
Chapter 2

Literature Review

2.1 Introduction

In this chapter, we have provided a brief literature review of our work. The literature

review includes Software Bug Prediction, Clone Evolution Prediction, and Software Reli-

ability Prediction. These are well-known research area in software engineering. There are

number of approaches for prediction of above mention attributes. However, it was noticed

that not much research have been conducted on temporal analysis of above attributes in

software engineering.

2.2 Literature Review (Software Bug Prediction)

Software Bug Prediction is one of the challenging aspects of Software Engineering. The

techniques used include Rule-Based methods, Artificial Neural Network, Support Vector

Machines, Nearest Neighbors, Decision Trees, and also other advanced machine learning

techniques. There are number of papers [101, 100, 103, 102, 105] in which the authors

17



Chapter 2. Literature Review 18

applied machine learning for software fault prediction. They use NASA MDP dataset for

experiments. Some authors also applied clustering techniques to improve the performance

of software fault prediction models. Another group of authors have applied a combination

of one or two methods, i.e., ensemble methods for software fault prediction.

Previous studies on temporal bug pattern predictions are based on traditional time series

modeling like ARIMA[227] that is used to predict a stationary time series data. In another

paper by Hongyu et al.,[76] Polynomial Regression is used to predict the bug growth

patterns in Eclipse.

A systematic literature review of different approaches applied in the area of software bug

prediction is presented in Table 2.1.

TABLE 2.1: Literature Review(Software Bug Prediction)

Author

(Year)

Objectives of

Study

Methodology

/Approaches/Tool-

s/Techniques

Remarks

Khoshgoftaar,

Allen, and

Busboom

(2000)[97]

Predicted

Software Quality

by using Eight

Method Level

Metrics

By using Case-Based

Reasoning

Type-I and Type-II error were

used as performance evaluation

metrics, and prediction model

was reasonably successful.



Chapter 2. Literature Review 19

Xu, Khosh-

goftaar, and

Allen

(2000)[233]

Predict faults on

large telecommu-

nications the

system developed

with Protel

language used 24

method level

metrics and four

execution

metrics.

Used principal

component analysis for

feature selection and

then applied fuzzy

nonlinear regression

(FNR).

They reported that fuzzy

nonlinear regression method is

an encouraging technology for

early fault prediction.

Guo and

Lyu

(2000)[71]

Predict software

quality on a

medical imaging

system developed

with Pascal and

Fortran

languages.

Finite mixture model

analysis with Expecta-

tion–Maximization

(EM) algorithm.

Type-I, Type-II errors are used

as performance Evaluation

metrics. Best value for Type-II

error was 13%.

Khoshgoftaar,

Gao, and

Szabo

(2001)[98]

Predicted faults

on two

large-scale

software

applications.

Zero-inflated Poisson

regression model (ZIP)

and file level metrics.

Performance evaluation metrics

were average absolute error

(AAE) and average relative error

(ARE). ZIP provided better

results compared to PRM. Also,

AAE and are values of ZIP was

smaller than PRM’s (Poisson

Regression Model) error results.



Chapter 2. Literature Review 20

Schneidewind

(2001)[189]

Software Quality

Prediction by

using six method

level metrics on a

spacecraft

software dataset.

Boolean discriminant

functions (BDF) and

logistic regression

functions (LRF).

Type-I error, Type-II error,

overall misclassification rate,

and the rate of correctly

classified non-faulty modules

(LQC) parameters were used as

performance evaluation metrics.

BDF’s performance was better

than LRF’s performance.

Emam,

Melo, and

Machado

(2001)[56]

Predicted the

fault-prone

Classes on a

commercial Java

application.

Logistic regression and

class level metrics.

They reported that inheritance

depth and export coupling are

the most useful metrics to

identify the fault-prone classes.

Khoshgoftaar,

Geleyn, and

Gao

(2002)[99].

Predicted the

fault-prone

Classes on two

Applications

which configure

wireless

products.

PRM, ZIP, and module-

Order modeling

techniques with five file

level metric.

The performance of

module-order model was good

on These datasets and other

approaches did not provide good

results.



Chapter 2. Literature Review 21

Mahaweerawat,

et

al.(2002)[14]

Predict software

faults.

fuzzy clustering and

then, they applied radial

basis function (RBF)

Type-I error, Type-II error,

overall misclassification rate,

inspection, and completeness

were used as performance

Evaluation metrics. RBF’s

accuracy was 83% and MLP’s

accuracy was 60%. Therefore,

RBF method was better than

MLP for software fault

prediction in this study.

Khoshgoftaar

and Seliya

(2002a)[102]

Software Quality

Classification.

SPRINT and CART

methods with 28

method level metrics

(24 product metrics and

four execution metrics)

SPRINT is a

classification tree

Algorithm and CART is

decision tree algorithm.

Performance evaluation metrics

were Type-I error, Type-II error,

and overall Misclassification

Rate. They reported that

SPRINT algorithm had lower

Type- I error, and the model

based on SPRINT was robust.

Pizzi,

Summers,

and Pedrycz

(2002)[175]

Predicted

software quality

on a research

prototype.

Multi-layer perceptron

and method/class level

metrics.

Accuracy parameter was used as

performance Evaluation metric.

They stated that using

median-adjusted class labels is

an effective pre-processing

technique before multi layer

perceptron is applied.



Chapter 2. Literature Review 22

Khoshgoftaar

and Seliya

(2002b)[100]

Software Quality

Prediction

models for a

large telecommu-

nications

system.

Used tree based

software Quality

Prediction Models

Applied design metrics.

CART-LS (least

squares), S-PLUS, and

CART-LAD (least

absolute deviations)

were investigated in

this study.

CART-LAD was proposed for

software Quality prediction.

Reformat

(2003)[183]

Predict software

faults on a

commercial

medical imaging

system.

Fuzzy rule-based

models for reasoning

about the number of

software faults and 11

method level metrics

used

Classification rates change

between 62.82% and 79.49%.

Classification rate was 85.90%

when Meta-model prediction

system was used.

Koru and

Tian

(2003)[115]

Investigated the

relationship

between high

defect and high

complexity

modules

Tree-based models and

method level metrics

(15 method level

metrics for IBM

products and 49 method

level metrics for Nortel

Networks) on Six large

scale products of IBM

and Nortel Networks.

Mann–Whitney U-test was

applied for performance

evaluation. They showed that

high defect-prone modules are

complex modules, But they are

not the most complex ones.



Chapter 2. Literature Review 23

Denaro,

Lavazza,

and Pezzè

(2003)[52]

Predict Software

Faults on an

industrial

telecommunica-

tions

system.

Applied logistic

regression by using

class level metrics.

Expected to see a correlation

Between fault-proneness and at

least one metric. They found

that none of these metrics are

correlated with fault-proneness,

and multivariate models do not

provide any advantage compared

to lines of code metric.

Thwin and

Quah

(2003)[206]

Predicted

Software Quality

.

General Regression

Neural Network

(GRNN) and Ward

Neural Networks.

Evaluation parameters were R2,

r, average square error, average

absolute error, Minimum

absolute error, and maximum

absolute error. reported that

GRNN provided Much better

results than Ward networks.

Khoshgoftaar

and Seliya

(2003)[101]

Predicted

Software Faults.

CART-LS, CART-LAD,

S-PLUS, multiple

linear regression, neural

networks, case based

Reasoning on a large

telecommunications

system. Twenty-four

product and four

execution metrics were

independent variables

For this analysis.

They used two-way ANOVA

randomized complete block

design model as experimental

design approach and

multiple-pairwise comparison

for performance ranking. Best

performance was achieved with

the CART-LAD algorithm, and

the worst one was S-PLUS.



Chapter 2. Literature Review 24

Guo, Cukic,

and Singh

(2003)[70]

Predicted

fault-prone

modules on

NASA’s KC2

project.

Dempster–Shafer

Belief Networks and 21

method level metrics.

Performance evaluation metrics

were the probability of

detection, effort, and accuracy.

Denaro,

Pezzè, and

Morasca

(2003)[52]

Predict the

fault-prone

modules on

antenna

configuration

system Apache

1.3, and Apache

2.0.

Logistic regression with

Method level metrics.

Performance Evaluation metrics

used: R2, completeness,

completeness of faulty modules,

and correctness of faulty

modules. They showed that

logistic regression with

cross-validation is an effective

approach.

Menzies,

DiStefano,

Orrego, and

Chapman

(2004)[141]

Predicted

fault-prone

modules on

public datasets

locating in

PROMISE

repository.

Naı̈ve Bayes algorithm.

Method level metrics

were used.

Probability of detection (PD)

and the probability of false

alarm (PF) were performance

evaluation Metrics. Naive Bayes

provides better performance than

J48 algorithm. Furthermore,

they reported that PD on KC1

dataset was 55% and PD for

Fagan inspections was between

33% and 65%. For industrial

inspections, PD for Fagan

inspections was between 13%

and 30%.



Chapter 2. Literature Review 25

Khoshgoftaar

and Seliya

(2004)[103]

Software Quality

Classification

Techniques on

large telecommu-

nications

System.

Logistic regression,

case based reasoning,

classification and

regression trees

(CART), tree based

classification with

S-PLUS, Spring-Sliq,

C4.5, and Treedisc by

using 24 product

metrics and four

execution metrics.

Expected cost of

misclassification metric was

chosen as performance

evaluation parameter. They

stated that data and system

characteristics affect the

performance of prediction

models in software Engineering.

Wang, Yu,

and Zhu

(2004)[220]

Quality

prediction on a

large telecommu-

nications system

developed With

C language.

Artificial neural

networks. Seven

product metrics

calculated with

MATRIX analyzer. To

improve the

understandability of

neural networks, they

applied Clustering

Genetic Algorithm

(CGA).

Accuracy parameter was used

for performance evaluation. the

accuracy of the prediction which

was performed with rule set of

CGA is lower than the accuracy

of the neural networks based

prediction; results were more

understandable When rule set of

CGA was used.



Chapter 2. Literature Review 26

Mahaweerawat,

Sophat-

sathit,

Lursinsap,

and Musilek

(2004)[135]

Identity the

fault-prone

modules Of 3000

C++ classes

collected from

different web

pages.

First used Multi-layer

perceptron. Later they

applied radial basis

functions (RBF).

Type-I error, Type- II error,

inspection, and achieved quality

parameters. Accuracy, achieved

quality, inspection, Type-I error,

Type-II error were 90%, 91.53%,

59.55%, 5.32%, and 2.09%

respectively. Also, they stated

that they could not identify only

2.09% of faulty classes.

Kanmani,

Uthariaraj,

Sankara-

narayanan,

and Tham-

bidurai

(2004)[90]

Software quality

prediction. on

student projects

developed in

Pondicherry

Engineering

College.

General Regression

Neural Networks

(GRNN) technique By

using 64 class level

metrics. Principal

component analysis

was used for feature

selection.

Evaluation parameters were

correlation coefficient (r), R2,

average square error, average

absolute error, maximum

absolute error, and minimum

absolute error parameters. They

reported that GRNN The

technique provided good results

for fault prediction.



Chapter 2. Literature Review 27

Zhong,

Khoshgof-

taar, and

Seliya

(2004)[245]

Cluster as

fault-prone or not

fault-prone by

examining not

only the

representative of

each cluster, but

also some

statistical data

such as global

mean, minimum,

maximum,

median, 75%,

and 90% of each

metric.

K-means and Neural-

Gas clustering methods

to cluster modules, also

supported by an expert

who is 15 years

experienced engineer.

Mean squared error (MSE),

average purity, and time

parameters were Used. False

positive rate (FPR), false

negative rate (FNR), and overall

misclassification rate parameters

were used. Neural-Gas

performed much better than

K-means according to the MSE

parameter, and its average purity

was slightly better than K-means

clustering’s Purity value.

Xing, Guo,

and Lyu

(2005)[232]

Predicted

software quality

on a medical

imagining

software.

Support Vector

Machines (SVM) and

11 method level metrics

(Halstead, McCabe,

Jensen’s program

length, and Belady’s

bandwidth)

Type-I error and Type-II error

were used to evaluate the

performance of the model. They

reported that SVM performed

better than quadratic

discriminant analysis and

classification tree.



Chapter 2. Literature Review 28

Koru and

Liu

(2005)[113]

Investigated the

effect of module

size on fault

prediction on

public NASA

datasets.

J48 and KStar

algorithms.

F-measure was used for

performance evaluation. Both

method level and class level

metrics were investigated. The

best performance was achieved

with the J48 algorithm and

Bayesian Networks.

Khoshgoftaar,

Seliya, and

Gao

(2005)[104]

A new three

group Software

quality

classification

technique on two

embedded

software which

configures

wireless

products.

C4.5 decision tree,

discriminant analysis,

case based reasoning,

and logistic Regression.

They applied five file

level metrics.

Performance evaluation metrics

was expected the cost of

misclassification. They reported

that three groups such as high,

medium, and low labels

provided encouraging

performance for fault prediction.

Koru and

Liu

(2005)[112]

Built fault

prediction

models on public

NASA datasets.

J48, K-Star, and

Random Forests.

F-measure was selected as

performance evaluation metric.

They stated that large modules

had higher F-measure values for

J48, K-Star, and Random Forests

algorithms.



Chapter 2. Literature Review 29

Challagulla,

Bastani,

Yen, and

Paul

(2005)[41]

Software fault

prediction on

public NASA

datasets.

Linear regression, pace

regression, support

vector regression,

neural network For

continuous goal field,

support vector logistic

regression, a neural

network for discrete

goal field, Naive Bayes,

instance based learning

(IBL), J48, and 1-R

techniques by using

method level metrics.

Performance Evaluation metric

was an average absolute error.

IBL and 1-R was better than the

other algorithms according to

the accuracy parameter, and they

stated That principal component

analysis did not provide an

advantage.

Gyimothy,

Ferenc, and

Siket

(2005)[72]

Validate object

oriented metrics

for fault

prediction on

Mozilla Open

source project.

Logistic regression,

Linear regression,

decision trees, and

neural networks. Class

level metrics were used.

Performance evaluation metrics

were completeness, correctness,

and Precision. They reported

that coupling between object

classes (CBO) metric is very

useful for fault prediction.

Ostrand,

Weyuker,

and Bell

(2005)[156]

Predicted the

location and

number of faults

on two industrial

systems.

Negative binomial

regression model. some

metrics they used were

programming

Language, the age of

the file, and file change

status.

Performance Evaluation metric

was accuracy. They reported that

the accuracy of general

performance was 84% and the

simplified model’s accuracy Was

73%.



Chapter 2. Literature Review 30

Tomaszewski,

Lundberg,

and Grahn

(2005)[208]

Accuracy of early

fault prediction in

modified code on

a large Telecom-

munications

system.

Regression techniques

and method/class level

metrics.

Performance evaluation

parameter R2 (determination

coefficient). Performance of

models improves when this

metric is used.

Hassan and

Holt

(2005[75])

Identify the top

ten fault-prone

Components of

six open source

projects.

They proposed some

techniques such as most

frequently modified

(MFM), most recently

modified (MRM), most

frequently fixed (MFF),

and most recently fixed

(MRF). Metrics such as

change Frequency and

size metrics were used.

Performance evaluation Metrics

were hit rate and average

prediction age (APA). MFM and

MFF were more successful than

the other methods.

Challagulla,

Bastani, and

Yen

(2006)[40]

Predicted

software faults on

public NASA

datasets by using

21 method level

metrics.

Memory Based

Reasoning (MBR).

Performance evaluation metrics

used: Probability of detection,

probability of false alarm, and

Accuracy. They proposed a

framework and users can choose

the MBR Configuration which

can provide the best

performance from this

framework.



Chapter 2. Literature Review 31

Khoshgoftaar,

Seliya, and

Sundaresh

(2006)[105]

Predict software

faults on a Large

telecommunica-

tions system to

predict software

faults.

Case-based Reasoning

by using 24 product and

four execution metrics.

Performance evaluation metrics

were average absolute error and

average Relative error. They

reported that case based

reasoning works better than

multivariate linear regression

and correlation based feature

selection and stepwise

regression model selection did

not improve the performance of

models.

Nikora and

Munson

(2006)[152]

Built high-quality

software fault

Predictors on

mission data

system of Jet

Propulsion

Laboratory.

Method Level Metrics. In this study, they built a

framework which includes the

rules for fault definition, and

they proved that fault predictors

which look at the token

differences between two

versions are more effective.

Zhou and

Leung

(2006)[248]

Predicted high

and low severity

faults on NASA’s

KC1 dataset.

Logistic Regression,

Naive Bayes, Random

Forests, The Nearest

neighbor with

generalization

techniques.

Object-oriented

software metrics.

Performance evaluation metrics

were correctness, completeness,

and precision. They reported

that low severity faults could be

predicted with a better

performance compared to high

severity faults.



Chapter 2. Literature Review 32

Mertik,

Lenic,

Stiglic, and

Kokol

(2006)[143]

Estimated

software quality

on NASA

datasets.

Prunned C4.5,

unpruned C4.5,

multimethod, SVM

using RBF kernel,

SVM using linear

kernel techniques by

using method level

metrics.

Multi-method includes several

methods and its performance

with respect to performance was

very high.

Boetticher

(2006)[33]

Investigated the

effects of datasets

on software

engineering.

Applied J48 and Naive

Bayes techniques for

the analysis.

Datasets were divided into three

parts: a training set, nice

neighbors test set, and nasty

neighbors test set. Nice

neighbors are neighbors who are

close to the same class, and

nasty neighbors are neighbors

who locate in different classes.

He showed that the accuracy was

94% for nice neighbors test set

and the accuracy was 20% for

nasty neighbors test set.

Bibi,

Tsoumakas,

Stamelos,

and Vlahvas

(2008)[30]

Software Fault

Prediction on

Pekka dataset

which was

Collected in one

of Finland’s

banks.

Regression via

Classification (RvC)

Technique. Used

different metrics such

as disk usage, processor

usage, number of users,

and document Quality.

Performance evaluation metrics

were average absolute error and

accuracy. They reported that

RvC could be used to enhance

the understandability of

regression models.



Chapter 2. Literature Review 33

Gao and

Khoshgof-

taar

(2007)[64]

Software Fault

Prediction on two

embedded

software

applications

which configure

the wireless

telecommunica-

tions

Products.

Poisson regression,

zero-inflated Poisson

regression, negative

binomial regression

model, Zero-Inflated

negative binomial, and

Hurdle Regression

(HP1, HP2, HNB1,

HNB2) techniques.

Used using five file

level metrics.

Performance evaluation metrics

were Pearson’s chi The square

measure, information criteria,

average absolute error (AAE),

and average relative error

(ARE). They reported that model

based on Zero-Inflated negative

binomial technique performs

better than the other algorithms

according to the information

criteria and chi-square measures.

Li and

Reformat

(2007)[124]

Predicted

software faults on

the JM1 dataset .

SimBoost method was

proposed in this study

and fuzzy labels for

classification were

suggested. Method

level metrics used.

Accuracy: was used for

performance evaluation. This

method with fuzzy labels

worked well on the dataset.

Mahaweerawat,

Sophat-

sathit, and

Lursinsap

(2007)[134]

Software Fault

prediction on a

dataset which is

not explained in

the paper.

Self-organizing map

clustering and then

applied RBF. Method

level metrics were used.

Performance evaluation metric

was mean of absolute residual

(MAR). They reported that

accuracy was 93% in this study,

but accuracy is not an

appropriate Parameter for

imbalanced datasets.



Chapter 2. Literature Review 34

Menzies et

al.

(2007a)[86]

Software fault

prediction on

public NASA

datasets.

Investigated several

data mining algorithms.

Performance evaluation metrics

were PD, PF, and balance. They

achieved the best performance

Naive Bayes algorithm, and

before this algorithm is applied,

they used a logNum filter for

software metrics. They reported

that Naive Bayes outperformed

J48.

Zhang and

Zhang

(2007)[243]

Software fault

prediction on

public NASA

datasets.

Investigated several

data mining algorithms.

Criticized Menzies et al.’s study

(2007a) and they stated that PD

and PF parameters are not

enough to evaluate the

performance of models. They

reported that precision was very

low in Menzies et al.’s study

(2007a) and this model would

not be very useful in practice.



Chapter 2. Literature Review 35

Menzies,

Dekhtyar,

Distefano,

and

Greenwald

(2007b)[86]

Software fault

prediction on

public NASA

datasets.

Investigated several

data mining algorithms.

Responded to comments of

Zhang and Zhang (2007) and

they stated that precision is not a

useful parameter for software

engineering problems, models

which have low precision

provided remarkable results for

different problems. Precision is

supposed to be high too, but in

practice, this is not a real case.

Ostrand,

Weyuker,

and Bell

(2007)[157]

Predicted

fault-prone

modules.

Negative binomial

regression model by

using several Metrics

such as file size, file

status, the number of

changes on file, and

programming language.

They reported that negative

binomial regression model is

very useful according to the

accuracy parameter.



Chapter 2. Literature Review 36

Yang, Yao

and Huang

(2007)[235]

Software Fault

Prediction on an

artificial dataset.

Fuzzy Self-Adaptation

Learning Control

Network-(FALCON)

Inputs for FALCON were

software metrics, and outputs

were reliability and

effectiveness. They stated that

this model could measure

several quality features such as

reliability, performance, and

maintainability, but they did not

try this approach with real

datasets. Therefore, it is clear

that their study is at early stages.

Pai and

Dugan

(2007)[158]

Calculate the

fault-proneness

of modules On

NASA Datasets.

Linear regression,

Poisson regression, and

logic regression to

calculate conditional

probability densities of

Bayes Networks’ nodes

and then, they used

these networks to

calculate the

fault-proneness of

modules

Evaluation parameters were

sensitivity, specificity, precision,

false positive and false negative

parameters. They reported that

weighted methods count

(WMC), coupling between

object classes (CBO), the

response for a class (RFC), and

lines of code metrics are very

useful to predict the

fault-proneness of modules.



Chapter 2. Literature Review 37

Wang, Zhu,

and Yu

(2007)[221]

Predicted

software quality

on two large

telecommunica-

tions

system.

Genetic algorithm by

using 18 method level

and 14 file level

metrics.

Performance evaluation Metrics

were a Type-I error, Type-II

error, and overall

misclassification rate. They

reported that the proposed model

is better than S-PLUS and

TreeDisc.

Seliya and

Khoshgof-

taar

(2007a)[190]

Predicted

software faults

with Limited

fault data. The

JM1 dataset was

used as training

dataset and KC1,

KC2, and KC3

were used as test

datasets.

Expectation–Maximization

(EM) technique.

They used Type-I error, Type-II

error, and overall

misclassification rate parameters

for performance evaluation. EM

technique is first used to give

labels to unlabeled data and then

all the modules are used to build

the prediction model. EM based

quality model provided

acceptable results for

semi-supervised fault prediction

problem.

Koru and

Liu

(2007)[114]

Identified

change-prone

classes on

K-Office and

Mozilla

open-source

projects.

Tree-based models and

Class label metrics

used.

20% of classes changed and tree

based models were very useful

to identify these change-prone

classes.



Chapter 2. Literature Review 38

Cukic and

Ma

(2007)[48]

Predicted

fault-proneness

of modules and

investigated 16

learning

algorithms on

JM1 dataset

Method level metrics

used.

Evaluation parameters were PD

and PF. Only four algorithms

provided PD value which is

higher than 50% and PF value

which is lower than 50%.

Tomaszewski,

Håkansson,

Grahn, and

Lundberg

(2007)[207]

Predict software

faults on two

software systems

developed by

Ericsson.

Expert opinion and

univariate linear

regression analysis.

Accuracy parameter was used

for performance evaluation. The

accuracy of the prediction model

based on class level metrics was

better than the model based on

component level metrics. They

Reported that statistical

approaches are more successful

than expert opinion and experts

did not predict faults easily in

large datasets.



Chapter 2. Literature Review 39

Seliya and

Khoshgof-

taar

(2007b)[190]

Predict the

fault-proneness

of program

modules when

the defect labels

for modules are

unavailable.

A constraint-based

Semi-supervised

clustering scheme that

uses K-means

clustering method.

However, their

approach uses an

expert’s domain

knowledge to iteratively

label clusters as

fault-prone or not.

Performance evaluation metrics

were Type-I error, Type-II error,

and overall misclassification

rate. They reported that

semi-supervised clustering

scheme provided better

performance than traditional

clustering methods and half of

the Modules which could not be

labeled were noisy.

Olague,

Gholston,

and Quattle-

baum

(2007)[155]

To predict

fault-proneness

of object-oriented

classes developed

using highly

iterative or agile

software

development

processes (on

open-source

Rhino project’s

six versions)

Univariate binary

logistic regression

(UBLR) and

multivariate binary

logistic regression

(MBLR) techniques

were used for the

analysis.

Chidamber–Kemerer

(CK) metrics suite,

Abreu’s object-oriented

metrics (MOOD), and

Bansiya and Davis’s

quality metrics

(QMOOD) were

investigated.

Accuracy parameter was used

for model validation, and

Spearman correlation was

applied to examine the metrics’

effects. They reported that CK

and QMOOD metrics are very

useful for fault prediction, but

MOOD metrics are useless.

Furthermore, they stated that

MBLR models are useful for

iterative and agile software

development processes.



Chapter 2. Literature Review 40

Binkley,

Feild, and

Lawrie

(2007)[31]

Predicted

Software Fault.

Linear mixed-effects

Regression model.

QALP score, total lines

of code, and lines of

code except for

comments and blank

lines used.

Determination coefficient was

used as performance evaluation

parameter. They reported that

neither QALP nor size measure

is a good predictor for Mozilla

project.

Menzies T,

Greenwald

J, Frank A

(2007)[86]

Mining Static

Code Attributes

to Learn Defect

Predictors.

Rule-based or

decision-tree learning

methods and naive

Bayes data miner with a

log-filtering

preprocessor on the

numeric data.

Bayesian method performs best.

Jiang,

Cukic, and

Menzies

(2007)[86]

Predicted

software faults

using early life

cycle data.

Investigated 1-R, Naive

Bayes, Voted

Perceptron, Logistic

Regression, J48, VFI,

IBk, and Random

Forests for fault

prediction by using

metrics extracted from

textual requirements

and code metrics.

PD and PF were selected as

performance Evaluation metrics.

They reported that the

performances of algorithms

except Voted Perceptron

algorithm improved when code

metrics were combined with

requirement metrics.



Chapter 2. Literature Review 41

Bibi et al.

(2008)[30]

Software fault

prediction

problem (to

estimate the

number of

software faults

with a confidence

interval) Pekka

dataset from a

big commercial

bank in Finland

and ISBSG

dataset were used

for The analysis.

Regression via

Classification (RvC).

Performance evaluation metric

was Mean Absolute Error

(MAE). RvC provided better

regression error than the

standard regression methods.

Hongyu

Zhang(2008)

[242]

Study of the

growth of eclipse

defects

Growth of the number

of defects modeled by

polynomial functions.

For most of the components, the

MRE values are below 25%,

falling within the acceptable

levels.



Chapter 2. Literature Review 42

Bingbing,

Qian,

Shengyong,

and Ping

(2008)[236]

Software fault

prediction on two

datasets. (A

medical imaging

system and

Celestial

Spectrum

Analysis System

datasets were

used for the

analysis.)

Affinity Propagation

Clustering algorithm

compared the

performance of it with

the performance of

K-means clustering

Method.

Performance evaluation metrics

were Type-I error, Type-II error,

and entirely correct

Classification rate (CCR).

Affinity Propagation clustering

algorithm was better than

K-means clustering on two

datasets according to the Type-II

error

Marcus,

Poshy-

vanyk, and

Ferenc

(2008)[137]

Software fault

prediction

Modeling on

WinMerge and

Mozilla projects.

Proposed a new

cohesion metric named

Conceptual Cohesion of

Classes (C3).

Performance evaluation metrics

used: Precision, Correctness,

and Completeness. Univariate

logistic regression analysis

showed that C3 ranks better than

many of the cohesion metrics.

Shafi,

Hassan,

Arshaq,

Khan, and

Shamail

(2008)[191]

Compared the

performance of

30 techniques on

two datasets for

software quality

Prediction. (JEdit

and AR3 data

from PROMISE

repository.)

Classification via

regression and LWL.

Performance evaluation

parameters used: Precision,

Recall, Specificity, and

Accuracy. Classification via

regression and LWL performed

better than the other techniques.



Chapter 2. Literature Review 43

Riquelme,

Ruiz,

Rodrı́guez,

and Moreno

(2008)[184]

Investigated

Naive Bayes and

C4.5, on five

public datasets

from PROMISE

repository for

Software Fault

Prediction.

Two balancing

techniques.

Performance evaluation metrics

used: AUC and Percentage of

correctly classified instances

They reported that balancing

techniques improve the AUC

measure, but did not improve the

percentage of correctly classified

Instances.

Catal and

Diri

(2009a)[18]

Objective is to

find high-

performance fault

predictors on

Public NASA

datasets.

Machine learning such

as Random Forestsand

algorithms based on a

new computational

intelligence approach

called Artificial

Immune Systems.

Random Forests provides the

best prediction performance for

large datasets, and Naive Bayes

is the Best prediction algorithm

for small datasets in terms of the

Area under Receiver Operating

Characteristics Curve (AUC)

evaluation parameter.

Chang,

Chu, and

Yeh (2009)

[42]

Fault prediction

approach to

discover fault

patterns.

Association rule

mining.

They reported that prediction

results were excellent.

Mende and

Koschke

(2009)

[140]

Fault Prediction

on thirteen

NASA datasets.

Evaluated lines of code

metric based prediction.

AUC is used as Performance

Evaluator. The model performed

well in terms of Area under ROC

curve (AUC) parameter, and

they could not show statistically

significant differences to some

data mining Algorithms.



Chapter 2. Literature Review 44

Tosun,

Turhan, and

Bener

(2009)

[209]

Conducted

experiments on

public datasets to

validate

Zimmermann and

Nagappan’s

paper Published

in ICSE’08.

Three embedded

software projects

were used for the

analysis.

Complexity and

network metrics from

five additional systems.

Performance Evaluation metrics

were PD, PF, and precision.

Reported that network measures

are significant indicators of

fault-prone modules for large

systems.

Turhan,

Kocak, and

Bener

(2009)

[212]

Investigated 25

projects of a

Telecommunica-

tion system and

trained models on

NASA MDP

data.

They used static call

graph-based ranking

(CBGR) and nearest

neighbor sampling to

build defect predictors.

They reported that at least 70%

of faults could be identified by

inspecting only 6% of code with

Naive Bayes model and 3% of

code with CBGR model.

Bacchelli A,

D’Ambros

M, Lanza M

(2010)[55]

Investigate

whether the

information

contained in

e-mail archives is

correlated to the

defects found in

the system.

Introduce metrics that

measure the

“popularity” of source

code artifacts.

They reported that developers

discuss problematic entities

more than unproblematic ones.



Chapter 2. Literature Review 45

D’Ambros

M, Lanza

M, Robbes

R

(2010)[150]

Present a

benchmark for

defect prediction,

in the form of a

publicly available

dataset consisting

of several

software systems.

WCHU (Weighted

Churn of source code

metrics) and LDHH

(Linearly Decayed The

entropy of source code

metrics), two novel

approaches that they

proposed.

They gave consistently good

results –often in the top 90% of

the approaches– across all five

systems.

Mende T,

Koschke R

(2010)[140]

Defect prediction

model to

determine

Quality assurance

activities.

Compare two different

strategies to include

treatment effort into the

prediction process, and

evaluate the predictive

power of such models.

Both strategies improve the cost

effectiveness of defect prediction

models significantly, in the

statistical and practical sense.

Menzies T,

Milton Z,

Turhan B,

Cukic B,

Bener YJA

(2010)[142]

Defect prediction

Static code

features.

Binary classification

scheme (Defective

∈true, false) and not,

say, number of defects

or severity of defects.

Learners must be chosen and

customized to the goal at hand



Chapter 2. Literature Review 46

Turhan B,

Bener AB,

Menzies T

(2010)

[213]

Fault Prediction

three embedded

controller

software, two

versions of an

open-source

anti-virus

software (Clam

AV) and a subset

of bugs in two

versions of GNU

gcc compiler.

Proposed that using

imported data from

different sites can make

it suitable for predicting

defects at the local site.

Software construction is a

surprisingly uniform endeavor

with simple and repeated

patterns that can be discovered

in local or imported data using

just a handful of examples.

Wolf T,

Schröter A,

Damian D,

Nguyen

THD

(2009)[225]

Predicting build

failures using

social network

analysis.

The combination of

communica-

tion.structure.measures

into a predictive model.

Our predictive model yielded

recall values between 55% and

75% and precision values

between 50% to 76%.

Zimmermann

T,

Nagappan

N, Gall H,

Giger E,

Murphy B

(2009)[249]

Cross-project

defect prediction

models on a

large-scale. For

12 real-world

applications, 622

cross-project

predictions.

Derived decision trees

that can provide early

estimates for precision,

recall, and accuracy.

Simply using models from

projects in the same domain or

with the same process does not

lead to accurate predictions.

Identified factors that do

influence the success of

cross-project predictions.



Chapter 2. Literature Review 47

Timea

Illes-Seifert,

Barbara

Paech(2010)

[81]

Exploring the

relationship of a

file’s history and

its

fault-proneness.

Propose an empirical

approach that uses

statistical procedures

and visual

representations of the

data in order to

determine indicators for

a file’s defect count.

Results show that software’s

history is a good indicator of its

quality.

Wenjin Wu;

Wen Zhang;

Ye Yang;

Qing Wang

(2010)[227]

Debian Bug

Number

Prediction.

ARIMA Model for

Modelling Debian Bug

Numbers.

Moreover, both ARIMA and

X12 enhanced ARIMA

outperform the baseline as

polynomial regression.

Mahmoud

O. Elish,

Ali H.

Al-Yafei,

Muhammed

Al-Mulhem

(2011) [57]

Fault prediction

in packages of

Eclipse system.

Three suites of

package-level metrics

(Martin, MOOD, and

CK) are evaluated and

compared empirically

in predicting the

number of pre-release

faults and the number

of post-release faults in

packages.

The results indicate that the

prediction models that are based

on Martin suite are more

accurate than those that are

based on MOOD and CK suites

across releases of Eclipse.



Chapter 2. Literature Review 48

Peng

Zhang;

Yu-tong

Chang

(2012)[244]

Software fault

prediction

Applied Grey neural

network based on grey

theory (exponential

growth) and artificial

neural network.

The proposed model reduced the

prediction relative error

effectively.

Partha S.

Bishnu;

Vandana

Bhattacher-

jee(2012)

[32]

Software Fault

Prediction

Proposed a Quad

Tree-based K-Means

algorithm

Reduced Error than other

techniques.

Yue Jiang;

Jie Lin;

Bojan

Cukic;

Shuye Lin;

Zhijian Hu

(2013)[86]

Early Fault

Prediction Using

Design Metrics:

Condition Count,

Multiple

Condition Count,

Decision Count,

Branch Count,

Node Count,

Edge Count

11 code metrics

replaced by 6 design

metrics using Canonical

Correlation Analysis

(CCA), a multivariate

statistical analysis

Method.

This would make it Possible to

identify faults earlier before

code implementation in the

software lifecycle.



Chapter 2. Literature Review 49

Karel

Dejaeger;

Thomas

Verbraken;

Bart

Baesens

(2013)[51]

Software Fault

Prediction on

NASA Dataset of

NASA Metrics

Data Program

(MDP)

repository.

Proposed 15 different

Bayesian Network

(BN) classifiers and

comparing them to

other popular machine

learning techniques.

Augmented Naive Bayes

classifiers can yield similar or

better Performance than the

commonly used Naive Bayes

classifier.

A.

Shanthini;

R M Chan-

drasekaran

(2014)[192]

Software Fault

Prediction on

Eclipse Package

level dataset and

NASA KC1

dataset.

Ensemble approach of

Support Vector

Machine (SVM) for

fault prediction.

Ensemble of Support Vector

Machine is superior to individual

approach for software fault

prediction in terms of

classification rate through Root

Mean Square Error Rate

(RMSE), AUC-ROC, ROC

curves.

Jiaqiang

Chen;

Shulong

Liu;

Wangshu

Liu; Xiang

Chen; Qing

Gu; Daoxu

Chen(2014)

[43]

Software Fault

Prediction on

Eclipse and

NASA datasets.

Proposed a novel

two-stage data are

preprocessing

approach, which

incorporates both

feature selection and

instance reduction.

The two-stage data

preprocessing approach can

greatly reduce both the number

of features and the number of

instances of the original dataset.



Chapter 2. Literature Review 50

A.

Soleimani;

F. Asdaghi

(2014)[201]

Software Fault

Prediction on

NASA’s public

dataset KC1

available at

promise software

engineering

repository.

Proposed Artificial

Immune System (AIS)

based feature selection

method to make a better

prediction.

Selected subset of features

increases the accuracy of

classifier from 82.44% to

83.72%

Santosh

Singh

Rathore;

Sandeep

Kumar

(2015)[180]

Fault Prediction

on fault datasets

collected from

the PROMISE

data repository.

Neural network and

Genetic programming.

ERROR: Neural Network

outperformed genetic

programming, Recall and

Completeness: Genetic

programming produced the

result better than neural network.

Wangshu

Liu;

Shulong

Liu; Qing

Gu; Xiang

Chen;

Daoxu

Chen

(2015)[127]

Software Fault

Prediction with

Noises.

Proposed a novel

method FECS (feature

Clustering with

Selection strategies)

FECS a robust feature selection

method with a certain noise

tolerate ability for software fault

Prediction.



Chapter 2. Literature Review 51

2.3 Literature Review (Clone Detection and

Clone Evolution Prediction)

It has been observed that the developers have a tendency to copy the modules completely

or partially and modify them. This practice gives rise to identical or very similar code

fragments called software clones. Detecting the cloned fragments is an important but chal-

lenging task. There has been a large number of studies on software clone detection[187,

28, 181]. There exist many clone detection approaches based on types of cloning. They

are Line based technique [54, 87, 136, 121], Metric-based technique[139, 161, 36, 53],

Token based techniques[89, 128, 214], Tree-based techniques[237, 218, 85, 110], PDG

(Programme dependency graph) based techniques[117, 125] and also Abstract Syntax

Tree (AST) based technique[187, 27]. The AST completely captures the whole system

information and is a most efficient clone detection approach[27]. A large number of pa-

pers identify clones based on the same version of software systems. There is a paper by

Antoniol, G et al.[22] in which the author Applied ARIMA for predicting the evolution

of cloned component across different version of mSQL.

A systematic literature review of different approaches applied in the area of Software

Clone Detection and Clone Evolution Prediction is presented in Table 2.2



Chapter 2. Literature Review 52

TABLE 2.2: Literature Review (Clone Evolution Prediction)

Author

(Year)

Objectives of

Study

Methodology

/Approaches/Tool-

s/Techniques

Remarks

S. Ducasse,

M. Rieger,

and S.

Demeyer

(1999)[54]

A Language

Independent

Approach for

Detecting

Duplicated

Code.

The approach is based

on 1) Simple line-based

string matching. (2)

The visual presentation

of the duplicated code.

(3) Detailed textual

reports from which

overview data can be

synthesized.

Easily identify (1) the duplicated

code between several files, (2)

within the same file, (3) cloned

files and (4) evolution files

J. H. John-

son(1994)

[87]

Visualizing

textual

redundancy in

the legacy

source.

A strategy based on

fingerprinting is used to

obtain raw matches

indicating where

repetitions occur. (Line

Based Technique)

The approach appears to be a

powerful method of providing

much information with

comparatively little noise.

U. Man-

ber(1994)

[136]

Finding similar

files in a large

file system.

Present a tool, called

SIF, for finding all

similar files in a large

File system. (Line

Based Technique)

Application of SIF can be found

in file management, information

collecting (to remove

duplicates), program reuse, file

synchronization, data

compression, and also

Plagiarism detection.



Chapter 2. Literature Review 53

S. Lee and I.

Jeong

(2005)[121]

Code Clone

Detection

System for

Large Scale

Source Code.

SDD (Similar Data

Detection) algorithm

(Line Based

Technique).

Detected duplicated parts of

source code in huge software

with high-performance.

J. Mayrand,

C. Leblanc,

and E. M.

Merlo

(1996)[139]

Automatically

identify

duplicate and

near duplicate

functions in two

telecommunica-

tion monitoring

systems totaling

one million lines

of source code.

Technique is based on

metrics extracted from

the source code using

the tool Datrix.

(Metrics Based

Technique).

The information provided by

this study is useful in monitoring

the maintainability of large

software systems.

J.-F.

Patenaude,

E. Merlo, M.

Dagenais

(1999)[161]

Identifying parts

of the system

which have

unusual

characteristics.

Extensions to Bell

Canada source code

quality assessment suite

(DATRIX tm) for

handling Java language.

Through clone detection, it was

found that about 6% of the 512

000 lines of code are clones.



Chapter 2. Literature Review 54

F. Calefato,

F. Lanubile,

and T. Mal-

lardo(2004)

[36]

Identify cloned

functions within

scripting code of

web

applications.

The approach is based

on the automatic

selection of potential

function clones and the

visual inspection of

selected script

functions. (Metrics

Based Technique)

Semi-automated approach is

both effective and efficient at

identifying function clones in

web applications.

G. A. Di

Lucca, M. Di

Penta, and

A. R.

Fasolino

(2002)[53]

Identify

duplicated web

pages.

In this paper, they

propose an approach.

Based on similarity

metrics, to detect

duplicated pages in web

sites and applications,

implemented with

HTML language and

ASP technology.

(Metrics Based

Technique)

The methods produced results

that are comparable, but with

different computational costs.

Successfully applied to identify

a case of plagiarism too.



Chapter 2. Literature Review 55

T. Kamiya,

S.

Kusumoto,

and K. Inoue

(2002)[89]

Code Clone

Detection

System for

large-scale

source code.

Developed a tool,

named CCFinder (Code

Clone Finder), which

extracts code clones in

C, C++, Java, COBOL

and other source files.

In addition, metrics for

the code clones have

been developed.

(Token-Based

Technique)

CCFinder has effectively found

clones, and the metrics have

been able to effectively identify

the characteristics of the

systems.

S. Livieri, Y.

Higo, M.

Matushita,

and K. Inoue

(2007)[128]

Code Clone

Analysis and

Visualization of

Open Source

Programs.

D-CCFinder has been

implemented. 400

million lines in total

have been analyzed.

(Token-Based

Technique)

D-CCFinder illustrates a fairly

cheap and practical Method for

large-scale code clone analysis.

Y. Ueda, T.

Kamiya,

S.Kusumoto,

and K. Inoue

(2002)[214]

Detection of

gapped code

clones.

Proposed a method to

find gapped clones

using the gap location

information.

(Token-Based

Technique)

Successfully found the gapped

clones which are composed of

several short clones.



Chapter 2. Literature Review 56

W. Yang

(1991)[237]

To detect

syntactic

differences

between two

programs.

Parse Tree-based

Technique.

Tree-matching

algorithm and the

synchronous

pretty-printing

technique are used.

(TREE Based

Technique)

Two programs are pretty-printed

‘synchronously’ with the

differences highlighted so that

the differences are easily

identified.

V. Wahler,

D. Seipel, J.

W. von

Gudenberg,

and G.

Fischer

(2004)[218]

Clone detection

in the source

code.

Frequent item set

techniques. (TREE

Based Technique).

Approach is very flexible; it can

be configured easily to work

with multiple programming

languages.

L. Jiang, G.

Misherghi,

Z. Su and S.

Glondu

(2007)[85]

Software Clone

Detection on

large code bases

written in C and

Java including

the Linux kernel

and JDK.

Implemented our tree

similarity algorithm as

a clone detection tool

called DECKARD

DECKARD is both scalable,

accurate and also language

independent.



Chapter 2. Literature Review 57

R.

Komondoor

and S.

Horwitz

(2001)[110]

Identify

Duplication in

the source code.

Program Dependence

graphs (PDGs) and

program slicing to find

isomorphic PDG

Subgraphs that

represent clones.

(Tree-Based Technique)

Can find non-contiguous clones

(Clones whose components do

not occur as contiguous text in

the program).

J. Krinke

(2001)[117]

To identify

similar code in

programs.

Used of program

dependence graphs.

Approach is feasible and gives

very good results despite the

non-polynomial complexity of

the problem.

Antoniol, G.;

Casazza, G.;

Di Penta,

M.; Merlo

(2001)[22]

Cone Evolution

Prediction on 27

subsequent

Versions of

mSQL.

ARIMA Preliminary results are

encouraging.

C. Liu, C.

Chen, J.

Han, and P.

S. Yu

(2006)[125]

Detection of

software

plagiarism

Proposed a new

plagiarism detection

tool, called GPLAG,

which detects

plagiarism by mining

program dependence

graphs (PDGs).

GPLAG is both effective and

efficient: It detects plagiarism

that easily slips over existing

tools, also it takes a few seconds

to find plagiarism in Large

Codes.

R. Koschke,

R. Falke, and

P. Frenzel

(2006)[116]

Clone Detection

in Source Code.

Suffix trees to find

clones in abstract

syntax trees. (AST

Based Technique).

Better precision for type-2

clones than Token-Based

Technique.



Chapter 2. Literature Review 58

I. D. Baxter,

A. Yahin, L.

Moura, M.

Sant’Anna,

and L. Bier

(1998)[27]

Detecting exact

and near miss

clones over

arbitrary

program

fragments in

program source

Code.

Abstract Syntax

Tree-Based Approach.

Proposed a Technique to remove

detected clones.

C. K. Roy, J.

R. Cordy,

and R.

Koschke

(2009)[187]

Comparison and

Evaluation of

software clone

detection tools

and techniques.

1: Proposed a scheme

for classifying clone

detection techniques

and tools and 2:

Proposed a taxonomy

of editing scenarios that

produce different clone

types and also

evaluation of current

clone detectors based

on this taxonomy.

One might use the results of this

study to choose the most

appropriate clone detection tool

or technique in the context of a

particular set of goals and

constraints.

S. Bellon,

R.Koschke,

G.Antoniol,

J. Krinke,

and E. Merlo

(2007)[28]

Compared and

evaluated clone

detection tools.

Presents an experiment

that evaluates six clone

detectors based on eight

large C and Java

programs (altogether

almost 850 KLOC).

The techniques work on the text,

lexical and AST, software

metrics, and program

dependency graphs.



Chapter 2. Literature Review 59

S. K. Abd-

El-Hafiz

(2012)[16]

Detection of

function clones

in software

systems.

Proposed an efficient

metrics-based data

mining clone detection

approach.

The approach is very space

efficient and linear in the size of

the dataset.

D. Rattan, R.

Bhatia, and

M. Singh

(2013)[181]

Extensive

systematic

literature on

software clone

detection.

Thirteen intermediate

representations and 24

match detection

techniques are reported.

Empirical evaluation of clone

detection tools/techniques is

presented.

K. Kaur and

R.

Maini(2015)[94]

Comparative

analysis of

various code

clone detection

techniques.

Classify Clone

Detection Techniques

on the basis of Clone

Types.

The AST completely Captures

the whole system information

and is a most efficient clone

detection approach.

2.4 Literature Review (Software Reliability Prediction)

Reliability is an important factor of software quality. The accurate prediction of software

reliability is a challenging task. There exist many reliability models to predict the reli-

ability based on software testing activities. There are many software reliability growth

models (SRGMs) developed to predict the reliability but they have many unrealistic as-

sumptions, and they are also environment dependent. The accuracy of the models is also

questionable.

There have been a large number of studies in the prediction of software reliability. A num-

ber of software reliability growth models (SRGMs) have been proposed[67, 68] which de-

scribe the software behavior with respect to failures that occur in software applications for



Chapter 2. Literature Review 60

estimating and predicting software reliability. These models have the drawback that they

use unrealistic assumptions, independence of time between failures and fault correction

without the introduction of new faults[179].

There are also some models proposed based on nonparametric statistics[61] and Bayesian

networks [185] to predict the software reliability without any specific assumptions. Al-

though they solve the problem of unrealistic assumptions as considered by SRGMs but

they suffer a lot from the issue of application and accurate prediction [67]. Some of the

authors also use neural networks and machine learning approach[93] to predict software

reliability. The main drawback is that these methods require a large number of data for

learning and it is a time-consuming process. Some authors have also applied time series

ARIMA model[230] as an alternative way to predict software reliability. The limitations

of these papers are that they have not checked the underlying assumptions of ARIMA for

a correct prediction. In another paper[20] the authors have considered all assumptions

and specification for predicting software reliability. They have also compared the perfor-

mance of their model with the existing models. The limitation is that they have taken a

lot of statistical analysis for choosing the best fitting model which is a computationally

expensive and time-consuming process.

A systematic literature review of different approaches applied in the area of Software

Reliability Prediction is presented in Table 2.3.



Chapter 2. Literature Review 61

TABLE 2.3: Literature Review(Software Reliability Prediction)

Author

(Year)

Objectives of Study Methodology

/Approaches/Tool-

s/Techniques

Remarks

Jelinski,

Z.,

Moranda,

P.

(1972)[146]

Software reliability

prediction using

the software

failure-occurrence

time data.

NHPP

(nonhomogeneous

Poisson process).

Performance Measures: U-plot,

Y-plot, and AIC. Logarithmic

Poisson execution time model

fits the data set best.

Goel, A.

(1985)[67]

Software reliability

prediction based on

failure data from a

medium-sized

real-time command

and control

software system.

Four Types of Model

Analyzed: 1: Times

Between Failures

Models, 2: Failure

Count Models, 3: Fault

Seeding Models, 4:

Input Domain Based

Models.

Models require Underlying

assumptions to be applied.

Lyu, M.,

Nikora, A.

(1992)[133]

Software

Reliability

Prediction Based

on Failure Patterns.

Applied Combination

of Existing Models.

Combining the results of

individual Models have a

substantial improvement than

using single component models.



Chapter 2. Literature Review 62

Lyu, M

(1996)[132]

Data, analysis and

case studies on

Software

Reliability

Prediction.

Emerging research

methods including

software metrics,

testing schemes,

fault-tolerant software,

fault-tree analysis,

process simulation, and

neural networks.

Presents a statistical study of

how well software systems

satisfy user requirements on user

premises, and for how long.

Zeitler, D.

(1991)[240]

Prediction Of

Software

Reliability Growth.

Auto-regressive

integrated moving

average (ARIMA)

Models.

Model used Realistic

assumptions for software

reliability models.

Xie, M.,

Ho, S

(1995)[231]

Software

Reliability

Prediction.

ARIMA Time series models have

outperformed the traditional

Duane model in terms of

predictive performance.

Wood, A

(1997)[226]

Discussed on

Reliability Model

Assumptions

against Reality on

Tandem’s software

development and

test environment.

Proposed Technique for

Compensating Loss of

Accuracy due to

Violation of

Assumptions.

Suggestions: - Simple models

are good. Realistic assumptions

are good.

Xie, M.,

Hong, G.,

Wohlin, C

(1997)[230]

Predict Software

Reliability-based

on Software

Failures.

Double exponential

smoothing techniques.

The method is very easy to use

and requires a very limited

amount of data storage and

computational effort.



Chapter 2. Literature Review 63

Xie, M.,

Ho,

S.(1999)

[231]

Reliability

Analysis on

Repairable

Systems.

Time series models for

analyzing failure data.

The time series method gives

satisfactory results in terms of its

predictive performance.

Robinson,

D.,

Dietrich,

D.

(1987)[185]

Reliability

Analysis of Failure

Rate of a System.

Non-Parametric

Reliability Growth

Model.

Model has improved

performance in terms of relative

error and mean square error.

Barghout,

M., Little-

wood, B.,

Abdel-

Ghaly,

A.(1998)

[26]

Prediction of

Software

Reliability.

Non-Parametric

Reliability Growth

Model (allows the data

to speak for

themselves)

Better predictions than

parametric reliability growth

models.

Bai, C.,

Hu, Q.,

Xie, M.,

Ng, S.

(2005)[25]

Predicting

Reliability From

Software Failures.

Markov Bayesian

networks.

Improved predictive

performance via Bayesian

network but increased

complexity and Computational

effort.



Chapter 2. Literature Review 64

Junhong,

G.,

Hongwei,

L.,

Xiaozong,

Y(2005)

[88]

Software

Reliability

Prediction

Proposed a

Transformation of

Goel-Okumoto model

into one-order

autoregressive

stochastic time series

model with independent

increment.

Proposed model is superior to

that of Goel-Okumoto model in

terms of estimation and

prediction ability.

Pai, P.,

Hong, W.

(2006)[159]

Software reliability

forecasting

Support vector

machines (SVMs) +

Simulated annealing

algorithms (SA) [for

selection of parameters

of an SVM model]

SVM model with simulated

annealing algorithms (SVMSA)

results in better predictions than

the other methods.

Kiran, N.,

Ravi,

V.(2007)

[108]

Software

Reliability

Prediction.

Wavelet neural

networks (WNN)

WNN outperformed BPNN,

GRNN, and MLR and other

techniques.



Chapter 2. Literature Review 65

Lyu,

M.R.,

(2007)

[131]

Software

Reliability

Engineering.

Proposed a new

software reliability

engineering paradigms

that take software

architectures, testing

techniques, and

software failure

manifestation

mechanisms into

consideration.

Present a review of the history of

software reliability engineering,

the current trends and existing

problems, and specific

difficulties.

Fenton,

N., Neil,

M.,

Marquez,

D.(2008)

[61]

Predicted software

defects and

reliability on

organizations such

as Motorola,

Siemens, and

Philips.

Bayesian networks

(BNs)

Significantly improved accuracy

for defects and reliability

prediction type models.



Chapter 2. Literature Review 66

Raj Kiran,

N., Ravi,

V.(2008)

[182]

Software

Reliability

Prediction

Various statistical

(multiple linear

regression and

multivariate adaptive

regression splines) and

intelligent techniques

(Back Propagation

trained a neural

network, dynamic

evolving Neuro-fuzzy

inference system, and

TreeNet).

Nonlinear ensemble

outperformed all the other

ensembles and also the

constituent statistical and

intelligent techniques.

Zaidi, S.,

Danial, S.,

Usmani

(2008)[239]

Software

inter-failure time

series analysis

ANN Modelling. The calculated RMSE of the

ANN model is much lesser than

the other modelling Techniques.

Lo,

J.(2009)

[129]

Proposed a General

framework of the

modeling of the

failure detection

and fault correction

processes.

Applied and

Constructed ANN for

modelling software

failure data.

Eliminated some unrealistic

assumptions by SRGMs.



Chapter 2. Literature Review 67

Sharma,

K., Garg,

R.,

Nagpal,

C., Garg,

R(2010)

[193]

Selection of An

optimal SRGM.

Proposed a

deterministic

quantitative model

based on a distance

based approach (DBA)

for ranking SRGMs.

This paper addresses the issue of

optimal selection of software

Reliability growth models.

Yang, B.,

Li, X.,

Xie, M.,

Tan,

F.(2010)

[234]

Software

Reliability

Modelling

Proposed a generic

data-driven software

reliability models

(DDSRMs) with

multiple-delayed-input

single-output (MDISO).

A hybrid genetic

algorithm (GA)-based

algorithm is developed

which adopts the model

mining technique to

discover the correlation

of failures and to obtain

optimal model

parameters.

Proposed model outperforms

existing DDSRMs.



Chapter 2. Literature Review 68

Huang,

C., Lyu,

M.(2011)

[78]

Software

Reliability

Prediction from

software failure

data.

Incorporate the concept

of multiple

change-points, i.e.,

points in time when the

software environment

Changes into software

reliability modeling.

Proposed models can provide

good software reliability

prediction in the various stages

of software development and

operation.

Kapur, P.,

Pham, H.,

Anand, S.,

Yadav,

K.(2011)

[92]

Developing

Advanced Software

Reliability Growth

Models

Proposed two general

frameworks for

[(GINHPP-1) and

(GINHPP-2)] deriving

several software

reliability growth

models based on a

Nonhomogeneous

Poisson Process

(NHPP) in the presence

of imperfect Debugging

and error generation.

Models discussed in this paper

have quite encouraging

performance on real dataset.

Moura,

M., Zio,

E., Didier

Lins, I.,

Droguett,

E.

(2011)[49]

Failure and

Reliability

Prediction.

Support Vector

Machines Regression.

SVM outperforms other

techniques like ARIMA,

MLPNN, RNN, etc.



Chapter 2. Literature Review 69

Palviainen,

M.,

Evesti, A.,

Ovaska,

E. (2011)

[160]

Software reliability

evaluation during

the design and

implementation

phases.

A coherent approach by

combining both

predicted and measured

reliability values with

heuristic estimates in

order to facilitate a

smooth reliability

evaluation process.

(Component Level

Reliability +System

Level Reliability).

Helps Software Developers in

Early Reliability Prediction (at

Design Time).

Wiper,

M.,

Palacios,

A., Marı́

n,

J.(2012)

[224]

Software

Reliability

modelling using

Software Metrics

Information.

Neural network

regression to estimate

failure rates in models

based on inter failure

times or numbers of

failures. The inference

is carried out using a

Bayesian approach.

An Efficient Approach for

Software Reliability Prediction.

R. Mo-

hanthy, et

al.

(2014)[145]

Predict software

reliability based on

data collected from

the literature.

Ant Colony

Optimization

Technique (ACOT)

Proposed Method Outperforms

BPNN, GRNN, DENFIS, and

other techniques in terms of

NRMSE.



Chapter 2. Literature Review 70

Kewen Li;

Kang

Zhao;

Wenying

Liu

(2013)

[122]

Software

Reliability

Prediction.

ANN +K Means

Clustering Method.

Improved Accuracy than Back

Propagation Algorithm

Amin, A.,

Grunske,

L.,

Colman

(2013)[20]

Software

Reliability

Prediction

ARIMA Results Better Than Traditional

SRGMs.

Shirin

Noekhah;

Ali Akbar

Hozhabri;

Hamideh

Salimian

Rizi

(2013)[153]

Software reliability

prediction on the

basis of number of

faults.

Multi-Layer Perceptron

(MLP) neural network

+ Imperialist

Competitive Algorithm

(ICA) [as training

algorithm].

Proposed predicting model is

more efficient than the existing

techniques in prediction

performance.

Najeeb

Ullah;

Maurizio

Morisio;

Antonio

Vetrò

(2015)[215]

Model to Predict

Residual Defects in

Open Source

Software.

Evaluates eight popular

software reliability

growth models and

selects the one that can

best predict the

Software’s remaining

faults.

Proposed Model will Provide

Practical Support to Project

Managers.



Chapter 2. Literature Review 71

2.5 Conclusion

This chapter presents a systematic literature survey on different models on software defect

prediction, clone detection, clone evolution prediction and also software reliability predic-

tion. From the survey, it is observed that though there exist a large number of papers on

predicting these software characteristics only a few research papers aim at modelling the

temporal patterns of different evolving software characteristics across different versions

of the software application. It is also observed that the time series model applied by the re-

search papers are based on simple Polynomial regression and ARIMA. The survey shows

there is a need for modelling the evolving software characteristics using advanced time

series approach based on both statistical and machine-learning techniques.




