Chapter 2

Literature Review

2.1 Introduction

In this chapter, we have provided a brief literature review of our work. The literature review includes Software Bug Prediction, Clone Evolution Prediction, and Software Reliability Prediction. These are well-known research area in software engineering. There are number of approaches for prediction of above mention attributes. However, it was noticed that not much research have been conducted on temporal analysis of above attributes in software engineering.

2.2 Literature Review (Software Bug Prediction)

Software Bug Prediction is one of the challenging aspects of Software Engineering. The techniques used include Rule-Based methods, Artificial Neural Network, Support Vector Machines, Nearest Neighbors, Decision Trees, and also other advanced machine learning techniques. There are number of papers [101, 100, 103, 102, 105] in which the authors

applied machine learning for software fault prediction. They use NASA MDP dataset for experiments. Some authors also applied clustering techniques to improve the performance of software fault prediction models. Another group of authors have applied a combination of one or two methods, i.e., ensemble methods for software fault prediction.

Previous studies on temporal bug pattern predictions are based on traditional time series modeling like ARIMA[227] that is used to predict a stationary time series data. In another paper by Hongyu et al.,[76] Polynomial Regression is used to predict the bug growth patterns in Eclipse.

A systematic literature review of different approaches applied in the area of software bug prediction is presented in Table 2.1.

Author	Objectives of	Methodology	Remarks
(Year)	Study	/Approaches/Tool-	
		s/Techniques	
Khoshgoftaar	, Predicted	By using Case-Based	Type-I and Type-II error were
Allen, and	Software Quality	Reasoning	used as performance evaluation
Busboom	by using Eight		metrics, and prediction model
(2000)[97]	Method Level		was reasonably successful.
	Metrics		

 TABLE 2.1: Literature Review(Software Bug Prediction)

Xu, Khosh-	Predict faults on	Used principal	They reported that fuzzy
goftaar, and	large telecommu-	component analysis for	nonlinear regression method is
Allen	nications the	feature selection and	an encouraging technology for
(2000)[233]	system developed	then applied fuzzy	early fault prediction.
	with Protel	nonlinear regression	
	language used 24	(FNR).	
	method level		
	metrics and four		
	execution		
	metrics.		
Guo and	Predict software	Finite mixture model	Type-I, Type-II errors are used
Lyu	quality on a	analysis with Expecta-	as performance Evaluation
(2000)[71]	medical imaging	tion-Maximization	metrics. Best value for Type-II
	system developed	(EM) algorithm.	error was 13%.
	with Pascal and		
	Fortran		
	languages.		
Khoshgoftaar	, Predicted faults	Zero-inflated Poisson	Performance evaluation metrics
Gao, and	on two	regression model (ZIP)	were average absolute error
Szabo	large-scale	and file level metrics.	(AAE) and average relative error
(2001)[98]	software		(ARE). ZIP provided better
	applications.		results compared to PRM. Also,
			AAE and are values of ZIP was
			smaller than PRM's (Poisson
			Regression Model) error results.

Schneidewind	Software Quality	Boolean discriminant	Type-I error, Type-II error,
(2001)[189]	Prediction by	functions (BDF) and	overall misclassification rate,
	using six method	logistic regression	and the rate of correctly
	level metrics on a	functions (LRF).	classified non-faulty modules
	spacecraft		(LQC) parameters were used as
	software dataset.		performance evaluation metrics.
			BDF's performance was better
			than LRF's performance.
Emam,	Predicted the	Logistic regression and	They reported that inheritance
Melo, and	fault-prone	class level metrics.	depth and export coupling are
Machado	Classes on a		the most useful metrics to
(2001)[56]	commercial Java		identify the fault-prone classes.
	application.		
Khoshgoftaar	, Predicted the	PRM, ZIP, and module-	The performance of
Geleyn, and	fault-prone	Order modeling	module-order model was good
Gao	Classes on two	techniques with five file	on These datasets and other
(2002)[99].	Applications	level metric.	approaches did not provide good
	which configure		results.
	wireless		
	products.		

Mahaweerawa	atPredict software	fuzzy clustering and	Type-I error, Type-II error,
et	faults.	then, they applied radial	overall misclassification rate,
al.(2002)[14]		basis function (RBF)	inspection, and completeness
			were used as performance
			Evaluation metrics. RBF's
			accuracy was 83% and MLP's
			accuracy was 60%. Therefore,
			RBF method was better than
			MLP for software fault
			prediction in this study.
Khoshgoftaar	Software Quality	SPRINT and CART	Performance evaluation metrics
and Seliya	Classification.	methods with 28	were Type-I error, Type-II error,
(2002a)[102]		method level metrics	and overall Misclassification
		(24 product metrics and	Rate. They reported that
		four execution metrics)	SPRINT algorithm had lower
		SPRINT is a	Type- I error, and the model
		classification tree	based on SPRINT was robust.
		Algorithm and CART is	
		decision tree algorithm.	
Pizzi,	Predicted	Multi-layer perceptron	Accuracy parameter was used as
Summers,	software quality	and method/class level	performance Evaluation metric.
and Pedrycz	on a research	metrics.	They stated that using
(2002)[175]	prototype.		median-adjusted class labels is
			an effective pre-processing
			technique before multi layer
			perceptron is applied.

Khoshgoftaar	Software Quality	Used tree based	CART-LAD was proposed for
and Seliya	Prediction	software Quality	software Quality prediction.
(2002b)[100]	models for a	Prediction Models	
	large telecommu-	Applied design metrics.	
	nications	CART-LS (least	
	system.	squares), S-PLUS, and	
		CART-LAD (least	
		absolute deviations)	
		were investigated in	
		this study.	
Reformat	Predict software	Fuzzy rule-based	Classification rates change
(2003)[183]	faults on a	models for reasoning	between 62.82% and 79.49%.
	commercial	about the number of	Classification rate was 85.90%
	medical imaging	software faults and 11	when Meta-model prediction
	system.	method level metrics	system was used.
		used	
Koru and	Investigated the	Tree-based models and	Mann–Whitney U-test was
Tian	relationship	method level metrics	applied for performance
(2003)[115]	between high	(15 method level	evaluation. They showed that
	defect and high	metrics for IBM	high defect-prone modules are
	complexity	products and 49 method	complex modules, But they are
	modules	level metrics for Nortel	not the most complex ones.
		Networks) on Six large	
		scale products of IBM	
		and Nortel Networks.	

Denaro,	Predict Software	Applied logistic	Expected to see a correlation
Lavazza,	Faults on an	regression by using	Between fault-proneness and at
and Pezzè	industrial	class level metrics.	least one metric. They found
(2003)[52]	telecommunica-		that none of these metrics are
	tions		correlated with fault-proneness,
	system.		and multivariate models do not
			provide any advantage compared
			to lines of code metric.
Thwin and	Predicted	General Regression	Evaluation parameters were R2,
Quah	Software Quality	Neural Network	r, average square error, average
(2003)[206]		(GRNN) and Ward	absolute error, Minimum
		Neural Networks.	absolute error, and maximum
			absolute error. reported that
			GRNN provided Much better
			results than Ward networks.
Khoshgoftaar	Predicted	CART-LS, CART-LAD,	They used two-way ANOVA
and Seliya	Software Faults.	S-PLUS, multiple	randomized complete block
(2003)[101]		linear regression, neural	design model as experimental
		networks, case based	design approach and
		Reasoning on a large	multiple-pairwise comparison
		telecommunications	for performance ranking. Best
		system. Twenty-four	performance was achieved with
		product and four	the CART-LAD algorithm, and
		execution metrics were	the worst one was S-PLUS.
		independent variables	
		For this analysis.	

Guo, Cukic,	Predicted	Dempster-Shafer	Performance evaluation metrics
and Singh	fault-prone	Belief Networks and 21	were the probability of
(2003)[70]	modules on	method level metrics.	detection, effort, and accuracy.
	NASA's KC2		
	project.		
Denaro,	Predict the	Logistic regression with	Performance Evaluation metrics
Pezzè, and	fault-prone	Method level metrics.	used: R2, completeness,
Morasca	modules on		completeness of faulty modules,
(2003)[52]	antenna		and correctness of faulty
	configuration		modules. They showed that
	system Apache		logistic regression with
	1.3, and Apache		cross-validation is an effective
	2.0.		approach.
Menzies,	Predicted	Naïve Bayes algorithm.	Probability of detection (PD)
DiStefano,	fault-prone	Method level metrics	and the probability of false
Orrego, and	modules on	were used.	alarm (PF) were performance
Chapman	public datasets		evaluation Metrics. Naive Bayes
(2004)[141]	locating in		provides better performance than
	PROMISE		J48 algorithm. Furthermore,
	repository.		they reported that PD on KC1
			dataset was 55% and PD for
			Fagan inspections was between
			33% and 65%. For industrial
			inspections, PD for Fagan
			inspections was between 13%
			-

Khoshgoftaar	Software Quality	Logistic regression,	Expected cost of
and Seliya	Classification	case based reasoning,	misclassification metric was
(2004)[103]	Techniques on	classification and	chosen as performance
	large telecommu-	regression trees	evaluation parameter. They
	nications	(CART), tree based	stated that data and system
	System.	classification with	characteristics affect the
		S-PLUS, Spring-Sliq,	performance of prediction
		C4.5, and Treedisc by	models in software Engineering.
		using 24 product	
		metrics and four	
		execution metrics.	
Wang, Yu,	Quality	Artificial neural	Accuracy parameter was used
and Zhu	prediction on a	networks. Seven	for performance evaluation. the
(2004)[220]	large telecommu-	product metrics	accuracy of the prediction which
	nications system	calculated with	was parformed with rule set of
			was performed with fulle set of
	developed With	MATRIX analyzer. To	CGA is lower than the accuracy
	developed With C language.	MATRIX analyzer. To improve the	CGA is lower than the accuracy of the neural networks based
	developed With C language.	MATRIX analyzer. To improve the understandability of	CGA is lower than the accuracy of the neural networks based prediction; results were more
	developed With C language.	MATRIX analyzer. To improve the understandability of neural networks, they	CGA is lower than the accuracy of the neural networks based prediction; results were more understandable When rule set of
	developed With C language.	MATRIX analyzer. To improve the understandability of neural networks, they applied Clustering	CGA is lower than the accuracy of the neural networks based prediction; results were more understandable When rule set of CGA was used.
	developed With C language.	MATRIX analyzer. To improve the understandability of neural networks, they applied Clustering Genetic Algorithm	CGA is lower than the accuracy of the neural networks based prediction; results were more understandable When rule set of CGA was used.

Mahaweerawa	atIdentity the	First used Multi-layer	Type-I error, Type- II error,
Sophat-	fault-prone	perceptron. Later they	inspection, and achieved quality
sathit,	modules Of 3000	applied radial basis	parameters. Accuracy, achieved
Lursinsap,	C++ classes	functions (RBF).	quality, inspection, Type-I error,
and Musilek	collected from		Type-II error were 90%, 91.53%,
(2004)[135]	different web		59.55%, 5.32%, and 2.09%
	pages.		respectively. Also, they stated
			that they could not identify only
			2.09% of faulty classes.
Kanmani,	Software quality	General Regression	Evaluation parameters were
Uthariaraj,	prediction. on	Neural Networks	correlation coefficient (r), R2,
Sankara-	student projects	(GRNN) technique By	average square error, average
narayanan,	developed in	using 64 class level	absolute error, maximum
and Tham-	Pondicherry	metrics. Principal	absolute error, and minimum
bidurai	Engineering	component analysis	absolute error parameters. They
(2004)[90]	College.	was used for feature	reported that GRNN The
		selection.	technique provided good results
			for fault prediction.

Zhong,	Cluster as	K-means and Neural-	Mean squared error (MSE),
Khoshgof-	fault-prone or not	Gas clustering methods	average purity, and time
taar, and	fault-prone by	to cluster modules, also	parameters were Used. False
Seliya	examining not	supported by an expert	positive rate (FPR), false
(2004)[245]	only the	who is 15 years	negative rate (FNR), and overall
	representative of	experienced engineer.	misclassification rate parameters
	each cluster, but		were used. Neural-Gas
	also some		performed much better than
	statistical data		K-means according to the MSE
	such as global		parameter, and its average purity
	mean, minimum,		was slightly better than K-means
	maximum,		clustering's Purity value.
	median, 75%,		
	and 90% of each		
	metric.		
Xing, Guo,	Predicted	Support Vector	Type-I error and Type-II error
and Lyu	software quality	Machines (SVM) and	were used to evaluate the
(2005)[232]	on a medical	11 method level metrics	performance of the model. They
	imagining	(Halstead, McCabe,	reported that SVM performed
	software.	Jensen's program	better than quadratic
		length, and Belady's	discriminant analysis and
		bandwidth)	classification tree.

Koru and	Investigated the	J48 and KStar	F-measure was used for
Liu	effect of module	algorithms.	performance evaluation. Both
(2005)[113]	size on fault		method level and class level
	prediction on		metrics were investigated. The
	public NASA		best performance was achieved
	datasets.		with the J48 algorithm and
			Bayesian Networks.
Khoshgoftaar	, A new three	C4.5 decision tree,	Performance evaluation metrics
Seliya, and	group Software	discriminant analysis,	was expected the cost of
Gao	quality	case based reasoning,	misclassification. They reported
(2005)[104]	classification	and logistic Regression.	that three groups such as high,
	technique on two	They applied five file	medium, and low labels
	embedded	level metrics.	provided encouraging
	software which		performance for fault prediction.
	configures		
	wireless		
	products.		
Koru and	Built fault	J48, K-Star, and	F-measure was selected as
Liu	prediction	Random Forests.	performance evaluation metric.
(2005)[112]	models on public		They stated that large modules
	NASA datasets.		had higher F-measure values for
			J48, K-Star, and Random Forests
			algorithms.

Challagulla,	Software fault	Linear regression, pace	Performance Evaluation metric
Bastani,	prediction on	regression, support	was an average absolute error.
Yen, and	public NASA	vector regression,	IBL and 1-R was better than the
Paul	datasets.	neural network For	other algorithms according to
(2005)[41]		continuous goal field,	the accuracy parameter, and they
		support vector logistic	stated That principal component
		regression, a neural	analysis did not provide an
		network for discrete	advantage.
		goal field, Naive Bayes,	
		instance based learning	
		(IBL), J48, and 1-R	
		techniques by using	
		method level metrics.	
Gyimothy,	Validate object	Logistic regression,	Performance evaluation metrics
Ferenc, and	oriented metrics	Linear regression,	were completeness, correctness,
Siket	for fault	decision trees, and	and Precision. They reported
(2005)[72]	prediction on	neural networks. Class	that coupling between object
	Mozilla Open	level metrics were used.	classes (CBO) metric is very
	source project.		useful for fault prediction.
Ostrand,	source project. Predicted the	Negative binomial	useful for fault prediction. Performance Evaluation metric
Ostrand, Weyuker,	Predicted the location and	Negative binomial regression model. some	useful for fault prediction. Performance Evaluation metric was accuracy. They reported that
Ostrand, Weyuker, and Bell	Predicted the location and number of faults	Negative binomial regression model. some metrics they used were	useful for fault prediction. Performance Evaluation metric was accuracy. They reported that the accuracy of general
Ostrand, Weyuker, and Bell (2005)[156]	source project. Predicted the location and number of faults on two industrial	Negative binomial regression model. some metrics they used were programming	useful for fault prediction. Performance Evaluation metric was accuracy. They reported that the accuracy of general performance was 84% and the
Ostrand, Weyuker, and Bell (2005)[156]	source project. Predicted the location and number of faults on two industrial systems.	Negative binomial regression model. some metrics they used were programming Language, the age of	 useful for fault prediction. Performance Evaluation metric was accuracy. They reported that the accuracy of general performance was 84% and the simplified model's accuracy Was
Ostrand, Weyuker, and Bell (2005)[156]	source project. Predicted the location and number of faults on two industrial systems.	Negative binomial regression model. some metrics they used were programming Language, the age of the file, and file change	useful for fault prediction. Performance Evaluation metric was accuracy. They reported that the accuracy of general performance was 84% and the simplified model's accuracy Was 73%.

Tomaszewski	Accuracy of early	Regression techniques	Performance evaluation
Lundberg,	fault prediction in	and method/class level	parameter R2 (determination
and Grahn	modified code on	metrics.	coefficient). Performance of
(2005)[208]	a large Telecom-		models improves when this
	munications		metric is used.
	system.		
Hassan and	Identify the top	They proposed some	Performance evaluation Metrics
Holt	ten fault-prone	techniques such as most	were hit rate and average
(2005[75])	Components of	frequently modified	prediction age (APA). MFM and
	six open source	(MFM), most recently	MFF were more successful than
	projects.	modified (MRM), most	the other methods.
		frequently fixed (MFF),	
		and most recently fixed	
		(MRF). Metrics such as	
		change Frequency and	
		size metrics were used.	
Challagulla,	Predicted	Memory Based	Performance evaluation metrics
Bastani, and	software faults on	Reasoning (MBR).	used: Probability of detection,
Yen	public NASA		probability of false alarm, and
(2006)[40]	datasets by using		Accuracy. They proposed a
	21 method level		framework and users can choose
	metrics.		the MBR Configuration which
			can provide the best
			performance from this
			framework.

Khoshgoftaar	, Predict software	Case-based Reasoning	Performance evaluation metrics
Seliya, and	faults on a Large	by using 24 product and	were average absolute error and
Sundaresh	telecommunica-	four execution metrics.	average Relative error. They
(2006)[105]	tions system to		reported that case based
	predict software		reasoning works better than
	faults.		multivariate linear regression
			and correlation based feature
			selection and stepwise
			regression model selection did
			not improve the performance of
			models.
Nikora and	Built high-quality	Method Level Metrics.	In this study, they built a
Munson	software fault		framework which includes the
(2006)[152]	Predictors on		rules for fault definition, and
	mission data		they proved that fault predictors
	system of Jet		which look at the token
	Propulsion		differences between two
	Laboratory.		versions are more effective.
Zhou and	Predicted high	Logistic Regression,	Performance evaluation metrics
Leung	and low severity	Naive Bayes, Random	were correctness, completeness,
(2006)[248]	faults on NASA's	Forests, The Nearest	and precision. They reported
	KC1 dataset.	neighbor with	that low severity faults could be
		generalization	predicted with a better
		techniques.	performance compared to high
		Object-oriented	severity faults.
		software metrics.	

Mertik,	Estimated	Prunned C4.5,	Multi-method includes several
Lenic,	software quality	unpruned C4.5,	methods and its performance
Stiglic, and	on NASA	multimethod, SVM	with respect to performance was
Kokol	datasets.	using RBF kernel,	very high.
(2006)[143]		SVM using linear	
		kernel techniques by	
		using method level	
		metrics.	
Boetticher	Investigated the	Applied J48 and Naive	Datasets were divided into three
(2006)[33]	effects of datasets	Bayes techniques for	parts: a training set, nice
	on software	the analysis.	neighbors test set, and nasty
	engineering.		neighbors test set. Nice
			neighbors are neighbors who are
			close to the same class, and
			nasty neighbors are neighbors
			who locate in different classes.
			He showed that the accuracy was
			94% for nice neighbors test set
			and the accuracy was 20% for
			nasty neighbors test set.
Bibi,	Software Fault	Regression via	Performance evaluation metrics
Tsoumakas,	Prediction on	Classification (RvC)	were average absolute error and
Stamelos,	Pekka dataset	Technique. Used	accuracy. They reported that
and Vlahvas	which was	different metrics such	RvC could be used to enhance
(2008)[30]	Collected in one	as disk usage, processor	the understandability of
	of Finland's	usage, number of users,	regression models.
	banks.	and document Quality.	

Gao and	Software Fault	Poisson regression,	Performance evaluation metrics
Khoshgof-	Prediction on two	zero-inflated Poisson	were Pearson's chi The square
taar	embedded	regression, negative	measure, information criteria,
(2007)[64]	software	binomial regression	average absolute error (AAE),
	applications	model, Zero-Inflated	and average relative error
	which configure	negative binomial, and	(ARE). They reported that model
	the wireless	Hurdle Regression	based on Zero-Inflated negative
	telecommunica-	(HP1, HP2, HNB1,	binomial technique performs
	tions	HNB2) techniques.	better than the other algorithms
	Products.	Used using five file	according to the information
		level metrics.	criteria and chi-square measures.
Li and	Predicted	SimBoost method was	Accuracy: was used for
Reformat	software faults on	proposed in this study	performance evaluation. This
(2007)[124]	the JM1 dataset .	and fuzzy labels for	method with fuzzy labels
		classification were	worked well on the dataset.
		suggested. Method	
		level metrics used.	
Mahaweerawa	at\$oftware Fault	Self-organizing map	Performance evaluation metric
Sophat-	prediction on a	clustering and then	was mean of absolute residual
sathit, and	dataset which is	applied RBF. Method	(MAR). They reported that
Lursinsap	not explained in	level metrics were used.	accuracy was 93% in this study,
(2007)[134]	the paper.		but accuracy is not an
			appropriate Parameter for
			imbalanced datasets.

Menzies et	Software fault	Investigated several	Performance evaluation metrics
al.	prediction on	data mining algorithms.	were PD, PF, and balance. They
(2007a)[86]	public NASA		achieved the best performance
	datasets.		Naive Bayes algorithm, and
			before this algorithm is applied,
			they used a logNum filter for
			software metrics. They reported
			that Naive Bayes outperformed
			J48.
Zhang and	Software fault	Investigated several	Criticized Menzies et al.'s study
Zhang	prediction on	data mining algorithms.	(2007a) and they stated that PD
(2007)[243]	public NASA		and PF parameters are not
	datasets.		enough to evaluate the
			performance of models. They
			reported that precision was very
			low in Menzies et al.'s study
			(2007a) and this model would

Menzies,	Software fault	Investigated several	Responded to comments of
Dekhtyar,	prediction on	data mining algorithms.	Zhang and Zhang (2007) and
Distefano,	public NASA		they stated that precision is not a
and	datasets.		useful parameter for software
Greenwald			engineering problems, models
(2007b)[86]			which have low precision
			provided remarkable results for
			different problems. Precision is
			supposed to be high too, but in
			practice, this is not a real case.
Ostrand,	Predicted	Negative binomial	They reported that negative
Weyuker,	fault-prone	regression model by	binomial regression model is
and Bell	modules.	using several Metrics	very useful according to the
(2007)[157]		such as file size, file	accuracy parameter.
		status, the number of	
		changes on file, and	
		programming language.	

	1	1	
Yang, Yao	Software Fault	Fuzzy Self-Adaptation	Inputs for FALCON were
and Huang	Prediction on an	Learning Control	software metrics, and outputs
(2007)[235]	artificial dataset.	Network-(FALCON)	were reliability and
			effectiveness. They stated that
			this model could measure
			several quality features such as
			reliability, performance, and
			maintainability, but they did not
			try this approach with real
			datasets. Therefore, it is clear
			that their study is at early stages.
Pai and	Calculate the	Linear regression,	Evaluation parameters were
Dugan	fault-proneness	Poisson regression, and	sensitivity, specificity, precision,
(2007)[158]	of modules On	logic regression to	false positive and false negative
	NASA Datasets.	calculate conditional	parameters. They reported that
		probability densities of	weighted methods count
		Bayes Networks' nodes	(WMC), coupling between
		and then, they used	object classes (CBO), the
		these networks to	response for a class (RFC), and
		calculate the	lines of code metrics are very
		fault-proneness of	useful to predict the
		modules	fault-proneness of modules.

Wang, Zhu,	Predicted	Genetic algorithm by	Performance evaluation Metrics
and Yu	software quality	using 18 method level	were a Type-I error, Type-II
(2007)[221]	on two large	and 14 file level	error, and overall
	telecommunica-	metrics.	misclassification rate. They
	tions		reported that the proposed model
	system.		is better than S-PLUS and
			TreeDisc.
Seliya and	Predicted	Expectation-Maximization	onThey used Type-I error, Type-II
Khoshgof-	software faults	(EM) technique.	error, and overall
taar	with Limited		misclassification rate parameters
(2007a)[190]	fault data. The		for performance evaluation. EM
	JM1 dataset was		technique is first used to give
	used as training		labels to unlabeled data and then
	dataset and KC1,		all the modules are used to build
	KC2, and KC3		the prediction model. EM based
	were used as test		quality model provided
	datasets.		acceptable results for
			semi-supervised fault prediction
			problem.
Koru and	Identified	Tree-based models and	20% of classes changed and tree
Liu	change-prone	Class label metrics	based models were very useful
(2007)[114]	classes on	used.	to identify these change-prone
	K-Office and		classes.
	Mozilla		
	open-source		
	projects.		

Cukic and	Predicted	Method level metrics	Evaluation parameters were PD
Ma	fault-proneness	used.	and PF. Only four algorithms
(2007)[48]	of modules and		provided PD value which is
	investigated 16		higher than 50% and PF value
	learning		which is lower than 50%.
	algorithms on		
	JM1 dataset		
Tomaszewski	, Predict software	Expert opinion and	Accuracy parameter was used
Håkansson,	faults on two	univariate linear	for performance evaluation. The
Grahn, and	software systems	regression analysis.	accuracy of the prediction model
Lundberg	developed by		based on class level metrics was
(2007)[207]	Ericsson.		better than the model based on
			component level metrics. They
			Reported that statistical
			approaches are more successful
			than expert opinion and experts
			did not predict faults easily in
			large datasets.

Seliya and	Predict the	A constraint-based	Performance evaluation metrics
Khoshgof-	fault-proneness	Semi-supervised	were Type-I error, Type-II error,
taar	of program	clustering scheme that	and overall misclassification
(2007b)[190]	modules when	uses K-means	rate. They reported that
	the defect labels	clustering method.	semi-supervised clustering
	for modules are	However, their	scheme provided better
	unavailable.	approach uses an	performance than traditional
		expert's domain	clustering methods and half of
		knowledge to iteratively	the Modules which could not be
		label clusters as	labeled were noisy.
		fault-prone or not.	
Olague,	To predict	Univariate binary	Accuracy parameter was used
Gholston,	fault-proneness	logistic regression	for model validation, and
and Quattle-	of object-oriented	(UBLR) and	Spearman correlation was
baum	classes developed	multivariate binary	applied to examine the metrics'
(2007)[155]	using highly	logistic regression	effects. They reported that CK
	iterative or agile	(MBLR) techniques	and QMOOD metrics are very
	software	were used for the	useful for fault prediction, but
	development	analysis.	MOOD metrics are useless.
	processes (on	Chidamber–Kemerer	Furthermore, they stated that
	open-source	(CK) metrics suite,	MBLR models are useful for
	Rhino project's	Abreu's object-oriented	iterative and agile software
	six versions)	metrics (MOOD), and	development processes.
		Bansiya and Davis's	
		quality metrics	
		(QMOOD) were	
		investigated.	

Binkley,	Predicted	Linear mixed-effects	Determination coefficient was
Feild, and	Software Fault.	Regression model.	used as performance evaluation
Lawrie		QALP score, total lines	parameter. They reported that
(2007)[31]		of code, and lines of	neither QALP nor size measure
		code except for	is a good predictor for Mozilla
		comments and blank	project.
		lines used.	
Menzies T,	Mining Static	Rule-based or	Bayesian method performs best.
Greenwald	Code Attributes	decision-tree learning	
J, Frank A	to Learn Defect	methods and naive	
(2007)[86]	Predictors.	Bayes data miner with a	
		log-filtering	
		preprocessor on the	
		numeric data.	
Jiang,	Predicted	Investigated 1-R, Naive	PD and PF were selected as
Cukic, and	software faults	Bayes, Voted	performance Evaluation metrics.
Menzies	using early life	Perceptron, Logistic	They reported that the
(2007)[86]	cycle data.	Regression, J48, VFI,	performances of algorithms
		IBk, and Random	except Voted Perceptron
		Forests for fault	algorithm improved when code
		prediction by using	metrics were combined with
		metrics extracted from	requirement metrics.
		textual requirements	
		and code metrics.	

Bibi et al.	Software fault	Regression via	Performance evaluation metric
(2008)[30]	prediction	Classification (RvC).	was Mean Absolute Error
	problem (to		(MAE). RvC provided better
	estimate the		regression error than the
	number of		standard regression methods.
	software faults		
	with a confidence		
	interval) Pekka		
	dataset from a		
	big commercial		
	bank in Finland		
	and ISBSG		
	dataset were used		
	for The analysis.		
Hongyu	Study of the	Growth of the number	For most of the components, the
Zhang(2008)	growth of eclipse	of defects modeled by	MRE values are below 25%,
[242]	defects	polynomial functions.	falling within the acceptable
			levels.

Bingbing,	Software fault	Affinity Propagation	Performance evaluation metrics
Qian,	prediction on two	Clustering algorithm	were Type-I error, Type-II error,
Shengyong,	datasets. (A	compared the	and entirely correct
and Ping	medical imaging	performance of it with	Classification rate (CCR).
(2008)[236]	system and	the performance of	Affinity Propagation clustering
	Celestial	K-means clustering	algorithm was better than
	Spectrum	Method.	K-means clustering on two
	Analysis System		datasets according to the Type-II
	datasets were		error
	used for the		
	analysis.)		
Marcus,	Software fault	Proposed a new	Performance evaluation metrics
Poshy-	prediction	cohesion metric named	used: Precision, Correctness,
vanyk, and	Modeling on	Conceptual Cohesion of	and Completeness. Univariate
Ferenc	WinMerge and	Classes (C3).	logistic regression analysis
(2008)[137]	Mozilla projects.		showed that C3 ranks better than
			many of the cohesion metrics.
Shafi,	Compared the	Classification via	Performance evaluation
Hassan,	performance of	regression and LWL.	parameters used: Precision,
Arshaq,	30 techniques on		Recall, Specificity, and
Khan, and	two datasets for		Accuracy. Classification via
Shamail	software quality		regression and LWL performed
(2008)[191]	Prediction. (JEdit		better than the other techniques.
	and AR3 data		
	from PROMISE		
	repository.)		

Riquelme.	Investigated	Two balancing	Performance evaluation metrics
Ruiz	Naive Bayes and	techniques	used: AUC and Percentage of
Rodríguez	C4.5 on five	teeningues.	correctly classified instances
Kouliguez,			These we get a d that halo a since
and Moreno	public datasets		They reported that balancing
(2008)[184]	from PROMISE		techniques improve the AUC
	repository for		measure, but did not improve the
	Software Fault		percentage of correctly classified
	Prediction.		Instances.
Catal and	Objective is to	Machine learning such	Random Forests provides the
Diri	find high-	as Random Forestsand	best prediction performance for
(2009a)[18]	performance fault	algorithms based on a	large datasets, and Naive Bayes
	predictors on	new computational	is the Best prediction algorithm
	Public NASA	intelligence approach	for small datasets in terms of the
	datasets.	called Artificial	Area under Receiver Operating
		Immune Systems.	Characteristics Curve (AUC)
			evaluation parameter.
Chang,	Fault prediction	Association rule	They reported that prediction
Chu, and	approach to	mining.	results were excellent.
Yeh (2009)	discover fault		
[42]	patterns.		
Mende and	Fault Prediction	Evaluated lines of code	AUC is used as Performance
Koschke	on thirteen	metric based prediction.	Evaluator. The model performed
(2009)	NASA datasets.		well in terms of Area under ROC
[140]			curve (AUC) parameter, and
			they could not show statistically
			significant differences to some
			data mining Algorithms.

Tosun,	Conducted	Complexity and	Performance Evaluation metrics
Turhan, and	experiments on	network metrics from	were PD, PF, and precision.
Bener	public datasets to	five additional systems.	Reported that network measures
(2009)	validate		are significant indicators of
[209]	Zimmermann and		fault-prone modules for large
	Nagappan's		systems.
	paper Published		
	in ICSE'08.		
	Three embedded		
	software projects		
	were used for the		
	analysis.		
Turhan,	Investigated 25	They used static call	They reported that at least 70%
Kocak, and	projects of a	graph-based ranking	of faults could be identified by
Bener	Telecommunica-	(CBGR) and nearest	inspecting only 6% of code with
(2009)	tion system and	neighbor sampling to	Naive Bayes model and 3% of
[212]	trained models on	build defect predictors.	code with CBGR model.
	NASA MDP		
	data.		
Bacchelli A,	Investigate	Introduce metrics that	They reported that developers
D'Ambros	whether the	measure the	discuss problematic entities
M, Lanza M	information	"popularity" of source	more than unproblematic ones.
(2010)[55]	contained in	code artifacts.	
	e-mail archives is		
	correlated to the		
	defects found in		
	the system.		

D'Ambros	Present a	WCHU (Weighted	They gave consistently good
M, Lanza	benchmark for	Churn of source code	results –often in the top 90% of
M, Robbes	defect prediction,	metrics) and LDHH	the approaches- across all five
R	in the form of a	(Linearly Decayed The	systems.
(2010)[150]	publicly available	entropy of source code	
	dataset consisting	metrics), two novel	
	of several	approaches that they	
	software systems.	proposed.	
Mende T,	Defect prediction	Compare two different	Both strategies improve the cost
Koschke R	model to	strategies to include	effectiveness of defect prediction
(2010)[140]	determine	treatment effort into the	models significantly, in the
	Quality assurance	prediction process, and	statistical and practical sense.
	activities.	evaluate the predictive	
		power of such models.	
Menzies T,	Defect prediction	Binary classification	Learners must be chosen and
Milton Z,	Static code	scheme (Defective	customized to the goal at hand
Turhan B,	features.	\in true, false) and not,	
Cukic B,		say, number of defects	
Bener YJA		or severity of defects.	
(2010)[142]			

		-	-
Turhan B,	Fault Prediction	Proposed that using	Software construction is a
Bener AB,	three embedded	imported data from	surprisingly uniform endeavor
Menzies T	controller	different sites can make	with simple and repeated
(2010)	software, two	it suitable for predicting	patterns that can be discovered
[213]	versions of an	defects at the local site.	in local or imported data using
	open-source		just a handful of examples.
	anti-virus		
	software (Clam		
	AV) and a subset		
	of bugs in two		
	versions of GNU		
	gcc compiler.		
Wolf T,	Predicting build	The combination of	Our predictive model yielded
Schröter A,	failures using	communica-	recall values between 55% and
Damian D,	social network	tion.structure.measures	75% and precision values
Nguyen	analysis.	into a predictive model.	between 50% to 76%.
THD			
(2009)[225]			
Zimmermann	Cross-project	Derived decision trees	Simply using models from
Τ,	defect prediction	that can provide early	projects in the same domain or
Nagappan	models on a	estimates for precision,	with the same process does not
N, Gall H,	large-scale. For	recall, and accuracy.	lead to accurate predictions.
Giger E,	12 real-world		Identified factors that do
Murphy B	applications, 622		influence the success of
(2009)[249]	cross-project		cross-project predictions.
	predictions.		

Timea	Exploring the	Propose an empirical	Results show that software's
Illes-Seifert,	relationship of a	approach that uses	history is a good indicator of its
Barbara	file's history and	statistical procedures	quality.
Paech(2010)	its	and visual	
[81]	fault-proneness.	representations of the	
		data in order to	
		determine indicators for	
		a file's defect count.	
Wenjin Wu;	Debian Bug	ARIMA Model for	Moreover, both ARIMA and
Wen Zhang;	Number	Modelling Debian Bug	X12 enhanced ARIMA
Ye Yang;	Prediction.	Numbers.	outperform the baseline as
Qing Wang			polynomial regression.
(2010)[227]			
Mahmoud	Fault prediction	Three suites of	The results indicate that the
O. Elish,	in packages of	package-level metrics	prediction models that are based
Ali H.	Eclipse system.	(Martin, MOOD, and	on Martin suite are more
Al-Yafei,		CK) are evaluated and	accurate than those that are
Muhammed		compared empirically	based on MOOD and CK suites
Al-Mulhem		in predicting the	across releases of Eclipse.
(2011) [57]		number of pre-release	
		faults and the number	
		of post-release faults in	
		packages.	

Peng	Software fault	Applied Grey neural	The proposed model reduced the
Zhang;	prediction	network based on grey	prediction relative error
Yu-tong		theory (exponential	effectively.
Chang		growth) and artificial	
(2012)[244]		neural network.	
Partha S.	Software Fault	Proposed a Quad	Reduced Error than other
Bishnu;	Prediction	Tree-based K-Means	techniques.
Vandana		algorithm	
Bhattacher-			
jee(2012)			
[32]			
Yue Jiang;	Early Fault	11 code metrics	This would make it Possible to
Jie Lin;	Prediction Using	replaced by 6 design	identify faults earlier before
Bojan	Design Metrics:	metrics using Canonical	code implementation in the
Cukic;	Condition Count,	Correlation Analysis	software lifecycle.
Shuye Lin;	Multiple	(CCA), a multivariate	
Zhijian Hu	Condition Count,	statistical analysis	
(2013)[86]	Decision Count,	Method.	
	Branch Count,		
	Node Count,		
	Edge Count		

Karel	Software Fault	Proposed 15 different	Augmented Naive Bayes
Dejaeger;	Prediction on	Bayesian Network	classifiers can yield similar or
Thomas	NASA Dataset of	(BN) classifiers and	better Performance than the
Verbraken;	NASA Metrics	comparing them to	commonly used Naive Bayes
Bart	Data Program	other popular machine	classifier.
Baesens	(MDP)	learning techniques.	
(2013)[51]	repository.		
А.	Software Fault	Ensemble approach of	Ensemble of Support Vector
Shanthini;	Prediction on	Support Vector	Machine is superior to individual
R M Chan-	Eclipse Package	Machine (SVM) for	approach for software fault
drasekaran	level dataset and	fault prediction.	prediction in terms of
(2014)[192]	NASA KC1		classification rate through Root
	dataset.		Mean Square Error Rate
			(RMSE), AUC-ROC, ROC
			curves.
Jiaqiang	Software Fault	Proposed a novel	The two-stage data
Chen;	Prediction on	two-stage data are	preprocessing approach can
Shulong	Eclipse and	preprocessing	greatly reduce both the number
Liu;	NASA datasets.	approach, which	of features and the number of
Wangshu		incorporates both	instances of the original dataset.
Liu; Xiang		feature selection and	
Chen; Qing		instance reduction.	
Gu; Daoxu			
Chen(2014)			
[43]			

A.	Software Fault	Proposed Artificial	Selected subset of features
Soleimani;	Prediction on	Immune System (AIS)	increases the accuracy of
F. Asdaghi	NASA's public	based feature selection	classifier from 82.44% to
(2014)[201]	dataset KC1	method to make a better	83.72%
	available at	prediction.	
	promise software		
	engineering		
	repository.		
Santosh	Fault Prediction	Neural network and	ERROR: Neural Network
Singh	on fault datasets	Genetic programming.	outperformed genetic
Rathore;	collected from		programming, Recall and
Sandeep	the PROMISE		Completeness: Genetic
Kumar	data repository.		programming produced the
(2015)[180]			result better than neural network.
Wangshu	Software Fault	Proposed a novel	FECS a robust feature selection
Liu;	Prediction with	method FECS (feature	method with a certain noise
Shulong	Noises.	Clustering with	tolerate ability for software fault
Liu; Qing		Selection strategies)	Prediction.
Gu; Xiang			
Chen;			
Daoxu			
Chen			
(2015)[127]			

2.3 Literature Review (Clone Detection and Clone Evolution Prediction)

It has been observed that the developers have a tendency to copy the modules completely or partially and modify them. This practice gives rise to identical or very similar code fragments called software clones. Detecting the cloned fragments is an important but challenging task. There has been a large number of studies on software clone detection[187, 28, 181]. There exist many clone detection approaches based on types of cloning. They are Line based technique [54, 87, 136, 121], Metric-based technique[139, 161, 36, 53], Token based techniques[89, 128, 214], Tree-based techniques[237, 218, 85, 110], PDG (Programme dependency graph) based techniques[117, 125] and also Abstract Syntax Tree (AST) based technique[187, 27]. The AST completely captures the whole system information and is a most efficient clone detection approach[27]. A large number of papers identify clones based on the same version of software systems. There is a paper by Antoniol, G et al.[22] in which the author Applied ARIMA for predicting the evolution of cloned component across different version of mSQL.

A systematic literature review of different approaches applied in the area of Software Clone Detection and Clone Evolution Prediction is presented in Table 2.2

Author	Objectives of	Methodology	Remarks
(Year)	Study	/Approaches/Tool-	
		s/Techniques	
S. Ducasse,	A Language	The approach is based	Easily identify (1) the duplicated
M. Rieger,	Independent	on 1) Simple line-based	code between several files, (2)
and S.	Approach for	string matching. (2)	within the same file, (3) cloned
Demeyer	Detecting	The visual presentation	files and (4) evolution files
(1999)[54]	Duplicated	of the duplicated code.	
	Code.	(3) Detailed textual	
		reports from which	
		overview data can be	
		synthesized.	
J. H. John-	Visualizing	A strategy based on	The approach appears to be a
son(1994)	textual	fingerprinting is used to	powerful method of providing
[87]	redundancy in	obtain raw matches	much information with
	the legacy	indicating where	comparatively little noise.
	source.	repetitions occur. (Line	
		Based Technique)	
U. Man-	Finding similar	Present a tool, called	Application of SIF can be found
ber(1994)	files in a large	SIF, for finding all	in file management, information
[136]	file system.	similar files in a large	collecting (to remove
		File system. (Line	duplicates), program reuse, file
		Based Technique)	synchronization, data
			compression, and also
			Plagiarism detection.

 TABLE 2.2: Literature Review (Clone Evolution Prediction)

S. Lee and I.	Code Clone	SDD (Similar Data	Detected duplicated parts of
Jeong	Detection	Detection) algorithm	source code in huge software
(2005)[121]	System for	(Line Based	with high-performance.
	Large Scale	Technique).	
	Source Code.		
J. Mayrand,	Automatically	Technique is based on	The information provided by
C. Leblanc,	identify	metrics extracted from	this study is useful in monitoring
and E. M.	duplicate and	the source code using	the maintainability of large
Merlo	near duplicate	the tool Datrix.	software systems.
(1996)[139]	functions in two	(Metrics Based	
	telecommunica-	Technique).	
	tion monitoring		
	systems totaling		
	one million lines		
	of source code.		
JF.	Identifying parts	Extensions to Bell	Through clone detection, it was
Patenaude,	of the system	Canada source code	found that about 6% of the 512
E. Merlo, M.	which have	quality assessment suite	000 lines of code are clones.
Dagenais	unusual	(DATRIX tm) for	
(1999)[161]	characteristics.	handling Java language.	

F. Calefato,	Identify cloned	The approach is based	Semi-automated approach is
F. Lanubile,	functions within	on the automatic	both effective and efficient at
and T. Mal-	scripting code of	selection of potential	identifying function clones in
lardo(2004)	web	function clones and the	web applications.
[36]	applications.	visual inspection of	
		selected script	
		functions. (Metrics	
		Based Technique)	
G. A. Di	Identify	In this paper, they	The methods produced results
Lucca, M. Di	duplicated web	propose an approach.	that are comparable, but with
Penta, and	pages.	Based on similarity	different computational costs.
A. R.		metrics, to detect	Successfully applied to identify
Fasolino		duplicated pages in web	a case of plagiarism too.
(2002)[53]		sites and applications,	
		implemented with	
		HTML language and	
		ASP technology.	
		(Metrics Based	
		Technique)	

T. Kamiya,	Code Clone	Developed a tool,	CCFinder has effectively found
S.	Detection	named CCFinder (Code	clones, and the metrics have
Kusumoto,	System for	Clone Finder), which	been able to effectively identify
and K. Inoue	large-scale	extracts code clones in	the characteristics of the
(2002)[89]	source code.	C, C++, Java, COBOL	systems.
		and other source files.	
		In addition, metrics for	
		the code clones have	
		been developed.	
		(Token-Based	
		Technique)	
S. Livieri, Y.	Code Clone	D-CCFinder has been	D-CCFinder illustrates a fairly
Higo, M.	Analysis and	implemented. 400	cheap and practical Method for
Matushita,	Visualization of	million lines in total	large-scale code clone analysis.
and K. Inoue	Open Source	have been analyzed.	
(2007)[128]	Programs.	(Token-Based	
		Technique)	
Y. Ueda, T.	Detection of	Proposed a method to	Successfully found the gapped
Kamiya,	gapped code	find gapped clones	clones which are composed of
S.Kusumoto,	clones.	using the gap location	several short clones.
and K. Inoue		information.	
(2002)[214]		(Token-Based	
		Technique)	

W. Yang	To detect	Parse Tree-based	Two programs are pretty-printed
(1991)[237]	syntactic	Technique.	'synchronously' with the
	differences	Tree-matching	differences highlighted so that
	between two	algorithm and the	the differences are easily
	programs.	synchronous	identified.
		pretty-printing	
		technique are used.	
		(TREE Based	
		Technique)	
V. Wahler,	Clone detection	Frequent item set	Approach is very flexible; it can
D. Seipel, J.	in the source	techniques. (TREE	be configured easily to work
W. von	code.	Based Technique).	with multiple programming
Gudenberg,			languages.
and G.			
Fischer			
(2004)[218]			
L. Jiang, G.	Software Clone	Implemented our tree	DECKARD is both scalable,
Misherghi,	Detection on	similarity algorithm as	accurate and also language
Z. Su and S.	large code bases	a clone detection tool	independent.
Glondu	written in C and	called DECKARD	
(2007)[85]	Java including		
	the Linux kernel		
	and JDK.		

R.	Identify	Program Dependence	Can find non-contiguous clones
Komondoor	Duplication in	graphs (PDGs) and	(Clones whose components do
and S.	the source code.	program slicing to find	not occur as contiguous text in
Horwitz		isomorphic PDG	the program).
(2001)[110]		Subgraphs that	
		represent clones.	
		(Tree-Based Technique)	
J. Krinke	To identify	Used of program	Approach is feasible and gives
(2001)[117]	similar code in	dependence graphs.	very good results despite the
	programs.		non-polynomial complexity of
			the problem.
Antoniol, G.;	Cone Evolution	ARIMA	Preliminary results are
Casazza, G.;	Prediction on 27		encouraging.
Di Penta,	subsequent		
M.; Merlo	Versions of		
(2001)[22]	mSQL.		
C. Liu, C.	Detection of	Proposed a new	GPLAG is both effective and
Chen, J.	software	plagiarism detection	efficient: It detects plagiarism
Han, and P.	plagiarism	tool, called GPLAG,	that easily slips over existing
S. Yu		which detects	tools, also it takes a few seconds
(2006)[125]		plagiarism by mining	to find plagiarism in Large
		program dependence	Codes.
		graphs (PDGs).	
R. Koschke,	Clone Detection	Suffix trees to find	Better precision for type-2
R. Falke, and	in Source Code.	clones in abstract	clones than Token-Based
P. Frenzel		syntax trees. (AST	Technique.
(2006)[116]		Based Technique).	

I. D. Baxter,	Detecting exact	Abstract Syntax	Proposed a Technique to remove
A. Yahin, L.	and near miss	Tree-Based Approach.	detected clones.
Moura, M.	clones over		
Sant'Anna,	arbitrary		
and L. Bier	program		
(1998)[27]	fragments in		
	program source		
	Code.		
C. K. Roy, J.	Comparison and	1: Proposed a scheme	One might use the results of this
R. Cordy,	Evaluation of	for classifying clone	study to choose the most
and R.	software clone	detection techniques	appropriate clone detection tool
Koschke	detection tools	and tools and 2:	or technique in the context of a
(2009)[187]	and techniques.	Proposed a taxonomy	particular set of goals and
		of editing scenarios that	constraints.
		produce different clone	
		types and also	
		evaluation of current	
		clone detectors based	
		on this taxonomy.	
S. Bellon,	Compared and	Presents an experiment	The techniques work on the text,
R.Koschke,	evaluated clone	that evaluates six clone	lexical and AST, software
G.Antoniol,	detection tools.	detectors based on eight	metrics, and program
J. Krinke,		large C and Java	dependency graphs.
and E. Merlo		programs (altogether	
(2007)[28]		almost 850 KLOC).	

S. K. Abd-	Detection of	Proposed an efficient	The approach is very space
El-Hafiz	function clones	metrics-based data	efficient and linear in the size of
(2012)[16]	in software	mining clone detection	the dataset.
	systems.	approach.	
D. Rattan, R.	Extensive	Thirteen intermediate	Empirical evaluation of clone
Bhatia, and	systematic	representations and 24	detection tools/techniques is
M. Singh	literature on	match detection	presented.
(2013)[181]	software clone	techniques are reported.	
	detection.		
K. Kaur and	Comparative	Classify Clone	The AST completely Captures
R.	analysis of	Detection Techniques	the whole system information
Maini(2015)[9	4yarious code	on the basis of Clone	and is a most efficient clone
	clone detection	Types.	detection approach.
	techniques.		

2.4 Literature Review (Software Reliability Prediction)

Reliability is an important factor of software quality. The accurate prediction of software reliability is a challenging task. There exist many reliability models to predict the reliability based on software testing activities. There are many software reliability growth models (SRGMs) developed to predict the reliability but they have many unrealistic assumptions, and they are also environment dependent. The accuracy of the models is also questionable.

There have been a large number of studies in the prediction of software reliability. A number of software reliability growth models (SRGMs) have been proposed[67, 68] which describe the software behavior with respect to failures that occur in software applications for estimating and predicting software reliability. These models have the drawback that they use unrealistic assumptions, independence of time between failures and fault correction without the introduction of new faults[179].

There are also some models proposed based on nonparametric statistics[61] and Bayesian networks [185] to predict the software reliability without any specific assumptions. Although they solve the problem of unrealistic assumptions as considered by SRGMs but they suffer a lot from the issue of application and accurate prediction [67]. Some of the authors also use neural networks and machine learning approach[93] to predict software reliability. The main drawback is that these methods require a large number of data for learning and it is a time-consuming process. Some authors have also applied time series ARIMA model[230] as an alternative way to predict software reliability. The limitations of these papers are that they have not checked the underlying assumptions of ARIMA for a correct prediction. In another paper[20] the authors have considered all assumptions and specification for predicting software reliability. They have also compared the performance of their model with the existing models. The limitation is that they have taken a lot of statistical analysis for choosing the best fitting model which is a computationally expensive and time-consuming process.

A systematic literature review of different approaches applied in the area of Software Reliability Prediction is presented in Table 2.3.

Author	Objectives of Study	Methodology	Remarks
(Year)		/Approaches/Tool-	
		s/Techniques	
Jelinski,	Software reliability	NHPP	Performance Measures: U-plot,
Ζ.,	prediction using	(nonhomogeneous	Y-plot, and AIC. Logarithmic
Moranda,	the software	Poisson process).	Poisson execution time model
Р.	failure-occurrence		fits the data set best.
(1972)[146]	time data.		
Goel, A.	Software reliability	Four Types of Model	Models require Underlying
(1985)[67]	prediction based on	Analyzed: 1: Times	assumptions to be applied.
	failure data from a	Between Failures	
	medium-sized	Models, 2: Failure	
	real-time command	Count Models, 3: Fault	
	and control	Seeding Models, 4:	
	software system.	Input Domain Based	
		Models.	
Lyu, M.,	Software	Applied Combination	Combining the results of
Nikora, A.	Reliability	of Existing Models.	individual Models have a
(1992)[133]	Prediction Based		substantial improvement than
	on Failure Patterns.		using single component models.

TABLE 2.3:	Literature	Review(Software	Reliability	Prediction)

Lyu, M	Data, analysis and	Emerging research	Presents a statistical study of
(1996)[132]	case studies on	methods including	how well software systems
	Software	software metrics,	satisfy user requirements on user
	Reliability	testing schemes,	premises, and for how long.
	Prediction.	fault-tolerant software,	
		fault-tree analysis,	
		process simulation, and	
		neural networks.	
Zeitler, D.	Prediction Of	Auto-regressive	Model used Realistic
(1991)[240]	Software	integrated moving	assumptions for software
	Reliability Growth.	average (ARIMA)	reliability models.
		Models.	
Xie, M.,	Software	ARIMA	Time series models have
Ho, S	Reliability		outperformed the traditional
(1995)[231]	Prediction.		Duane model in terms of
			predictive performance.
Wood, A	Discussed on	Proposed Technique for	Suggestions: - Simple models
(1997)[226]	Reliability Model	Compensating Loss of	are good. Realistic assumptions
	Assumptions	Accuracy due to	are good.
	against Reality on	Violation of	
	Tandem's software	Assumptions.	
	development and		
	test environment.		
Xie, M.,	Predict Software	Double exponential	The method is very easy to use
Hong, G.,	Reliability-based	smoothing techniques.	and requires a very limited
Wohlin, C	on Software		amount of data storage and
(1997)[230]	Failures.		computational effort.

Xie, M.,	Reliability	Time series models for	The time series method gives
Ho,	Analysis on	analyzing failure data.	satisfactory results in terms of its
S.(1999)	Repairable		predictive performance.
[231]	Systems.		
Robinson,	Reliability	Non-Parametric	Model has improved
D.,	Analysis of Failure	Reliability Growth	performance in terms of relative
Dietrich,	Rate of a System.	Model.	error and mean square error.
D.			
(1987)[185]			
Barghout,	Prediction of	Non-Parametric	Better predictions than
M., Little-	Software	Reliability Growth	parametric reliability growth
wood, B.,	Reliability.	Model (allows the data	models.
Abdel-		to speak for	
Ghaly,		themselves)	
A.(1998)			
[26]			
Bai, C.,	Predicting	Markov Bayesian	Improved predictive
Hu, Q.,	Reliability From	networks.	performance via Bayesian
Xie, M.,	Software Failures.		network but increased
Ng, S.			complexity and Computational
(2005)[25]			effort.

Junhong,	Software	Proposed a	Proposed model is superior to
G.,	Reliability	Transformation of	that of Goel-Okumoto model in
Hongwei,	Prediction	Goel-Okumoto model	terms of estimation and
L.,		into one-order	prediction ability.
Xiaozong,		autoregressive	
Y(2005)		stochastic time series	
[88]		model with independent	
		increment.	
Pai, P.,	Software reliability	Support vector	SVM model with simulated
Hong, W.	forecasting	machines (SVMs) +	annealing algorithms (SVMSA)
(2006)[159]		Simulated annealing	results in better predictions than
		algorithms (SA) [for	the other methods.
		selection of parameters	
		of an SVM model]	
Kiran, N.,	Software	Wavelet neural	WNN outperformed BPNN,
Ravi,	Reliability	networks (WNN)	GRNN, and MLR and other
V.(2007)	Prediction.		techniques.
[108]			

Lyu,	Software	Proposed a new	Present a review of the history of
M.R.,	Reliability	software reliability	software reliability engineering,
(2007)	Engineering.	engineering paradigms	the current trends and existing
[131]		that take software	problems, and specific
		architectures, testing	difficulties.
		techniques, and	
		software failure	
		manifestation	
		mechanisms into	
		consideration.	
Fenton,	Predicted software	Bayesian networks	Significantly improved accuracy
N., Neil,	defects and	(BNs)	for defects and reliability
М.,	reliability on		prediction type models.
Marquez,	organizations such		
D.(2008)	as Motorola,		
[61]	Siemens, and		
	Philips.		

Raj Kiran,	Software	Various statistical	Nonlinear ensemble
N., Ravi,	Reliability	(multiple linear	outperformed all the other
V.(2008)	Prediction	regression and	ensembles and also the
[182]		multivariate adaptive	constituent statistical and
		regression splines) and	intelligent techniques.
		intelligent techniques	
		(Back Propagation	
		trained a neural	
		network, dynamic	
		evolving Neuro-fuzzy	
		inference system, and	
		TreeNet).	
Zaidi, S.,	Software	ANN Modelling.	The calculated RMSE of the
Danial, S.,	inter-failure time		ANN model is much lesser than
Usmani	series analysis		the other modelling Techniques.
(2008)[239]			
Lo,	Proposed a General	Applied and	Eliminated some unrealistic
J.(2009)	framework of the	Constructed ANN for	assumptions by SRGMs.
[129]	modeling of the	modelling software	
	failure detection	failure data.	
	and fault correction		
	processes.		

Sharma,	Selection of An	Proposed a	This paper addresses the issue of
K., Garg,	optimal SRGM.	deterministic	optimal selection of software
R.,		quantitative model	Reliability growth models.
Nagpal,		based on a distance	
C., Garg,		based approach (DBA)	
R(2010)		for ranking SRGMs.	
[193]			
Yang, B.,	Software	Proposed a generic	Proposed model outperforms
Li, X.,	Reliability	data-driven software	existing DDSRMs.
Xie, M.,	Modelling	reliability models	
Tan,		(DDSRMs) with	
F.(2010)		multiple-delayed-input	
[234]		single-output (MDISO).	
		A hybrid genetic	
		algorithm (GA)-based	
		algorithm is developed	
		which adopts the model	
		mining technique to	
		discover the correlation	
		of failures and to obtain	
		optimal model	
		parameters.	

Huang,	Software	Incorporate the concept	Proposed models can provide
C., Lyu,	Reliability	of multiple	good software reliability
M.(2011)	Prediction from	change-points, i.e.,	prediction in the various stages
[78]	software failure	points in time when the	of software development and
	data.	software environment	operation.
		Changes into software	
		reliability modeling.	
Kapur, P.,	Developing	Proposed two general	Models discussed in this paper
Pham, H.,	Advanced Software	frameworks for	have quite encouraging
Anand, S.,	Reliability Growth	[(GINHPP-1) and	performance on real dataset.
Yadav,	Models	(GINHPP-2)] deriving	
K.(2011)		several software	
[92]		reliability growth	
		models based on a	
		Nonhomogeneous	
		Poisson Process	
		(NHPP) in the presence	
		of imperfect Debugging	
		and error generation.	
Moura,	Failure and	Support Vector	SVM outperforms other
M., Zio,	Reliability	Machines Regression.	techniques like ARIMA,
E., Didier	Prediction.		MLPNN, RNN, etc.
Lins, I.,			
Droguett,			
E.			
(2011)[49]			

Palviainen,	Software reliability	A coherent approach by	Helps Software Developers in
М.,	evaluation during	combining both	Early Reliability Prediction (at
Evesti, A.,	the design and	predicted and measured	Design Time).
Ovaska,	implementation	reliability values with	
E. (2011)	phases.	heuristic estimates in	
[160]		order to facilitate a	
		smooth reliability	
		evaluation process.	
		(Component Level	
		Reliability +System	
		Level Reliability).	
Wiper,	Software	Neural network	An Efficient Approach for
М.,	Reliability	regression to estimate	Software Reliability Prediction.
Palacios,	modelling using	failure rates in models	
A., Marí	Software Metrics	based on inter failure	
n,	Information.	times or numbers of	
J.(2012)		failures. The inference	
[224]		is carried out using a	
		Bayesian approach.	
R. Mo-	Predict software	Ant Colony	Proposed Method Outperforms
hanthy, et	reliability based on	Optimization	BPNN, GRNN, DENFIS, and
al.	data collected from	Technique (ACOT)	other techniques in terms of
(2014)[145]	the literature.		NRMSE.

Kewen Li;	Software	ANN +K Means	Improved Accuracy than Back
Kang	Reliability	Clustering Method.	Propagation Algorithm
Zhao;	Prediction.		
Wenying			
Liu			
(2013)			
[122]			
Amin, A.,	Software	ARIMA	Results Better Than Traditional
Grunske,	Reliability		SRGMs.
L.,	Prediction		
Colman			
(2013)[20]			
Shirin	Software reliability	Multi-Layer Perceptron	Proposed predicting model is
Noekhah;	prediction on the	(MLP) neural network	more efficient than the existing
Ali Akbar	basis of number of	+ Imperialist	techniques in prediction
Hozhabri;	faults.	Competitive Algorithm	performance.
Hamideh		(ICA) [as training	
Salimian		algorithm].	
Rizi			
(2013)[153]			
Najeeb	Model to Predict	Evaluates eight popular	Proposed Model will Provide
Ullah;	Residual Defects in	software reliability	Practical Support to Project
Maurizio	Open Source	growth models and	Managers.
Morisio;	Software.	selects the one that can	
Antonio		best predict the	
Vetrò		Software's remaining	
(2015)[215]		faults.	

2.5 Conclusion

This chapter presents a systematic literature survey on different models on software defect prediction, clone detection, clone evolution prediction and also software reliability prediction. From the survey, it is observed that though there exist a large number of papers on predicting these software characteristics only a few research papers aim at modelling the temporal patterns of different evolving software characteristics across different versions of the software application. It is also observed that the time series model applied by the research papers are based on simple Polynomial regression and ARIMA. The survey shows there is a need for modelling the evolving software characteristics using advanced time series approach based on both statistical and machine-learning techniques.