respectively. | | | Figure 5.2.(a) and (b) display the XRD graph of CCTO and CCTMO | 115 | | respectively. | | | Figure 5.3. depict the FT-IR spectra of CCTO and CCTMO sintered 900°C | 116 | | for 12 h. | | | Figure 5.4. shows the Raman spectra of CCTMO ceramic. | 117 | | Figure 5.5. display (a) and (b) the HR-SEM of CCTO and CCTMO | 118 | | ceramic sintered 900°C respectively. (c) and (d) EDX spectrum of CCTO | | | and CCTMO ceramic respectively. | | | Figure 5.6. display (a) The HR-SEM image of CCTMO ceramic (cubical | 119 | | structure),(b) the SEAD pattern of CCTMO ceramic. | | | Figure 5.7. display (a) the magnetization versus magnetic field (b) | 120 | | magnetization versus temperature of CCTO and CCTMO. | | | Figure 5.8. (a) and (c) show the dielectric constant versus frequency and | 121 | | temperature respectively, figure (b) and (d) depicts the tangent loss versus | | | frequency and temperature respectively. | | | Figure 6.1. XRD patterns of (a) CCTO and (b) CCMTO sintered at 1100 | 131 | | °C for 8 h. | | | Figure 6.2. SEM micrographs of (a) CCTO and (b) CCMTO sintered at | 133 | | 1100 °C for 8 h. EDX spectra of (c) CCTO and (b) CCMTO sintered at | | | 1100 °C for 8 h. | | | Figure 6.3. HR-TEM images of the CaCu ₃ Ti ₄ O ₁₂ and CaCu ₂ Mn ₁ Ti ₄ O ₁₂ (a)and | 134 | | (C)at sintered at 1100°C for 8 h and (b) and (d) Indexed SAED patterns of the | | | sintered at 1100 °C for 8 h. | | | Figure 6.4. (a) and (c) AFM images of CCMTO Ceramic sintered at | 135 | | 1100°C for 8 h two-dimensional image showing grains and grain | | | (d) Histogram of three-dimensional particle roughness. | | |---|-----| | Figure 6.5. (a) and (c) AFM images of CCMTO Ceramic sintered at 1100°C for 8 h two-dimensional image showing grains and grain boundaries (b) Three-dimensional image of surface roughness of CCTO | 136 | | (D) Histogram of three-dimensional particle roughness. | | | Figure 6.6. (a) to (d) XPS images of the CaCu ₃ Ti ₄ O ₁₂ and at sintered at 1100°C for 8 h. | 138 | | Figure 6.6. (e) to (i) XPS images of the CaCu ₂ Mn ₁ Ti ₄ O ₁₂ and at sintered at 1100°C for 8 h. | 139 | | Figure 6.7. (a) displays to cyclic voltammetry and (b) displays Electrochemical Impedance spectroscopy of the CaCu ₂ Mn ₁ Ti ₄ O ₁₂ and CaCu ₂ Mn ₁ Ti ₄ O ₁₂ at | 141 | | sintered at 1100°C for 8 h. | 153 | | Figure 6.8. (a) and (b) shows the Variations of dielectric constant (ε_r) against frequency at few selected frequency as well as at few selected. (c) and (d) dielectric loss $(\tan \delta)$ versus frequency of CCTO ceramic. | 142 | | Figure 6.9. (a) and (b) show the variations of dielectric constant (ε_r) against temperature, (c) and (d) dielectric loss ($\tan \delta$) versus temperature of CCTO ceramic. | 144 | boundaries (b) Three-dimensional image of surface roughness of CCTO