Table of Contents

Certificate	iii
Declaration by the Candidate	V
Copyright Transfer Certificate	vii
Acknowledgement	xi
Table of Contents	xiii
List of Figures	xvii
List of Tables	xxiii
List of Abbreviations	XXV
List of Symbols	xxvii
List of Illustrations	xxix
Abstract	xxxi
Chapter 1 INTRODUCTION	1
1.1. General	1
1.2. Motivation for the study	3
1.3. Objective of the study	5
1.4. Outline of the thesis	5
Chapter 2 LITERATURE REVIEW	9
2.1. General	9
2.2. Strata behavior	10
2.2.1. Caving phenomena	10
2.2.2. Roof assessment techniques	12
2.2.3. Strata monitoring instruments	15
2.3.Pillar extraction schemes	17
2.3.1. Modified Navid	18
2.3.2. Fish-bone	19
2.3.3. Split and fender	20
2.3.4. One-third split and fender	22

2.3.5.	Double split and fender	23
2.4.Panel de	esigning techniques	24
2.4.1.	Pillar design techniques	25
2.4.2.	Remnant pillar design techniques	30
2.5.Conclud	ling remarks	31
Chapter 3 NUMERIC	CAL SIMULATION METHODOLOGY	33
3.1.General		33
3.2.Analyse	s tool	33
3.3.Design a	approach	34
3.3.1.	Panel design approach	36
3.3.2.	Remnant pillar design approach	
3.4.Coal ma	ass strength parameters	43
3.5.Conclud	ling remarks	46

Chapter 4 FIELD STUDY

4.1. General	L	49
4.2. Case A		49
4.2.1.	Depillaring operation in 'Case A'	53
4.2.2.	Numerical simulation for 'Case A'	54
4.2.3.	Simulation results for 'Case A'	56
4.2.4.	Field observations in 'Case A'	59
4.3.Case B		62
4.3.1.	Depillaring operation in 'Case B'	64
4.3.2.	Numerical simulation for 'Case B'	65
4.3.3.	Simulation results for 'Case B'	67
4.3.4.	Field observations in 'Case B'	68
4.4.Case C		72
4.4.1.	Depillaring operation in 'Case C'	72
4.4.2.	Numerical simulation for 'Case C'	74
4.4.3.	Simulation results for 'Case C'	76
4.4.4.	Field observations in 'Case C'	78
4.5.Conclu	ding remarks	81

Chapter 5 DESIGN PARAMETERS FOR CM PANEL

5.1. General	83
5.2. Design of the panel	83
5.2.1. Design parameters for panel	84
5.2.2. Numerical simulation for panel design	85
5.3.Design of the remnant pillar	86
5.3.1. Design parameters for remnant pillar	87
5.3.2. Numerical simulation for remnant pillar design	88
5.4.Concluding remarks	91

Chapter 6 RESULTS AND ANALYSIS

6.1. Gene	eral	93
6.2.Panel	design	93
6.2.1.	Simulation results for pillar width of 26 m	94
6.2.2.	Simulation results for pillar width of 35 m	97
6.2.3.	Simulation results for pillar width of 45 m	
6.2.4.	Simulation results for pillar width of 48 m	112
6.2.5.	Analysis for panel design	119
6.2.6.	Guidelines for panel design	124
6.3.Rem	nant pillar design	127
6.3.1.	Simulation results for pillar width of 26 m	129
6.3.2.	Simulation results for pillar width of 35 m	133
6.3.3.	Simulation results for pillar width of 45 m	137
6.3.4.	Simulation results for pillar width of 48 m	144
6.3.5.	Analysis for remnant pillar design	151
6.3.6.	Guidelines for remnant pillar design	157
6.4.Con	cluding remarks	160
Chapter 7 CONCLU	SION AND SUGGESTIONS	161
References		167
Appendix – A		173
Appendix – B		176
Appendix – C		181

93

List of figures

2.1	Main and periodic distances in the caving process12
2.2	Typical layout of the bord and pillar panel12
2.3	Strata monitoring instruments
2.4	Extraction schemes adopted during depillaring operation
2.5	Modified Navid pattern of pillar extraction19
2.6	Fish-bone pattern of pillar extraction20
2.7	Split and fender pattern of pillar extraction
2.8	One – third split and fender pattern of pillar extraction
2.9	Double split and fender pattern of pillar extraction23
2.10	Typical layout of vertical stress
3.1	Typical layout of the panel showing critical depillaring stage
	and focused pillars
3.2	Failure mechanism of the immediate strata
3.3	Typical layout of the panel showing focused remnant pillar41
3.4	Flow chart showing designing sequence adopted for
	optimum remnant pillar design42
3.5	Typical discretized view of the model for the coal pillar44
3.6	Numerical pillars strength and stress46
4.1	Borehole log of the strata in 'Case A'
4.2	Layout of the panel in 'Case A'
4.3	Typical layout of the depillaring panel and extraction pattern in 'Case A'53
4.4	Discretized view of the model in 'Case A'
4.5	Vertical stress and yield profile of the panel in 'Case A'
4.6	Time interval between flashing of AWTT and roof fall in 'Case A'60
4.7	Natural roof falls in the panel during depillaring in 'Case A'61
4.8	Area of overhang before and after roof fall in 'Case A'61
4.9	Borehole log of the strata in 'Case B'63

4.10	Layout of the panel in 'Case B'	64
4.11	Discretized view of the model in 'Case B'	66
4.12	Vertical stress and yield profile of the panel in 'Case B'	68
4.13	Time interval between flashing of AWTT and roof fall in 'Case B'	70
4.14	Natural roof falls in the panel during depillaring in 'Case B'	71
4.15	Area of overhang before and after roof fall in 'Case B'	71
4.16	Borehole of the strata in 'Case C'	73
4.17	Layout of the panel in 'Case C'	73
4.18	Discretized view of the model in 'Case C'	75
4.19	Vertical stress and yield profile of the panel in 'Case C'	77
4.20	Induced stress on a pillar no. 13 during the depillaring operation	79
4.21	Area of overhang before and after roof fall in 'Case C'	80
5.1	Discretized view of the model for panel design	85
5.2	Discretized view of the model for remnant pillar design	90
6.1	Vertical stress and yield profile of the panel with a pillar width	
	of 26 m at a depth of 90 m	96
6.2	Vertical stress and yield profile of the panel with a pillar width	
	of 35 m at a depth of 150 m	99
6.3	Vertical stress and yield profile of the panel with a pillar width	
	of 35 m at a depth of 180 m	101
6.4	Vertical stress and yield profile of the panel with a pillar width	
	of 45 m at a depth of 240 m	104
6.5	Vertical stress and yield profile of the panel with a pillar width	
	of 45 m at a depth of 270 m	106
6.6	Vertical stress and yield profile of the panel with a pillar width	
	of 45 m at a depth of 300 m	108
6.7	Vertical stress and yield profile of the panel with a pillar width	
	of 45 m at a depth of 330 m	111
6.8	Vertical stress and yield profile of the panel with a pillar width	

	of 48 m at a depth of 360 m113
6.9	Vertical stress and yield profile of the panel with a pillar width
	of 48 m at a depth of 390 m115
6.10	Vertical stress and yield profile of the panel with a pillar width
	of 48 m at a depth of 420 m117
6.11	Average vertical stress on the selected pillars at different
	depth of cover120
6.12	Average vertical stress on the selected pillars
6.13	Stress ratio for the pillar with different FOS during development123
6.14	Vertical stress and yield profile of the panel with a pillar width of 26 m
	and snook width of 4.5 m at a depth of 90 m during 'Stage I'131
6.15	Vertical stress and yield profile of the panel with a pillar width of 26 m
	and snook width of 4.5 m at a depth of 90m during 'Stage II'
	through 'Stage IV'132
6.16	Vertical stress and yield profile of the panel with a pillar width of 35 m
	and snook width of 4.5 m at a depth of 180m during 'Stage 0'135
6.17	Vertical stress and yield profile of the panel with a pillar width of 35 m
	and snook width of 4.5 m at a depth of 180 m during 'Stage I'
	through 'Stage V'136
6.18	Vertical stress and yield profile of the panel with a pillar width of 45 m
	and snook width of 5.5 m at a depth of 330 m during 'Stage 0'139
6.19	Vertical stress and yield profile of the panel with a pillar width of 45 m
	and snook width of 5.5 m at a depth of 330 m during 'Stage I'
	through 'Stage IV'140
6.20	Vertical stress and yield profile of the panel with a pillar width of 45 m
	and snook width of 5.5 m at a depth of 330 m during 'Stage V'
	through 'Stage VIII'142
6.21	Vertical stress and yield profile of the panel with a pillar width of 45 m
	and snook width of 5.5 m at a depth of 330 m during 'Stage IX'

	through 'Stage XI'143
6.22	Vertical stress and yield profile of the panel with a pillar width of 48 m
	and snook width of 5.5 m at a depth of 420 m during 'Stage 0'146
6.23	Vertical stress and yield profile of the panel with a pillar width of 48 m
	and snook width of 5.5 m at a depth of 420 m during 'Stage I'
	through 'Stage IV'147
6.24	Vertical stress and yield profile of the panel with a pillar width of 48 m
	and snook width of 5.5 m at a depth of 420 m during 'Stage V'
	through 'Stage VIII'149
6.25	Vertical stress and yield profile of the panel with a pillar width of 48 m
	and snook width of 5.5 m at a depth of 420 m during 'Stage IX'
	through 'Stage XI'150
6.26	Graphical representation of the SF of the remnant pillar
	for the selected pillars154
6.27	Graph showing reaction provided by the remnant pillar
	for different areas155
B.1	Vertical stress and yield profile of the panel with a pillar width of 26 m
	at a depth of 120 m175
B.2	Vertical stress and yield profile of the panel with a pillar width of 35 m
	at a depth of 210 m176
B.3	Vertical stress and yield profile of the panel with a pillar width of 45 m
	at a depth of 360 m177
B.4	Vertical stress and yield profile of the panel with a pillar width of 48 m
	at a depth of 450 m178
C.1	Vertical stress and yield profile of the panel with a pillar width of 26 m
	and snook width of 5.5 m at a depth of 90 m during 'Stage I'180
C.2	Vertical stress and yield profile of the panel with a pillar width of 26 m
	and snook width of 5.5 m at a depth of 90 m during 'Stage II'
	through 'Stage IV'181

C.3	Vertical stress and yield profile of the panel with a pillar width of 26 m
	and snook width of 6.5 m at a depth of 90 m during 'Stage I'182
C.4	Vertical stress and yield profile of the panel with a pillar width of 26 m
	and snook width of 6.5 m at a depth of 90 m during 'Stage II'
	through 'Stage IV'183
C.5	Vertical stress and yield profile of the panel with a pillar width of 35 m
	and snook width of 5.5 m at a depth of 180 m during 'Stage 0'184
C.6	Vertical stress and yield profile of the panel with a pillar width of 35 m
	and snook width of 5.5 m at a depth of 180 m during 'Stage I'
	through 'Stage V'185
C.7	Vertical stress and yield profile of the panel with a pillar width of 35 m
	and snook width of 6.5 m at a depth of 180 m during 'Stage 0'186
C.8	Vertical stress and yield profile of the panel with a pillar width of 35 m
	and snook width of 6.5 m at a depth of 180 m during 'Stage I'
	through 'Stage V'187
C.9	Vertical stress and yield profile of the panel with a pillar width of 45 m
	and snook width of 4.5 m at a depth of 330 m during 'Stage 0'188
C.10	Vertical stress and yield profile of the panel with a pillar width of 45 m
	and snook width of 4.5 m at a depth of 330 m during 'Stage I'
	through 'Stage IV'189
C.11	Vertical stress and yield profile of the panel with a pillar width of 45 m
	and snook width of 4.5 m at a depth of 330 m during 'Stage V'
	through 'Stage VIII'190
C.12	Vertical stress and yield profile of the panel with a pillar width of 45 m
	and snook width of 4.5 m at a depth of 330 m during 'Stage IX'
	through 'Stage XI'191
C.13	Vertical stress and yield profile of the panel with a pillar width of 45 m
	and snook width of 6.5 m at a depth of 330 m during 'Stage 0'192
C.14	Vertical stress and yield profile of the panel with a pillar width of 45 m

	and snook width of 6.5 m at a depth of 330 m during 'Stage I'
	through 'Stage IV'
C.15	Vertical stress and yield profile of the panel with a pillar width of 45 m
	and snook width of 6.5 m at a depth of 330 m during 'Stage V'
	through 'Stage VIII'
C.16	Vertical stress and yield profile of the panel with a pillar width of 45 m
	and snook width of 6.5 m at a depth of 330 m during 'Stage IX'
	through 'Stage XI'
C.17	Vertical stress and yield profile of the panel with a pillar width of 48 m
	and snook width of 4.5 m at a depth of 420 m during 'Stage 0'196
C.18	Vertical stress and yield profile of the panel with a pillar width of 48 m
	and snook width of 4.5 m at a depth of 420 m during 'Stage I'
	through 'Stage IV'197
C.19	Vertical stress and yield profile of the panel with a pillar width of 48 m
	and snook width of 4.5 m at a depth of 420 m during 'Stage V'
	through 'Stage VIII'
C.20	Vertical stress and yield profile of the panel with a pillar width of 48 m
	and snook width of 4.5 m at a depth of 420 m during 'Stage IX'
	through 'Stage XI'199
C.21	Vertical stress and yield profile of the panel with a pillar width of 48 m
	and snook width of 6.5 m at a depth of 420 m during 'Stage 0'200
C.22	Vertical stress and yield profile of the panel with a pillar width of 48 m
	and snook width of 6.5 m at a depth of 420 m during 'Stage I'
	through 'Stage IV'201
C.23	Vertical stress and yield profile of the panel with a pillar width of 48 m
	and snook width of 6.5 m at a depth of 420 m during 'Stage V'
	through 'Stage VIII'
C.24	through 'Stage VIII'
C.24	through 'Stage VIII'

List of tables

2.1	Cavability index vs. caving behavior of strata14
3.1	Material properties used in the model for coal44
3.2	Material properties used in the model for roof and floor45
4.1	Strength parameter for coal used in the model for 'Case A'
4.2	FOS of the next intact pillar ('N') in 'Case A'
4.3	Strength parameter for coal used in the model for 'Case B'
4.4	FOS of the working pillar in 'Case B'68
4.5	Strength parameters for coal used in the model for 'Case C'76
4.6	FOS of the working pillar in 'Case C'78
5.1	Parameters used for designing the panel
5.2	Parameters used for designing the remnant pillar
6.1	Simulation results of the panel with a pillar width of 26 m
	at a depth of 90 m97
6.2	Simulation results of the panel with a pillar width of 35 m
	at a depth of 150 m99
6.3	Simulation results of the panel with a pillar width of 35 m
	at a depth of 180 m102
6.4	Simulation results of the panel with a pillar width of 45 m
	at a depth of 240 m105
6.5	Simulation results of the panel with a pillar width of 45 m
	at a depth of 270 m107
6.6	Simulation results of the panel with a pillar width of 45 m
	at a depth of 300 m109
6.7	Simulation results of the panel with a pillar width of 45 m
	at a depth of 330 m111
6.8	Simulation results of the panel with a pillar width of 48 m
	at a depth of 360 m114

6.9	Simulation results of the panel with a pillar width of 48 m
	at a depth of 390 m116
6.10	Simulation results of the panel with a pillar width of 48 m
	at a depth of 420 m118
6.11	Average vertical stress on the pillars during development
	and depillaring122
6.12	Stress ratio of the focused pillars during depillaring123
6.13	Nomograph showing the optimum width of the pillar for a
	mechanized depillaring panel127
6.14	Simulation results of the remnant pillars for a pillar width of 26 and
	snook width of 4.5 m at a depth of 90 m133
6.15	Simulation results of remnant pillars for a pillar width of 35 and
	snook width of 4.5 m at a depth of 180 m137
6.16	Simulation results of remnant pillars for a pillar width of 45 and
	snook width of 4.5 m at a depth of 330 m144
6.17	Simulation results of remnant pillars for a pillar width of 48 m and
	snook width of 5.5 m at a depth of 420 m151
6.18	SF of the focused remnant pillars for pillar width of 26 m153
6.19	SF of the focused remnant pillar for pillar width of 35 m153
6.20	SF of the focused remnant pillars for pillar width of 45 m153
6.21	SF of the focused remnant pillars for pillar width of 48 m153
6.22	SF of the optimum remnant pillar design for the selected pillars154
6.23	Average vertical stress on the focused remnant pillars
	for the selected pillars156
6.24	Percentage of extraction in optimum cases of remnant pillars for
	the selected pillars
6.25	Optimum area and percentage of the snook for different pillar sizes157
A.1	Failed cases of pillar from Indian coal mines172
A.2	Stable cases of pillar from Indian coal mines172

A.3	Factor of safety (FOS) of failed cases of pillars	.173
A.4	Factor of safety (FOS) of stable cases of pillars	173

List of Abbreviations

AWTT	Auto – warning Tell-tale
CIL	Coal India Limited
СМ	Continuous Miner
CMR	Coal Mine Regulations
CMRI	Central Mining Research Institute
DHTT	Dual Height Tell-tale
FISH	FLAC – ISH (language of FLAC)
FLAC ^{3D}	Fast Lagrangian Analysis of Continua in three dimension
FOS	Factor of Safety
GSI	Geological Strength Index
LTD	Load Transfer Distance
МОС	Ministry of coal
RBE	Roof Bolt Extensometer
RMR	Rock Mass Rating
RQD	Rock Quality Designation
RTT	Rotary Tell-tale
SCCL	Singareni Collieries Company Limited
SECL	South Eastern Coalfields Limited
SF	Strength Factor
SR	Stress Ratio
UCS	Uniaxial Compressive Strength
US	United States

List of Symbols

Ι	Cavability Index
σ	Uniaxial Compressive Strength
l	Average length of core
t	Thickness of strong bed
<i>s</i> _p	Strength of pillar
W	Width of pillar
h	Height of pillar
S _{cube}	Strength of cubical pillar
D	Depth of cover
0	Degree
С	Cohesion
ϕ	Friction angle
D_{max}	Maximum depth of cover
SR_W	Stress ratio of working pillar
SR _B	Stress ratio of barrier pillar
$FOS_{Development}$	Factor of safety of pillar during development
L	Load-bearing capacity of remnant
Α	Area of remnant
L_P	Load-bearing capacity of previously extracted pillar
L_W	Load-bearing capacity of working pillar
SF _W	Strength Factor of working pillar/remnant
SF_P	Strength Factor of previously extracted pillar/remnant

List of Illustrations

6.1	Panel design for mechanized depillaring	125
6.2	Remnant pillar design during mechanized depillaring	158