CONTENTS

Ce	ertificate	ii
De	eclaration by the Candidate	iii
Co	opyright Transfer Certificate	iv
Ac	knowledgement	v
Ab	ostract	vi
Ta	ble of Contents	xxii
Lis	st of Tables	xxvi
Lis	st of Figures	xxvii
Lis	st of Symbols and Abbreviation	xxxi
1.	INTRODUCTION	1 – 7
	1.1 Introduction	1
	1.2 Objectives and Scope	5
	1.3 Methodology	6
	1.4 Organization of the Thesis	6
2.	LITERATURE REVIEW	9 – 25
	2.1 Strata Behaviour Experiences	9
	2.2 Mechanics of Caving and Load Transfer	13
	2.3 Progressive Goaf Compaction	15
	2.4 Performance of Goaf Edge Support	17
	2.5 Effect of Softcover	20
	2.6 Summary	24

3. NUMERICAL MODEL FORMULATION AND SIMULATION27 - 65

SCHEME

4.

3.1 Numerical Model Formulation	27
3.1.1 Defining Model Geometry	28
3.1.2 Assigning Material Properties	30
3.1.3 Simulation of Major Parting Planes	35
3.1.4 In situ Stress Initialisation	36
3.1.5 Applying Boundary Conditions	39
3.1.6 Modelling of Supports at Advance Galleries and Goaf Edge	40
3.2 Development of FISH Sub-Routines	42
3.2.1 Simulating Progressive Failure and Caving of Roof	43
3.2.2 Simulation of Cyclic Filling of the Caved Goaf	53
3.2.3 Simulating Progressive Compaction of Caved Goaf	64
PARAMETRIC MODELLING STUDY	67 – 121
4.1 General	67
4.2 Strata and Support Behaviour at 150 m depth	69
	07
4.2.1 Caving Behaviour	70
4.2.1 Caving Behaviour4.2.2 Front Abutment Stress in the Working	70 73
4.2.1 Caving Behaviour4.2.2 Front Abutment Stress in the Working4.2.3 Load on the Goaf Edge Support	70 73 74
4.2.1 Caving Behaviour4.2.2 Front Abutment Stress in the Working4.2.3 Load on the Goaf Edge Support4.2.4 Convergence at the Goaf Edge	70 73 74 75
 4.2.1 Caving Behaviour 4.2.2 Front Abutment Stress in the Working 4.2.3 Load on the Goaf Edge Support 4.2.4 Convergence at the Goaf Edge 4.2.5 Bending Behaviour of Parting Strata and Stress Recovery in the 	70 73 74 75
 4.2.1 Caving Behaviour 4.2.2 Front Abutment Stress in the Working 4.2.3 Load on the Goaf Edge Support 4.2.4 Convergence at the Goaf Edge 4.2.5 Bending Behaviour of Parting Strata and Stress Recovery in the Caved Goaf 	70 73 74 75 79
 4.2.1 Caving Behaviour 4.2.2 Front Abutment Stress in the Working 4.2.3 Load on the Goaf Edge Support 4.2.4 Convergence at the Goaf Edge 4.2.5 Bending Behaviour of Parting Strata and Stress Recovery in the Caved Goaf 4.3 Strata and Support Behaviour at 250 m depth 	70 73 74 75 79 85
 4.2.1 Caving Behaviour 4.2.2 Front Abutment Stress in the Working 4.2.3 Load on the Goaf Edge Support 4.2.4 Convergence at the Goaf Edge 4.2.5 Bending Behaviour of Parting Strata and Stress Recovery in the Caved Goaf 4.3 Strata and Support Behaviour at 250 m depth 4.3.1 Caving Behaviour 	70 73 74 75 79 85 86

	4.3.3 Load on the Goaf Edge Support	90
	4.3.4 Convergence at the Goaf Edge	91
	4.3.5 Bending Behaviour of Parting Strata and Stress Recovery in the	
	Caved Goaf	93
	4.4 Strata and Support Behaviour at 350 m depth	100
	4.4.1 Caving Behaviour	100
	4.4.2 Front Abutment Stress in the Working	103
	4.4.3 Load on the Goaf Edge Support	104
	4.4.4 Convergence at the Goaf Edge	105
	4.4.5 Bending Behaviour of Parting Strata and Stress Recovery in the	
	Caved Goaf	107
	4.5 Results	112
	4.6 Summary	120
5.	DESIGN CRITERIA	123 – 135
	5.1 Estimation of Safe Parting Thickness	124
	5.2 Peak Settlement Rate of the Parting Strata	127
	5.3 Location of the failure in the Parting strata	131
	5.4 Summary	133
6.	MODEL VALIDATION	137 - 169
	6.1 About the Mine	137
	6.1.1 Depillaring Panel and Borehole Section	138
	6.2 Numerical Modelling	141
	6.3 Effect of PS/SC on the Strata and Support Behaviour	143
	6.4 Bending Behaviour of PS and Stress Recovery in the Caved Goaf	147
	6.5 Assessment of the Safe Parting Thickness	153

	6.6 Estimation of the Optimum Support Capacity	156
	6.7 Three Dimensional Modelling	159
	6.8 Summary	167
7.	DISCUSSION	171 – 191
	7.1 General	171
	7.2 Field Observation	171
	7.3 Development of Numerical Modelling Approach for Simulation of	
	Strata Behaviour and Goaf Edge Support Performance	173
	7.4 Parametric Numerical Modelling Study	175
	7.4.1 Overall Strata Behaviour	182
	7.4.2 Failure of the Parting Strata	183
	7.4.3 Settlement of Parting Strata	184
	7.4.4 Stress Recovery in Caved Goaf	185
	7.5 Design Criteria for Safe Parting and Optimal Support Capacity	186
	7.6 Field Validation	188
8.	CONCLUSION	193 – 196
9.	LIMITATIONS AND SCOPE FOR FUTURE WORK	198 – 200
Re	ferences	201 - 213
Lis	st of Publications	214

LIST OF TABLES

Table No.	Title	Page No.
1.1	List of underground workings under softcover	4
2.1	Front abutment stress in shallow depth depillaring workings	10
2.2	Front abutment stress in Continuous miner depillaring workings	11
2.3	Critical area of goaf exposure in a few depillaring workings	14
2.4	Stress recovery and cover pressure distance in different conditions	17
4.1	Rock-mass properties for the parametric modelling study	67
4.2	Details of experimental depillaring workings at different depths of cover	68
4.3	Model observed main fall span at 150 m cover depth	70
4.4	Maximum convergence at the goaf edge for varying PS/SC at 150 m depth	78
4.5	Vertical stress recovered after main fall at 150 m cover depth	84
4.6	Model observed main fall span at 250 m cover depth	86
4.7	Maximum convergence at the goaf edge for varying PS/SC at 250 m depth	93
4.8	Vertical stress recovered after main fall at 250 m cover depth	99
4.9	Model observed main fall span at 350 m cover depth	101
4.10	Maximum convergence at the goaf edge for varying PS/SC at 350 m depth	106
4.11	Vertical stress recovered after main fall at 350 m cover depth	111
4.12	Main fall span at different PS/SC at the cover depth of 150 - 350 m	113
4.13	Maximum and average load on the support in different conditions	116
5.1	Maximum goaf edge convergence slope for varying PS/SC at the cover depth of 150-350 m	125
5.2	PSR for different PS/SC at cover depth of 150-350 m	128
5.3	Location of failure in the parting strata for different PS/SC	132
6.1	Rock mass properties of Kuiya Colliery	141
6.2	Main fall span for varying PS/SC at Kuiya Colliery	146
6.3	Vertical stress recovered after main fall at 93 m cover depth	151

LIST OF FIGURES

Figure No.	Title	Page No.
1.1	Schematic diagram of depillaring under softcover	3
2.1	Front and Side Abutment Stresses around a working	10
3.1	Flowchart for formulation of the numerical model	28
3.2	Virgin model showing the softcover at the top	29
3.3	Vertical stress from mining and civil engineering projects	37
3.4	Variation of k with depth for different modulus of rock	38
3.5	Developed galleries in the modelled Bord and Pillar working	40
3.6	Schematic diagram of the modelled goaf edge support	42
3.7	Rock-support interaction diagram	44
3.8	Numerical model obtained ground response curve	46
3.9	FISH sub-routine for simulating elastic convergence at the goaf edge	48
3.10	FISH sub-routine for simulating caving of strata due to excessive shear strain	48
3.11	FISH sub-routine for simulating caving of strata due to excessive vertical displacement	49
3.12	FISH sub-routine for elasto-plastic convergence at the face	50
3.13	FISH sub-routine for simulating sequential advance of the goaf edge	52
3.14	FISH sub-routine for simulating softening of strata undergoing tensile failure	52
3.15	FISH sub-routine for simulating softening of strata undergoing shear failure	53
3.16	Line diagram for mapping peripheral points of goaf filling region during a. main fall, and b. periodic caving	54
3.17a	FISH sub-routine for simulating goaf filling during main fall	57
3.17b	FISH sub-routine for simulating goaf filling during periodic caving	58
3.18	Deformed zones in newly filled caved goaf	59
3.19	FISH sub-routine for storing the address and coordinates of the nodes in the virgin model	60
3.20	FISH sub-routine for relocation of nodes	61
3.21	Plot showing relocated goaf filled zone after the main fall	61
3.22	Goaf filling after caving of the overhang	62
3.23	Goaf filling at main fall and periodic caving in depillaring panel	63

3.24	FISH sub-routine for storing bulk modulus of goaf material in the allocated memory	64
3.25	FISH sub-routine for updating goaf modulus and vertical stress	65
4.1	Model observed main fall for different PS/SC at 150 m cover depth a. 36 m face advance, PS/SC=0.12, PS=13.5 m, SC=112.5 m	73
	b. 38 m face advance, PS/SC=0.26, PS = 26 m, SC = 100 m	
	c. 40 m face advance, PS/SC=0.68, PS = 51 m, SC = 75 m	
	d. 42 m face advance, PS/SC=1.52, PS = 76 m, SC = 50 m	
	e. 42 m face advance, PS/SC=2.36, PS = 88.5 m, SC = 37.5 m	
4.2	Plot of front abutment stress ratio with progressive face advance at 150 m cover depth	74
4.3	Load on the goaf edge support of 2×400 t capacity with progressive face advance at cover depth of 150 m	75
4.4	Goaf edge convergence with progressive face advance at cover depth of 150 m	77
4.5	Failure of rib pillar between the advance gallery and the goaf edge	78
4.6	Goaf filling at the cover depth of 150 m, Goaf1 represents the first fill, Goaf 2, 3 represent the subsequent fills	82
	a. PS/SC=0.12, PS = 13.5 m, SC = 112.5 m	
	b. PS/SC of 0.26, PS = 26 m, SC = 100 m	
	c. PS/SC of 0.68, PS = 51 m, SC = 75 m	
	d. PS/SC of 1.52, PS = 76 m, SC = 50 m	
	e. PS/SC of 2.36, PS = 88.5 m, SC = 37.5 m	
4.7	Vertical settlement in parting strata for different PS/SC at 150 m depth	83
4.8	Stress recovery at cover depth of 150 m, PS/SC= 0.12, 2.36	85
4.9	Model observed main fall for different PS/SC at cover depth of 250 m	89
	a. 34 m face advance, $PS/SC = 0.21$, $PS = 38.5$ m, $SC = 187.5$ m	
	b. 36 m face advance, PS/SC = 0.36, PS = 59.3 m, SC = 166.7 m	
	c. 38 m face advance, $PS/SC = 0.81$, $PS = 101$ m, $SC = 125$ m	
	d. 38 m face advance, PS/SC = 1.71, PS = 142.7 m, SC = 83.3 m	
	e. 38 m face advance, PS/SC = 2.62, PS = 163.5 m, SC = 62.5 m	
4.10	Front abutment stress ratio at 250 m cover depth, $PS/SC = 0.21, 2.62$	90
4.11	Load on the goaf edge support of 2 \times 400 t capacity at cover depth of 250 m	91
4.12	Goaf edge convergence for different PS/SC at the cover depth of 250 m	92
4.13	Periodic goaf filling at 250 m cover depth	96
	a.PS/SC = 0.21, PS =38.5 m, SC =187.5 m	
	b. PS/SC = 0.36, PS = 59.3 m, SC = 166.7 m	

	c. PS/SC = 0.81, PS = 101 m, SC = 125 m	
	d. PS/SC = 1.71, PS = 142.7 m, SC = 83.3 m	
	e. PS/SC = 2.62, PS = 163.5 m, SC = 62.5 m	
4.14	Vertical settlement in parting strata for different PS/SC at 250 m cover depth	98
4.15	Stress recovery at the cover depth of 250 m , $PS/SC = 0.21$, 2.62	100
4.16	Model observed main fall at 350 m cover depth	103
	a. 31 m face advance, $PS/SC = 0.24$, $PS = 63.5$ m, $SC = 262.5$ m	
	b. 33 m face advance, PS/SC = 0.4, PS = 92.7 m, SC = 233.3 m	
	c. 36 m face advance, $PS/SC = 0.86$, $PS = 151$ m, $SC = 175$ m	
	d. 36 m face advance, PS/SC = 1.79, PS = 209.3 m, SC = 116.7 m	
4.17	Front abutment stress ratio at 350 m cover depth, $PS/SC = 0.24$, 1.79	104
4.18	Load on the goaf edge support of 2 \times 400 t capacity at cover depth of 350 m	105
4.19	Goaf edge convergence for different PS/SC ratios at cover depth of 350 m	106
4.20	Periodic goaf filling at 350 m cover depth	109
	a. PS/SC = 0.24, PS = 63.5 m, SC = 262.5 m	
	b. PS/SC = 0.4, PS = 92.7 m, SC = 233.3 m	
	c. PS/SC = 0.86, PS = 151 m, SC = 175 m	
	d. PS/SC = 1.79, PS = 209.3 m, SC = 116.7 m	
4.21	Vertical settlement of parting strata for different PS/SC at 350 m cover depth	110
4.22	Goaf stress recovery at 350 m cover depth for $PS/SC = 0.24, 1.79$	112
4.23	Effect of PS/SC on the main fall span at different cover depth	113
4.24	Variation in the maximum FASR with PS/SC at different cover depth	114
4.25	Variation in the average FASR with PS/SC at different cover depth	115
4.26	Maximum goaf edge convergence for different PS/SC at 150 m depth	117
5.1	Maximum goaf edge convergence slope for varying PS/SC at the cover depth of $150 - 350$ m	126
5.2	Peak settlement rate for different PS/SC at cover depth of a.150 m, b. 250 m, c. 350 m	130
5.3	Location of failure in the PS for variation in PS/SC at cover depth of 150-350 m	132
5.4	Flowchart showing recommended design and implementation steps	135
6.1	Map of India showing the location of Kuiya Colliery	138
6.2	Plan of the depillaring panel at Kuiya Colliery	139
6.3	Borehole Section of overlying strata at Kuiya Colliery	140

6.4	a. Virgin model of the depillaring working under softcover at Kuiya Colliery, b. Developed headings in the plane strain condition	142
6.5	Occurrence of main fall for different PS/SC	145
	a. 38 m face advance, $PS/SC = 0.15$	
	b. 39 m face advance, $PS/SC = 0.42$	
	c. 40 m face advance, $PS/SC = 0.61$	
	d. 40 m face advance, $PS/SC = 0.78$	
6.6	Main fall Span for various PS/SC at Kuiya Colliery	146
6.7	Trend of PFASR with the increase in PS/SC	147
6.8	Periodic goaf filling in the depillaring working, a. $PS/SC = 0.15$, b. $PS/SC = 0.42$, c. $PS/SC = 0.61$, d. $PS/SC = 0.78$	150
6.9	Goaf stress recovery in Kuiya working at the cover depth of 93 m, PS/SC=0.15, 0.78	152
6.10	Settlement of PS with progressive face advance in Kuiya working, PS/SC $= 0.15, 0.78$	153
6.11	Plot of the MGECS vs. PS/SC for Kuiya depillaring working	154
6.12	Peak settlement rate of the parting strata for different PS/SC at Kuiya Colliery	155
6.13	Location of the failure for different PS/SC	156
6.14	Load on the support during progressive depillaring with different support capacity	157
6.15	Goaf edge convergence with the progressive face advance with different support capacity	158
6.16	Maximum goaf edge convergence vs. Support capacity	159
6.17	Three dimensional model of Kuiya depillaring working	161
6.18	3D model of the developed panel	162
6.19	Numerical model showing diagonal line of face advance	163
6.20	Front abutment stress at 97 m face advance	164
6.21	Failure state in the pillars at 97 m face advance	165
6.22	Main fall at 104 m of the diagonal face advance	166
6.23	Caving profile of strata along the section line AA'	167

LIST OF SYMBOLS

Sy

mbols	Description
σ_{cm}	Rock Mass Compressive Strength
σ_{tm}	Rock Mass Tensile Strength
σ_{c}	Intact Rock Compressive Strength
σ_t	Intact Rock Tensile Strength
E_m	Rock Mass Modulus
Е	Intact Rock Modulus
Κ	Bulk Modulus
G	Shear Modulus
Ε	Young's Modulus
ν	Poisson's Ratio
C_{cm}	Cohesive Strength of Rock Mass
ϕ	Friction Angle
f_s	Mohr-Coulomb Shear Yield Function
f_t	Tension Yield Function
σ_l	Major Principal Stress
σ_2	Minor Principal Stress
$\mathbf{F}_{\mathbf{n}}$	Normal Force
F_s	Shear Force
un	Normal Displacement
us	Shear Displacement
L	Effective Contact Length
σ_{v}	Vertical Stress
γ	Unit Weight of Rock
Κ	Ratio of Average Horizontal Stress to Vertical Stress
β	Thermal Expansion Coefficient of Rock

- G'Geothermic Gradient
- Depth from the Surface Η
- Young's Modulus of Rock Ε
- Bulk Modulus of the Water-Oil Mixture $K_{\rm w}$