CHAPTER 6

RESULTS AND DISCUSSION FOR POWDER FACTOR (PF)

6.1 Results of PF estimation

Prior to discussing the chief objectives, it may be consequential to see the results of PF estimation (Table 6.1). From the results (quarry A, B and C), it is easily discernible that there exists a discrepancy between the actual and theoretical values of PF.

S.No.	Quarry	Average PF	Average PF	Average %	Average
		(Theoretical)	(Actual)	Discrepancy	standard
		(Kg/t)	(Kg/t)		deviation
1.	А	0.20	0.19	7.1	0.009
2.	В	0.16	0.14	9.4	0.008
3.	С	0.23	0.21	9.4	0.011

Table 6.1: Discrepancy in theoretical and actual PF

For all the quarries, the theoretical PF is greater than the actual PF. The average % discrepancy has been observed as 7.1, 9.4 and 9.4 for the quarries A, B and C, respectively. the values of average standard deviation (0.009 for quarry A, 0.008 for quarry B and 0.011 for quarry C) have revealed correctness of the average PF (actual) value.

The values of theoretical PF and actual PF for all the quarries (quarry A, B and C) is illustrated individually in Appendix- A.1, A.2 and A.3 respectively. In the present study the actual PF values have been investigated instead of the theoretical PF values.

The primary descriptive statistics of the input blasting design parameters and an output parameter (PF) together with their respective symbols has been represented in Table 5.1.

6.2 Results from PCA

6.2.1 Results for quarry A using PCA

PCA led to the generation of 6 PC groups with eigen value greater than 1.0, which is illustrated by scree plot in Figure 6.1. These 6 PC groups accounted for 87.194% cumulative variance in blasting design parameters. Table 6.2 illustrates the data matrix explaining the variance and the number of PC groups.

 Table 6.2: Data matrix explaining variance for the study quarry A (for PF prediction)

Principal	Initial Eigenvalues and Variance					
Component	Total	% of Variance	Cumulative %			
Group						
1	5.578	29.357	29.357			
2	3.368	17.729	47.085			
3	2.668	14.041	61.127			
4	2.278	11.992	73.119			
5	1.512	7.957	81.075			
6	1.105	6.119	87.194			
7	.854	5.274	92.468			
8	.637	3.353	95.821			
9	.455	2.396	98.217			
10	.245	1.287	99.504			
11	.059	.308	99.812			
12	.020	.105	99.917			
13	.009	.050	99.967			
14	.003	.014	99.981			
15	.002	.010	99.992			
16	.001	.005	99.997			
17	.001	.003	100.000			
18	6.258E-	.000	100.000			
	005					
19	-1.002E-	-5.271E-015	100.000			
	015					
20	-1.003E- 019	-5.128E-015	100.000			

Figure 6.1: Scree plot indicating principal component groups for PF in quarry A

Table 6.3 illustrates the 6 PC groups with the coefficient of determination (R^2) values for all the blasting design parameters. As such, PCs were identified from each component group based on the value of R^2 .

Blasting design PC groups with regression scores						
parameters	1	2	3	4	5	6
В	.874	346	174	.150	.038	174
D	.723	220	067	.219	.318	.244
S	.850	235	162	.144	084	204
Н	189	.201	650	160	.542	149
Т	402	112	.081	.458	.686	340
CCL	.021	.274	838	421	.196	.029
S/B	500	.433	.137	087	273	.047
T/B	884	.234	.186	.102	.315	.025
H/B	841	.387	138	184	.210	.137
T/CCL	251	262	.657	.566	.245	227
Nr	.322	.986	.190	.176	.056	.085
Nh	.292	.904	.173	.161	.009	.091
Qe	.534	.978	.075	.222	.055	.133
Di	.478	.177	.514	586	.282	084
CPD	.740	243	136	.149	.259	.214
HD	.169	205	.160	035	.303	.614
RD	121	451	.246	144	.169	.679
Vr	.994	.658	045	.204	.060	077
SD	.303	.260	.563	643	.218	156
PPV	333	.281	286	.682	143	.266

Table 6.3: Identification of PCs in the study quarry A for PF

A total number of 14 PCs were identified and extracted from the Table 6.4, namely RD, H/B, SD, T, HD, Qe, CCL, PPV, Nh, S, Vr, Nr, B and T/B. These 14 PCs have been grouped into 6 PC groups based on the R² values. The results of 6 PC groups is tabulated in Table 6.4.

Principal Component Group-1	B, S,T/B,H/B, Vr
Principal Component Group -2	Nr, Nh, Qe
Principal Component Group -3	Н
Principal Component Group -4	SD, PPV
Principal Component Group -5	Т
Principal Component Group -6	HD, RD

Table 6.4: The 6 identified PC groups by PCA for PF (quarry A)

The MLR analysis for PF prediction has been carried out for all the identified 14 PCs [RD, H/B, SD, T, HD, Qe, CCL, PPV, Nh, S,Vr, Nr, B and T/B], revealed multicollinearity. Therefore, after eliminating the multi-collinearity, MLR analysis for PF prediction has been carried out for all the retained 9 PCs [RD, T, SD, S, CCL, HD, Qe, PPV and Vr].

Table 6.5 summarizes the MLR analysis results for all the identified 14 PCs. It is revealed that an acute multi-collinearity was associated with some of these PCs.

ModelRR SquareAdjusted
SquareR Significance
EstimateStd. Error of the
Estimate10.9120.8310.7940.000.011725

Table 6.5: MLR results for the identified 14 PCs

From the analysis, it has been found that 5 out of 14 PCs were having multicollinearity (VIF>10). Therefore, 5 PCs were rejected because they contained multi-collinearity among input variables (Table 6.6).

Table 6.6: Blast design parameters with multi-collinearity (VIF>10) for PF(quarry A)

S.No.	Blasting design parameters	VIF values
1	H/B	16.12
2	Nh	13.15
3	Nr	11.16
4	В	13.25
5	T/B	14.13

Accordingly, the new prediction model has been developed after removing the 5 PCs, which contained multi-collinearity. As such, 9 PCs [RD, T, SD, S, CCL, HD, Qe, PPV and Vr] have been identified, which were free from multi-collinearity (Table 6.7).

Table 6.7: Blast design parameters with multi-collinearity (VIF<10) for PF</th>(quarryA)

S.No.	Blasting design parameters	VIF values
1	S	3.242
2	Qe	2.696
3	Vr	7.244
4	CCL	1.286
5	SD	2.454
6	PPV	2.465

The MLR technique has thus been applied on the 6 identified parameters to develop the equation, subsequently the unstandardized coefficients of the selected blasting design parameters together with their significance value and standard error have been derived. Table 6.8 presents the results in terms of the unstandardized coefficients with the significance, standard error and collinearity statistics of the selected blasting design parameters.

Blasting design	Unstandardized Coefficients		Significance	Collinearity Statistics	
parameters	В	Std. Error		Tolerance	VIF
(Constant)	.394	.055	.000		
S	029	.006	.000	.308	3.242
Qe	.005	.000	.000	.479	2.696
Vr	-2.970E-005	.000	.000	.158	7.244
CCL	.002	.003	.501	.777	1.286
SD	5.554E-005	.000	.679	.407	2.454
PPV	001	.002	.732	.406	2.465

Table 6.8: Descriptive statistics of 6 parameters for developing predictor Eq. for PF

The developed model in the form of equation using unstandardized regression coefficient (β -value) associated with 6 retained PCs (as illustrated in Table 6.8), is presented in Eq.6.1:

 $PF = 0.394 - S \times (0.029) + Qe \times (0.005) - Vr \times (0.000002970) + CCL \times (0.002) + SD \times (0.000005554) - PPV \times (0.001)$ (6.1)

The MLR analysis results for the developed equation has been presented in Table 6.9.

Model	R	R Square value	Adjusted R Square value	Significance level	Std. Error ofthe Estimate	F value
1	0.885	0.783	0.764	0.00	0.01883	40.991

Table 6.9: MLR based descriptive statistics for the parameters used in Eq. 6.1

It is noteworthy that the value of R^2 is found to be 0.783 and adjusted (R^2) is 0.764 for the developed equation. The significance level was 0.00 and the F-value is 40.991, which strengthen the obtained results.

6.3.2 Results for quarry B using PCA

```
PCA led to the generation of 6 PC groups with eigen value greater than 1.0, which is illustrated by scree plot in Figure 6.2. These 6 PC groups and accounted for 90.95% cumulative variance in blasting design parameters. Table 6.10 illustrates the data matrix explaining the variance and the number of PC groups.
```

Princiapl	Initial Eigenvalues and Variance					
Component Group	Total	% of Variance	Cumulative %			
1	6.755	33.773	33.773			
2	3.469	17.343	51.116			
3	2.676	13.379	64.494			
4	1.833	9.166	73.660			
5	1.339	6.694	80.354			
6	1.016	5.517	85.872			
7	0.946	5.079	90.950			
8	.581	2.907	93.858			
9	.497	2.486	96.344			
10	.336	1.681	98.024			
11	.137	.687	98.712			
12	.113	.567	99.278			
13	.105	.527	99.805			
14	.018	.091	99.896			
15	.009	.044	99.940			
16	.005	.024	99.964			
17	.004	.019	99.982			
18	.001	.006	99.996			
19	.001	.004	100.000			
20	.001	.003	100.000			

Table 6.10: Data matrix explaining variance for the study quarry B (for PF prediction)

Figure 6.2: Scree plot indicating principal component groups for PF in quarry B

Table 6.11 illustrates the 6 PC groups with the coefficient of determination (R^2) values for all the blasting design parameters. As such, the PCs were identified from each component group based on the value of R^2 .

Blasting		PC Groups with regression coefficient				
design	1	2	3	4	5	6
parameters						
В	.986	.007	028	.100	026	.016
D	.960	.086	056	.028	.053	015
S	.941	082	.005	.099	027	.185
Н	.140	.216	.361	377	.185	.686
Т	.271	.843	189	377	078	.153
CCL	194	770	.425	.162	.193	.253
S_B	316	307	.047	063	010	.512
T_B	904	.466	092	299	.005	.063
H_B	969	.021	.081	145	.057	.089
T_CCL	.250	.846	303	310	126	.005
Nr	229	.281	.886	.026	110	143
Nh	293	.287	.805	.158	119	184
Qe	.138	.359	.816	019	012	.000
Di	.025	.553	045	.748	059	.175
CPD	.954	007	.003	.056	.089	.022
HD	.034	.440	.176	.184	.664	050
RD	.001	.154	045	044	.863	170
Vr	.740	.130	.806	.211	122	.088
SD	643	.481	034	.542	100	.112
PPV	.300	150	.534	623	062	232

Table 6.11: Identification of PCs in study quarry B for PF

A total number of 15 PCs were identified and extracted from the Table 6.11, namely H, Di, RD, H/B, Nr, T/CCL,Qe, Nh, CPD, S, Vr, T/B, D, B and T. These 15 PCs have been grouped into 6 PC groups based on the R² values. The results of 6 PC groups is tabulated in Table 6.12.

Principal Component Group-1	B, D, S, H/B, CPD, T/B
Principal Component Group -2	T, T/CCL
Principal Component Group -3	Qe, Nr, Nh, Vr
Principal Component Group -4	Di
Principal Component Group -5	RD
Principal Component Group -6	Н

Table 6.12: The 6 identified PC groups by PCA for PF (quarry B)

The MLR analysis for PF prediction carried out for all the identified 15 PCs [H, Di, RD, H/B, Nr, T/CCL, Qe, Nh, CPD, S, Vr, T/B, D, B and T], revealed multicollinearity. Therefore, after eliminating the multi-collinearity, MLR analysis for PF prediction has been carried out for the retained 9 PCs [H, Di, RD, S, Nr, T/CCL, Qe, D, Vr], Table 6.13 summarizes the MLR analysis results for all the identified 15 PCs. It is revealed that an acute multi-collinearity was associated with some of these PCs.

Table 6.13: MLR results for the identified 15 PCs

Model	R	R Square	Adjusted F Square	Significance value	Std. Error of the Estimate
1	0.885	0.783	0.735	0.00	0.021669

From the analysis, it has been found that 6 out of 15 PCs were having multicollinearity (VIF>10). Therefore, 6 PCs were rejected because they contained multicollinearity among input variables (Table 6.14).

Table 6.14: Blast design parameters with multi-collinearity (VIF >10)

for PF (quarry B)

S.No.	Blasting design parameters	VIF values
1	H/B	13.62
2	Nh	12.15
3	CPD	17.36
4	T/B	13.25
5	В	18.23
6	Т	11.13

Accordingly, the new prediction equation has been developed after removing the 6 PCs, which contained multi-collinearity. As such, 9 PCs [H, Di, RD, S, Nr, T/CCL, Qe, D and Vr] have been selected, which were free from multi-collinearity (Table 6.15).

Table 6.15:	Blast	design	parameters	without	multi-collinea	arity (VIF	<10)
for PF (quar	ry B)						

S.No.	Blasting design parameters	VIF values
1	D	4.620
2	S	8.537
3	Vr	6.504
4	T/CCL	1.240
5	Nr	2.633
6	Di	1.231
7	Qe	1.717
8	RD	1.063
9	Н	1.218

The MLR technique has thus been applied on the 9 identified parameters to develop the equation, subsequently the unstandardized coefficients of the selected blasting design parameters together with their significance value and standard error have been derived. Table 6.16 presents the results in terms of the unstandardized coefficients with the significance, standard error and collinearity statistics of the selected blasting design parameters.

Blasting design	Unstandardiz	ed Coefficients	Significan ce level	Collinearit Statistics	у
parameters	В	Std. Error	-	Tolerance	VIF
(Constant)	.278	.147	.063		
D	.001	.000	.000	.216	4.620
S	065	.010	.000	.117	8.537
Vr	-1.691E-006	.000	.649	.154	6.504
T/CCL	102	.033	.003	.807	1.240
Nr	.015	.007	.048	.380	2.633
Di	2.784E-005	.000	.626	.813	1.231
Qe	3.687E-005	.000	.002	.582	1.717
RD	.000	.000	.271	.941	1.063
Н	.010	.014	.462	.821	1.218

Table 6.16: Descriptive statistics of 9 parameters for developing predictor Eq. forPF

The developed model in the form of equation using unstandardized regression coefficient (β -value) associated with 9 retained PCs (as illustrated in Table 6.16), is presented in Eq.6.2:

$$PF = 0.278 + 0.001 \times (D) - 0.065 \times (S) - 0.000001691 \times (Vr) - 0.102 \times \left(\frac{T}{CCL}\right) + 0.015 \times (Nr) + 0.0000278 \times (Di) + 0.0000368 \times (Qe) + 0.010 \times (H)$$
(6.2)

The MLR analysis results for the developed equation has been presented in Table 6.17.

Table 6.17: MLR based descriptive statistics for the parameters used in Eq. 6.2

Model	R	R Square	Adjusted RSquare	Significa nce level	Std. Error of the Estimate	F
1	0.876	0.767	0.736	0.00	0.0216210	25.199

It is noteworthy that the value of R^2 has been found be 0.767 and adjusted R^2 has been found as 0.736 for the selected equation. The significance level has been found to be 0.00and the F-value has been observed as 25.199, which improves the authenticity of the predictor equation.

6.3.3 Results for quarry C using PCA

PCA led to the generation of 7 PC groups with eigen value greater than 1.0, which is illustrated by scree plot in Figure 6.3. These 7 PC groups accounted for 89.45 % cumulative variance in blasting design parameters. Table 6.18 illustrates the data matrix explaining the total variance and the number of PC groups.

Principal	Ini	Initial Eigenvalues and variance			
Componer group	^{nt} Total	% of Variance	Cumulative		
1	4.668	24.570	24.570		
2	3.543	18.650	43.220		
3	2.797	14.721	57.941		
4	1.845	9.713	67.654		
5	1.720	9.052	76.706		
6	1.399	7.364	84.070		
7	1.023	5.385	89.455		
8	.887	4.667	94.121		
9	.669	3.519	97.640		
10	.257	1.355	98.995		
11	.076	.401	99.396		
12	.062	.325	99.721		
13	.035	.185	99.905		
14	.012	.061	99.966		
15	.003	.017	99.983		
16	.002	.009	99.993		
17	.001	.004	99.997		
18	.000	.002	99.999		
19	.000	.001	100.000		
20	.000	.001	100.000		

Table 6.18: Data matrix explaining variance for the study quarry C(for PF prediction)

Table 6.19 illustrates the 7 PC groups with the coefficient of determination (R^2) values for all the blasting design parameters. As such, the PCs were identified from each component group based on the value of R^2 .

Blasting	PC g	PC groups with regression coefficient						
design	1	2	3	4	5	6	7	
parameters								
В	425	.561	141	.181	.595	.226	139	
D	070	009	.101	559	127	.296	.381	
S	105	.491	248	067	058	.793	160	
Н	.569	181	.545	151	.407	.129	283	
Т	.677	529	061	.043	.397	.197	123	
CCL	072	.367	.836	235	.107	071	207	
S/B	.321	077	116	252	662	.552	019	
T/B	.719	680	.022	060	.015	.039	030	
H/B	.633	539	.400	220	250	113	044	
T/CCL	.565	569	450	.138	.241	.183	.003	
Nr	.712	.534	.100	.323	182	141	.059	
Nh	.728	.546	.092	.300	178	083	.096	
Qe	.715	.543	.095	.233	158	141	.113	
CPD	120	.328	.881	457	.027	.074	.023	
Di	287	382	.575	.555	121	.289	.089	
HD	.140	.143	.057	036	.328	.067	.770	
RD	.333	107	.176	084	.470	.192	.231	
Vr	.507	.735	.119	.286	.060	.242	079	
SD	269	432	.450	.643	128	.280	.081	
PPV	.602	.402	364	322	.070	027	090	

Table 6.19: Identification of PCs in the study quarry C for PF

A total number of 12 PCs were identified and extracted from the Table 6.19, namely HD, T/B, SD, Vr,CPD, S/B, S, CCL, Qe, Nr, Nh and T/CCL, and are tabulated in Table 6.20.

Principal Component Group-1	T/B, Nr, Nh, Qe
Principal Component Group -2	Vr
Principal Component Group -3	CCL, CPD
Principal Component Group -4	D, SD
Principal Component Group -5	S/B
Principal Component Group -6	S
Principal Component Group - 7	HD

Table 6.20: The 7 identified PC groups by PCA for PF (quarry C)

The MLR analysis for PF prediction carried out for all the identified 12 PCs [HD, T/B, SD, Vr, CPD, S/B, S, CCL, Qe, Nr,Nh and T/CCL], revealed multi-collinearity. Therefore, after eliminating multi-collinearity, MLR analysis for PF prediction has been carried out for the retained 8 PCs [HD, T/B, SD, Vr, CPD, S, CCL, Qe].

Table 6.21 summarizes the MLR analysis results for all the identified 12 PCs. It is revealed that an acute multi-collinearity was associated with some of these PCs.

 Table 6.21: MLR results for all the identified 12 PCs

Model	R	R Square	Adjusted R Square	Significance level	Std. Error of the Estimate
1	0.933	0.871	0.835	0.00	0.008224

From the analysis, it has been found that 4 out of 12 PCs were having multicollinearity (VIF>10). Therefore, 4 PCs were rejected because they contained multi-collinearity among input variables (Table 6.22).

Table 6.22: Blast design parameters with multi-collinearity (VIF >10) for

PF (quarry C)

S.No.	Blasting design parameters	VIF values
1	S/B	14.25
2	Nr	11.36
3	Nh	15.12
4	T/CCL	12.36

Accordingly, the new prediction equation has been developed after removing the 4 PCs, which contained multi-collinearity. As such, 8 PCs [HD, T/B, SD, Vr, CPD, S, CCL, Qe] have been selected, which were free from multi-collinearity (Table 6.23).

Table 6.23: Blast design parameters without multi-collinearity (VIF <10) for PF (quarry C)

S.No.	Blasting design parameters	VIF values
1	T/B	2.237
2	Qe	6.525
3	Vr	8.889
4	CPD	3.976
5	CCL	4.560
6	SD	1.179
7	S	6.280
8	HD	1.043

The MLR technique thus been applied on the 8 identified parameters to develop the equation, subsequently the unstandardized coefficients of the selected blasting design parameters together with their significance value and standard error have been derived. Table 6.24 presents the results in terms of the unstandardized coefficients with the significance, standard error and collinearity statistics of the selected blasting design design parameters.

Model	Unstandardized Coefficients		Significance level	Collinearity Statistics	
	В	Std. Error		Tolerance	VIF
(Constant)	.210	.046	.000		
T/B	020	.010	.045	.447	2.237
Qe	.006	.000	.000	.153	6.525
Vr	-1.312E-005	.000	.000	.112	8.889
CPD	.000	.001	.765	.252	3.976
CCL	.003	.006	.609	.219	4.560
SD	5.742E-005	.000	.739	.848	1.179
S	.023	.008	.007	.159	6.280
HD	001	.001	.535	.959	1.043

Table 6.24: Descriptive statistics of 8 parameters for developingpredictor Eq. for PF

The developed model in the form of equation using unstandardized regression coefficient (β -value) associated with 6 retained PCs (as illustrated in Table 6.24), is presented in Eq.6.3:

$$PF = 0.210 - 0.020 \times \left(\frac{T}{B}\right) + 0.006 \times (Qe) - 0.000001312 \times (Vr) + 0.003 \times (CCL) + 0.000005742 \times (SD) - 0.023 \times (S) - 0.001 \times (HD)$$
(6.3)

The MLR analysis results for the developed equation have been presented in Table 6.25.

Model	R	R Square	Adjusted R Square	Significance level	Std. Error of the Estimate	F
1	0.930	0.865	0.842	0.00	0.008042	38.995

Table 6.25: MLR based descriptive statistics for the parameters used in Eq. 6.3

The value of (R^2) is 0.865 and adjusted (R^2) is 0.842 for the selected equation. The significance level has been found to be 0.00, and the F-value has been found as 38.995, which improves the authenticity of the predictor equation.

6.4 Results from SSE technique

6.4.1 Results for quarry A using SSE

The correlation matrix in Table 6.26 presents the significance values of all the blasting

design parameters with their respect to PF and Sig. (2-tailed).

Blasting	PF	Significance
design		
Parameters		
	Pearson correlation	(2-tailed)
В	-0.545	0.000
D	0.038	0.025
S	-0.520	0.000
Н	-0.185	0.111
Т	0.160	0.271
CCL	0.108	0.782
S/ B	0.373	0.001
T/ B	0.409	0.000
H/ B	0.454	0.000
T/CCL	-0.015	0.899
Nr	0.540	0.000
Nh	0.515	0.002
Qe	0.568	0.000
Di	0.140	0.230
CPD	0.026	0.025
Vr	0.402	0.000
HD	0.053	0.654
RD	0.052	0.661
PPV	0.253	0.028
SD	0.140	0.001

Table 6.26: Correlation	matrix with	significance	values with	respect to PF	(auarry A)
1 abic 0.20. Correlation	matin with	significance	values with	respect to r r	(qually 11)

Nine parameters [B, S, S/B, T/B, H/B, Nr, Nh, Qe and Vr] have been identified having sig. ≤ 0.05 , as revealed in Table 6.26. The results of MLR for PF prediction performed on the 9 identified parameters have been summarized in Table 6.27.

Table 6.27: MLR results for predicting PF using the identified 9 parameters

Model	R value	R Square Value	Adjusted F Square value	Significance level	Std. Error of the Estimate
1	0.895	0.801	0.767	0.00	0.010933

MLR analysis reveals Multi-collinearity in 5 out of 9 parameters. The values of VIF for the 5 parameters, which revealed multi-collinearity, are tabulated in Table 6.28.

Table 6.28: Blast design parameters with multi-collinearity (VIF >10) for PF (quarry A)

S.No.	Blasting design parameters	VIF values
1	В	15.64
2	S	11.29
3	S/B	12.85
4	H/B	10.91
5	Nr	16.27

Consequently, after removal of the 5 parameters exhibiting multi-collinearity, only the 4 parameters (T/B, Nh, Qe and Vr) identified having no multi-collinearity are summarized in Table 6.29.

Table 6.29: Blast design parameters without multi-collinearity (VIF <10) for PF (quarry A)

S.No.	Blasting design parameters	VIF values
1	T/B	5.379
2	Nh	9.914
3	Qe	1.619
4	Vr	2.383

As such, the unstandardized coefficients of the selected blasting design parameters together with their significance value and standard error are presented in Table 6.30. This table presents the unstandardized coefficients with the significance, standard error and collinearity statistics of the identified blasting design parameters.

Blasting design	Unstandardized Coefficients		Significance	Collinearity Statistics	
parameters	В	Std. Error		Tolerance	VIF
(Constant)	.203	.021	.000		
T/B	018	.019	.333	.186	5.379
Nh	.001	.000	.001	.101	9.914
Qe	.004	.000	.000	.494	1.619
Vr	-3.733E-005	.000	.000	.388	2.383

Table 6.30: Descriptive statistics of 4 parameters for developing predictor Eq. forPF

The developed model in the form of equation using unstandardized regression coefficient (β -value) associated with 4 retained PCs (as illustrated in Table 6.30), is presented in Eq.6.4:

$$PF = 0.203 + 0.018 \times \left(\frac{T}{B}\right) + 0.001 \times (Nh) + Qe \times (0.004) - 0.00000373 \times (Vr)$$
(6.4)

The MLR analysis results for the developed equation is presented in Table 6.31.

Table 6.31: MLR based descriptive statistics for the parameters used in the Eq. 6.4

Model	R value	R Square	Adjusted R	Significance	Std. Error of	F value
		value	Square value	Level	the Estimate	
			-			
1	0.855	0.730	0.702	0.00	0.021171	25.922

The value of R^2 has been found to be 0.730 and adjusted R^2 has been found as 0.702. Furthermore, the F-ratio has been found to be 25.922 which is much greater than 4 and the significance level was 0.00, which improves the authenticity of the predictor equation.

Since the 4 parameters were introduced sequentially, therefore it may be consequential to state that with the addition of each parameter, the value of R^2 increased from 0.354 to 0.730, as clearly revealed in Table 6.32.

Model	R value	R Square value	Adjusted Square value	RSignificance Level	F value	Predictor constants
1	0.595	0.354	0.304	0.005	18.269	T/B
2	0.689	0.474	0.425	0.001	19.298	T/B+Nh
3	0.768	0.589	0.526	0.000	23.648	T/B+Nh+Qe
4	0.855	0.730	0.702	0.000	25.922	T/B+Nh+Qe+Vr

Table 6.32: Summary of models prepared by MLR using SSE for PF (quarry A)

6.4.2 Results for quarry B using SSE

The correlation matrix in Table 6.33 presents the results of significance values of all

the blasting design parameters with respect to PF.

Table 6.33: Correlation matrix with significance values with respect to PF (quarry

B)

Blasting	PF	Significanc
design		e level
parameters		
	Pearson correlation	(2-tailed)
В	0.674	0.000
D	-0.515	0.000
S	-0.736	0.000
Н	0.038	0.742
Т	0.476	0.001
CCL	0.202	0.000
S/ B	0.089	0.450
T/ B	0.581	0.000
H/ B	0.687	0.000
T/CCL	-0.202	0.026
Nr	0.422	0.000
Nh	0.432	0.052
Qe	0.316	0.005
Di	0.513	0.001
CPD	-0.493	0.000
HD	0.073	0.520
RD	-0.067	0.969
PPV	0.094	0.412
SD	-0.586	0.003
Vr	0.612	0.001

Eleven parameters [B, D, S, T/B, H/B, CCL, Nr, SD, Qe, CPD and Vr] have been identified having sig. ≤ 0.05 , as revealed from Table 6.33. The results of MLR for PF prediction has been performed on the 11 identified parameters have been summarized in Table 6.34

Model	R	R Square	Adjusted R Square	Significance level	Std. Error of the Estimate
1	0.876	0.767	0.721	0.00	0.02224

Table 6.34: MLR results for	predicting PF using	the identified 11	parameters
		,	

MLR analysis reveals multi-collinearity in 3 out of 11 parameters. The values of VIF for the 3 parameters, which revealed multi-collinearity, are tabulated in Table 6.35.

 Table 6.35: Blast design parameters with multi-collinearity (VIF >10) for PF

(quarry B)

S.No.	Blasting design parameters	VIF values
1	В	14.16
2	D	16.12
3	H/B	11.25

Consequently, after removal of the 3 parameters exhibiting multi-collinearity, only the 8 parameters [S, T/B, CCL,Nr, Qe, CPD, Vr and SD] identified having no multicollinearity are summarized in Table 6.36.

Table 6.36: Blast design parameters without multi-collinearity (VIF <10) for

PF (quarry B)

S.No.	Blasting design parameters	VIF values
1	CCL	1.966
2	T/B	6.151
3	Qe	1.769
4	Nr	2.634
5	CPD	5.175
6	Vr	6.447
7	SD	2.020
8	S	1.821

As such, the unstandardized coefficients of the selected blasting design parameters together with their significance value and standard error are presented in Table 6.37. This table presents the unstandardized coefficients with the significance, standard error and collinearity statistics of the identified blasting design parameters.

Model	Unstandardized		Significance	Collinearit	у
	Coefficients		level	Statistics	
	В	Std. Error		Tolerance	VIF
(Constant)	.378	.139	.111		
CCL	.019	.011	.083	.509	1.966
T/B	.011	.036	.753	.163	6.151
Qe	3.321E-005	.000	.005	.565	1.769
Nr	.014	.008	.060	.380	2.634
CPD	.001	.000	.000	.193	5.175
Vr	-7.986E-007	.000	.829	.155	6.447
SD	.000	.000	.649	.495	2.020
S	064	.012	.000	.492	1.821

Table 6.37: Descriptive statistics of 8 parameters for developing predictor Eq. for PF

The developed model in the form of equation using unstandardized regression coefficient (β -value) associated with 8 retained PCs (as illustrated in Table 6.37), is presented in Eq.6.5:

$$PF = 0.378 + 0.019 \times (CCL) + 0.011 \times \left(\frac{T}{B}\right) + 0.0000332 \times (Qe) + 0.014 \times (Nr)$$
$$+ 0.001 \times (CPD) - 0.000007986 \times (Vr) - 0.064$$
$$\times (S) \tag{6.5}$$

The MLR analysis results for the developed equation has been presented in Table 6.38.

Table 6.38: MLR based descriptive statistics for the parameters used in Eq. 6.5

Model	R	R Square	Adjusted R Square	Significance level	Std. Error of the Estimate	F
1	0.868	0.751	0.724	0.00	0.0221011	26.635

A close perusal of the value R^2 has been found to be 0.751 and adjusted R^2 has been found as 0.724. Furthermore, the F-ratio has been found to be 26.635 which is much greater than 4 and significance level has been found as 0.00, which improves the authenticity of the predictor equation.

Since the 8 parameters were introduced sequentially. Therefore, it may be consequential to state that with the addition of each parameter, the value of R^2 increased from 0.159 to 0.751, as clearly revealed in Table 6.39.

Model	R	R Square	Adjusted	RSignificance	F	Predictor constants
			Square	level		
1	0.399	0.159	0.103	0.006	9.368	S
2	0.456	0.207	0.156	0.000	12.365	S+T/B
3	0.515	0.265	0.209	0.002	13.235	S+T/B+CCL
4	0.585	0.342	0.286	0.005	15.624	S+T/B+CCL+Nr
5	0.696	0.484	0.425	0.001	16.165	S+T/B+CCL+Nr+Qe
6	0.757	0.573	0.516	0.000	21.348	S+T/B+CCL+Nr+Qe+CPD
7	0.806	0.649	0.594	0.000	23.402	S+T/B+CCL+Nr+Qe+CPD+ Vr
8	0.868	0.751	0.724	0.000	26.635	S+T/B+CCL+Nr+Qe+CPD+ Vr+SD

Table 6.39: Summary of models prepared by MLR using SSE for PF (quarry B)

6.4.3 Results for quarry C using SSE

The correlation matrix in Table 6.40 presents the result of significance [sig.(2-tailed)] values of all the blasting design parameters with respect to PF.

Table 6.40: Correlation	matrix with	significance v	alues with	respect to	PF (quarry C)
		0		1	· · · ·		/

Blasting	design	PF	Significance
parameters			
Parameters			
		Pearson's	(2-tailed)
		correlation	
В		0.701	0.000
D		-0.005	0.971
S		-0.539	0.000
Н		-0.086	0.494
Т		0.020	0.872

CCL	-0.156	0.000
S/ B	0.169	0.003
T/ B	0.345	0.005
H/ B	0.499	0.000
T/CCL	0.098	0.435
Nr	0.230	0.006
Nh	0.231	0.001
Qe	0.369	0.003
Di	-0.103	0.001
CPD	0.413	0.412
HD	0.061	0.630
RD	0.030	0.810
PPV	0.032	0.412
SD	-0.015	0.554
Vr	0.785	0.001

Eight parameters [B, S, T/B, H/B, CCL, Di, Qe and Vr] have been identified having sig. ≤ 0.05 , as revealed from Table 6.40. The results of the MLR for PF prediction performed on the 8 identified parameters have been summarized in Table 6.41.

Table 6.41: MLR for predicting PF using the identified 8 parameters

Model	R	R Square	Adjusted Square	RSignificance level	Std. Error of the Estimate
1	0.933	0.870	0.849	0.00	0.0078706

MLR analysis reveals multi-collinearity in 2 out of 8 parameters. The values of VIF for the 2 parameters, which revealed multi-collinearity, are tabulated in Table 6.42.

Table 6.42: Blast design parameters with multi-collinearity (VIF <10) for PF (quarry C)

S.No.	Blasting design parameters	VIF values
1	T/B	16.25
2	H/B	19.12

Consequently, after removal of the 2 parameters exhibiting multi-collinearity, only the 6 parameters [B, S, CCL, Di, Qe and Vr] identified having no multi-collinearity are summarized in Table 6.43.

S.No.	Blasting design parameters	VIF values
1	В	1.878
2	S	2.128
3	CCL	1.219
4	Qe	6.031
5	Di	1.202
6	Vr	7.651

Table 6.43: Blast design parameters without multi-collinearity (VIF >10) for PF (quarry C)

As such, the unstandardized coefficients of the selected blasting design parameters together with their significance value and standard error are presented in Table 6.44. This table presents the unstandardized coefficients with the significance, standard error and collinearity statistics of the identified blasting design parameters.

Table 6.44: Descriptive statistics of 6 parameters for developing predictor Eq.for PF

Model	Unstandardiz	ed Coefficients	Significance Collinearity level Statistics		
	В	Std. Error		Tolerance	VIF
(Constant)	.187	.040	.764		
В	022	.007	.011	.532	1.878
S	.002	.005	.001	.470	2.128
CCL	.001	.003	.162	.820	1.219
Qe	.000	.000	.011	.166	6.031
Di	7.821E-006	.000	.055	.832	1.202
Vr	-1.486E-005	.000	.083	.131	7.651

The developed model in the form of equation using unstandardized regression coefficient (β -value) associated with 6 retained PCs (as illustrated in Table 6.44), is presented in Eq.6.6:

$$PF = 0.187 - 0.022 \times (B) + 0.002 \times (S) + 0.001 \times (CCL) + 0.00000782 \times (Di) - 0.000001486 \times (Vr)$$
(6.6)

The MLR analysis results for the developed equation has been presented in Table 6.45.

Model	R	R Square	Adjusted R Square	Significance level	Std. Error of the Estimate	F
1	0.904	0.818	0.795	0.00	0.0091632	36.529

Table 6.45: MLR based descriptive statistics for the parameters used in Eq. 6.6

A close perusal of the value of R^2 has been found to be 0.818 and adjusted R^2 has been found as 0.795. The significance level has been found to be 0.00 and F-ratio has been found as 36.529, which improves the authenticity of the predictor equation.

Since the 6 parameters were introduced sequentially, therefore it may be consequential to state that with **t**eaddition of each parameter, the value of R^2 increased from 0.425 to 0.818, as clearly revealed in Table 6.46.

Model	R	R Square	Adjusted Square	RSignificance level	F	Predictor constants
1	0.652	0.425	0.374	0.005	24.125	В
2	0.712	0.506	0.458	0.002	25.164	B+S
3	0.784	0.614	0.556	0.005	29.568	B+S+CCL
4	0.851	0.724	0.659	0.003	31.112	B+S+CCL+Di
5	0.858	0.736	0.688	0.000	31.256	B+S+CCL+Di+Qe
6	0.904	0.818	0.795	0.000	36.529	B+S+CCL+Di+Qe+Vr

6.5 Results of validation and verification

This section comprises two part, one is validation and another is verification. 6.5.1 Validation results

The validation of the developed equation with the different data set of the corresponding quarries has been done within statistical domain. The data set for validation and are illustrated in Appendix-A.4, A.5 and A.6. The results of this validation are described in the following sections:

(i) Results of validation of developed equation for the PF (Quarry A)

The results of computed values of PF by PCA and SSE methods are distinctly illustrated in form of bar chart (Figure 6.4).

Figure 6.4: Comparison of measured and Predicted PF Values for quarry A.

The value of PF obtained using PCA equation lies between 0.14 Kg/t – 0.21 Kg/t, and the value of PF obtained using SSE equation lies between to be 0.11 Kg/t – 0.22 Kg/t.

The average standard deviation for the predicted value of PF by PCA analysis has been found to be 0.01. However, for SSE analysis the average standard deviation has been found to be 0.02, which is higher than that of PCA. Therefore, the values obtained by the PCA technique appear to be more precise as compare to SSE technique. This reveals the better authenticity of PCA in prediction of PF. This, in turn, validates the precision of the developed equations and this validation has set a high level of statistical assurance on the predictor Eq. 6.1 for the given study quarry.

(ii) Results of validation of developed equation for the PF (Quarry B)

The results of computed values of PF by PCA and SSE techniques are distinctly illustrated in form of bar chart (Figure 6.5).

Figure 6.5: Comparison of measured and predicted PF values for quarry B

The value of PF obtained using PCA equation lies between 0.15 Kg/t - 0.24 Kg/t, and the value of PF obtained using SSE equation lies between to be 0.17 Kg/t - 0.25 Kg/t.

The average standard deviation for the predicted value of PF by PCA analysis has been found to be 0.01. However, for SSE analysis the average standard deviation has been found to be 0.02, which is higher than that of PCA. Therefore, the values obtained by the PCA technique appear to be more precise as compared to SSE technique. This, in turn, validates the precision of the developed equations and this validation has set a high level of statistical assurance on the predictor Eq. 6.2 for the given study quarry.

(iii) Results of validation of developed equation for the PF (Quarry C)

The results of computed values of PF by PCA and SSE techniques are distinctly illustrated in form of bar chart (Figure 6.6).

Figure 6.6: Comparison of measured and predicted PF values for quarry C

The value of PF obtained using PCA equation lies between 0.18 Kg/t – 0.26 Kg/t, and the value of PF obtained using SSE equation lies between to be 0.17 Kg/t – 0.27 Kg/t.

The average standard deviation for the predicted value of PF by PCA analysis has been found to be 0.01. However, for SSE analysis the average standard deviation has been found to be 0.02, which is higher than that of PCA. Therefore, the values obtained by the PCA technique are appear to be more precise as compared to SSE technique. This, in turn, validates the precision of the developed equations and this validation has set a high level of statistical assurance on the predictor Eq. 6.3 for the given study quarry.

6.5.2 Verification

(i) Multilayer perceptron model (ANN) for verification of PF (Quarry A)

To carry out the MLP neural network analysis, eight parameters were selected which has been identified using both PCA and SSE techniques. The identified parameters are Spacing (S),Stemming/Burden (T/B), No. of Holes (Nh), Scaled distance (SD), Column charge length (CCL), Total amount of explosive (Qe), Volume of rock (Vr) and Peak particle velocity (PPV). These parameters have been feed as input and the PF as output.

The network topology to predict the outcome (PF), consists of three layer (Input, hidden and output layer). In the input layer, there are eight input neurons, in the hidden layer, there are four neurons and one output neurons. The model summary indicated in Table 6.47, provides information related to the results of training and testing samples. Sum of square error is given for both training and testingsample. The small value (0.250) of the error related to training sample indicates the power of the model to predict the outcome. According to the Table 6.48, the Sum of squared error is 0.250 for training and 1.679 for testing samples.

Model Summary for MLP							
	Correlation value	0.932					
	Sum of Squares Error	0.250					
	Relative Error	.011					
Training	Stopping Rule Used	1 consecutive step(s) with no decrease in error					
	Training Time	0:00:00.01					
	Correlation value	0.940					
Testing	Sum of Squares Error	1.679					
	Relative Error	.179					

Table 6.47: Model Summary for PF using ANN (quarry A)

The graph between measured value of PF and predicted value by ANN technique has been plotted as shown in Figure 6.7. The value of coefficient of determination (R^2) was found to be 0.941, which indicates the high degree of correlation of blasting design parameters with the PF.

Figure 6.7: Plot between measured and predicted value of PF by ANN technique (quarry A)

The MLP neural network model also gives the information about the impact of each independent variable in terms of normalized importance. Figure 6.8 indicates the importance of the variables.

Figure 6.8: Independent variables importance chart for PF (quarry A) (*ii*) Multilayer perceptron model for verification of PF (Quarry B)

To carry out the MLP neural network analysis, eleven parameters were selected which have been identified using PCA and SSE techniques. The parameters identified are Diameter of hole (D), Spacing (S), Hole depth (H), Column charge length (CCL), Stemming/ Burden ratio (T/B),Stemming/ Column charge length ratio (T/CCL), No. of rows (Nr), Total amount of explosive (Qe), Distance (Di), Charge per delay (CPD) and Volume of rock (Vr).

The network topology to predict the outcome (PF), consists of three layer (Input, hidden and output layer). In the input layer, there are eleven input neurons, in the hidden layer, there are five neurons and one output neurons. The model summary indicated in Table 6.49, presents information related to the results of training and testing samples. Sum of square error is given for both training and testingsample.

The small value (6.231) of the error related to training sample indicates the power of the model to predict the outcome. According to the Table 6.48, the Sum of squared errors(SSE) is 6.231 for training and 3.821 for testing samples.

Model Summary for MLP						
	Correlation value	0.953				
Training	Sum of Squares Error	6.231				
	Relative Error	.254				
		1 consecutive step(s) with no				
	Stopping Rule Used	decrease in error				
	Training Time	0:00:00.02				
Testing	Correlation value	0.965				
	Sum of Squares Error	3.821				
	Relative Error	.365				

 Table 6.48: Model Summary of PF using ANN (quarry B)

The graph between measured value of PF and predicted value by ANN technique has been plotted as shown in Figure 6.9. The value of coefficient of determination (R^2) was found tobe 0.966, which indicates the high degree of correlation of blasting design parameters with the PF.

Figure 6.9: Plot between measured and predicted value of PF by ANN technique (quarry B).

The MLP neural network model also gives the information about the impact of each independent variable in terms of normalized importance. Figure 6.10 indicates the importance of the variables.

Figure 6.10: Independent variable importance chart for PF (Quarry B) It is evident from the Figure that in MLP technique, the most important parameters are Volume of rock (Qe) and Total amount of explosive (Qe), which have influencing the PF with 100% and 90% extent. Six parameters namely, Spacing (S), Stemming/column charge length (T/CCL), diameter of hole (D), number of holes (Nh), distance (Di) and and hole depth (H) have influencing the PF with 12%, 7%, 4%, 4%, 1% and 0.4% respectively.

(iii) Multilayer perceptron model (ANN) for verification of PF (Quarry C)

To carry outthe MLP neural network analysis, ten parameters were selected which have been identified using PCA and SSE techniques. The identified parameters are Burden (B), Spacing (S), Charge column length (CCL), Stemming/ Burden ratio(T/B), Total amount of explosive (Qe), Chargeper delay (CPD), Distance (Di), Spacing/ Burden ratio (S/B), Volume of rock (Vr) and Scale distance (SD). The network topology to predict the outcome (PF), consists of three layer (Input, hidden and output layer). In the input layer, there are ten input neurons, in the hidden layer, there are five neurons and one output neurons. The model summary indicated in Table 6.50, provides information related to the results of training and testing samples. Sum of square error is given for both training and testingsample. The small value (1.996) of the error related to training sample indicates the power of the model to predict the outcome. According to the Table 6.49, the Sum of square errors(SSE) is 1.996 for training and 2.655 for testing samples.

Model Summary for MLP						
	Correlation value	0.881				
Training	Sum of Squares Error	1.996				
	Relative Error	.093				
	Stopping Rule Used	1 consecutive step(s) with no decrease in error				
	Training Time	0:00:00.02				
Testing	Correlation value	0.896				
	Sum of Squares Error	2.655				
	Relative Error	.299				

 Table 6.49: Model Summary of PF using ANN (quarry C)

The graph between measured value of PF and predicted value by ANN technique has been plotted as shown in Figure 6.11. The value of coefficient of determination (R^2) was found tobe 0.896, which indicates the high degree of correlation of independent parameters with the PF.

Figure 6.11: Plot between measured and predicted value of PF by ANN technique (quarry C)

The MLP neural network model also gives the information about the impact of each independent variable in terms of normalized importance. Figure 6.12 indicates the importance of the variables. It is evident from the figure that in MLP technique, the most important parameter is scaled distance (SD) and inter hole delay (HD), which have influencing the PF with 100% and 83% extent respectively. Six parameters, namely, Vr (Volume of rock), charge per delay (CPD), stemming/burden ratio (T/B), column charge length (CCL). Total amount of explosive (Qe) and spacing (S) have an influence on PF with 60%, 40%, 38%, 35% 18% and 4% respectively.

Figure 6.12: Independent variables importance chart for PF (quarry C)

6.6 Discussion

For quarry A, PCA has been identified six parameters namely, SD, S, Qe, CCL, PPV and Vr and SSE has been identified four parameters namely, T/B, Nh, Qe and Vr. The value of R^2 is 0.78 for PCA and 0.73 for SSE. It is clear that the PCA has high level of accuracy in comparison to SSE.

For quarry B, PCA has been identified 8 blasting design parameters namely, H, Di, S, Nr, T/CCL, Qe, D, Vr and SSE has been identified 7 blasting design parameters namely, S, T/B, CCL,Nr, Qe, CPD and Vr which affecting the PF. The value of R² for PCA and SSE are found to be 0.76 and 0.75 respectively.

For quarry C, PCA has been identified 8 blasting design parameters, namely, HD, T/B, SD, Vr, CPD, S, CCL and Qe and SSE has been identified 6 blasting design parameters, namely, B, S, CCL, Di, Qe and Vr, which have major impact on PF. The values of R^2 by PCA and SSE are found to be 0.86 and 0.81 respectively.

6.6.1 Identified blasting design parameters affecting PPV by PCA and SSE

PCA and SSE techniques have selected some blasting design parameters affecting powder factor and the coefficient obtained for the selected parameters are both positive and negative. The explanation of selected parameters is given below:

(i) Total amount of explosive (Qe)- The coefficient related to Qe is found positive by both PCA and SSE. Therefore, increase in the amount of explosive for blasting same volume of rock leads to increase in powder factor.

(ii) Number of holes (Nh)- The coefficient related to Nh is found positive by both PCA and SSE. However, this parameter may not be rationalized under the varying rock and blasting condition. Therefore, it needs further investigation.

(iii) Column charge length (CCL)- The coefficient related to CCL is found positive by both PCA and SSE. When CCL is increased, the amount of explosive per hole increases. It will lead to increase in total amount of explosive and subsequently leads to increase in powder factor.

(iv) Stemming (T)- The coefficient related to T is found positive by both PCA and SSE within the acceptable stemming range (0.75 - 1.3 times of burden).

(v) Scaled distance (SD)- The coefficient related to SD is found positive by both PCA and SSE. For a given SD, higher value of PF indicates better utilization of explosive, whereas, lower value of PF indicates poor utilization of explosive resulting in increased ground vibration levels.

(vi) Spacing (S) – The coefficient of spacing is negative in relation with PF. With increase in spacing the total volume of rock blasted also increases leading to decrease in PF.

(vii) Volume of rock (Vr)- The coefficient related to Vr is found negative by both PCA and SSE. Powder factor is calculated by amount of explosive required to break the rock of capacity 1 tonne. If the volume of rock fragmented due to blasting increases for amount of explosive remains same, then the powder factor will decrease.

(viii) Stemming/Burden (T/B)- The coefficient related to T/B has been found negative, which shows an inverse impact on PF. If the T/B ratio is inadequate, then the large amount of the gas energy will be transformed and wasted as ground vibration. Floyd (2012) also showed that the improper confinement of explosive resulted in 50 percent of explosive energy loss and results in poor powder factor.

(ix) Peak particle velocity (PPV)- The coefficient related to PPV has been found negative. Higher value of PF indicates better utilization of explosive, whereas, lower value of PF indicates poor utilization of explosive resulting in increased ground vibration levels.

6.7 Overview of results for PF

The results obtained for all the quarries using statistical (PCA and SSE) and ANN technique, in terms of blasting design parameters, R^2 and root means square error (RMSE), are summarized in Table 6.50.

For prediction of PF									
Methods	Quarry A Equation developed by the statistical technique RMSE			Quarry B Equation developed by the statistical technique RMSE			Quarry C Equation developed by the statistical technique RMSE		
PCA	$PF = 0.394 - S \times (0.029) - Vr \times (0.000002970) + CCL \times (0.002) + SD \times (0.00005554) - PPV \times (0.001) - T \times (0.009) - RD \times (0.000008270)$	0.78	0.245	$PF = 0.271 + D \times (0.001) - S \\ \times (0.065) - Vr \\ \times (0.000001691) - \frac{T}{CCL} \\ \times (0.102) + Nr \times (0.015) \\ + Di \times (0.0000278) + Qe \\ \times (0.0000368) + H \\ \times (0.010)$	0.77	0.358	$PF = 0.210 - T/B \times (0.020) - Vr \times (0.000001312) + CCL \times (0.003) + SD \times (0.00005742) - S \times (0.023) - HD \times (0.001)$	0.86	0.754
SSE	$PF = 0.203 + \frac{T}{B} \times (0.018) + Nh \times (0.001) + Qe \times (0.004) - Vr \times (0.00000373)$	0.73	0.354	$PF = 0.378 + CCL \times (0.019) + \frac{T}{B} \times (0.011) + Qe \times (0.0000332)) + Nr \times (0.014) + CPD \times (0.001) - Vr \times (0.000007986) - S \times (0.064)$	0.75	0.465	$PF = 0.187 - B \times (0.022) + S \\ \times (0.002) + CCL \times (0.001) \\ + Di \times (0.00000782) - Vr \\ \times (0.000001486)$	0.81	0.886
ANN	Parameters of PCA and SSE both	0.94	0.258	Parameters of PCA and SSE both	0.96	0.280	Parameters of PCA and SSE both	0.90	0.158

Table 6.50: Results at a glance for PF (Quarry A, B and C)