
Chapter 1

Introduction

1.1 Introduction

Two trends have become very popular[109] in software development community in cur-

rent scenario: Agile Methodology [46] and Open Source Development [217]. Both these

methods are efficient enough to improve software quality and responsiveness to changing

customer requirements. Both of the methods involve frequent “releases” in short develop-

ment time to handle the rapidly changing customer requirements. Both of these method-

ologies require rigorous testing and maintenance for improving the quality of software.

The goal is to have a cost effective, efficient, robust and reliable software to be delivered

which can fulfill desired requirements and achieve customer satisfaction.

Software Reliability[149] is one of the most challenging requirements determining the

success of a software application. It can be defined as the capability of software for main-

taining its desired performance under specific conditions for a specified period. Effective

software maintenance and testing are needed to have a reliable software. Software mainte-

nance is associated with a set of attributes that are related to the effort needed for making

specific modifications in the software system. Software testing is associated with the

1

Chapter 1. Introduction 2

effort needed for validating a software system. Due to rapidly changing customer require-

ments software maintenance and software testing consume a sizable effort in software

development cycle.

A large number of defect prediction models have been proposed in the literature [62, 123,

112] to reduce the maintenance and testing effort. Software fails due to the existence of

a large number of defects in the software application. The defects in the software are

also called bugs, and they lead a software component to fail to perform as per desired

requirements. There exist a large number of statistical and probabilistic model to predict

software reliability from failure counts [67]. However, all the defect prediction models

and failure count models described in the literature require access to underlying factors

and internal characteristics of the software application. This is always not possible due

to lack of access to internal source code of the particular application and also due to

lack of cost effective tools and efficient techniques for extraction of internal parameters

for modeling. There exists an alternative approach for modelling these defects (bugs)

and failures which is not only cost effective but also does not require access to an internal

characteristic of the software application. These class of models do not attempt to measure

any internal parameters but instead use temporal patterns of a particular object (Example:

Number of Bugs) across different versions of software applications to be modelled to

identify the trend and forecast the value or pattern of the particular object. These class of

models is called Time Series Models.

The objective of this thesis is to identify the temporal patterns that exist in various

forms like Bugs, Clones, Failure Intervals, etc. across different versions of a soft-

ware application. The thesis also used advanced time series analysis for modelling these

increasing and decreasing patterns of a particular software characteristic (Bugs, Clones

Failure Intervals) and also to give effective feedback to software developers and testing

team in advance. This will reduce the effort invested in testing and maintenance. This

will also help software managers to decide on resource allocation and effort investments.

Chapter 1. Introduction 3

Predicting failure intervals in advance will also improve the software reliability if timely

corrective measures are taken by the developers.

1.2 Time Series Analysis

A time series can be defined as an ordered sequence of data values of a variable at equally

spaced time intervals[35, 74]. A time series model is applied to understand the underlying

forces and structures which produced the observed data. It also helps in modeling data for

forecasting, monitoring or even feedback and feed forward control. Time series prediction

refers to the process of prediction of future measure by analyzing the trend of past and

current ones [197]. Figure 1.1 presents an example of time series.

1.2.1 Univariate Time Series

Let an observed discrete univariate time series be {S1,S2,ST} observed over equally

spaced time points.

A fairly general model for the time series can be written as

St = g(t)+ εt

Systematic part: g(t), also called signal or trend, which is a deterministic function of time.

Stochastic sequence: εt , a residual term also called noise, which follows some unknown

probabilistic law.

Chapter 1. Introduction 4

FIGURE 1.1: Example of Time Series

1.2.2 Modelling Time Series

The methods used to model a time series include Box-Jenkins ARIMA models, Box-

Jenkins Multivariate Models, and Holt-Winters Exponential Smoothing (single, double,

triple)[197]. In this section, we discuss the Autoregressive Model(AR Model), Moving

Average Model(MA Model) and Autoregressive Integrated Moving Average processes

(ARIMA) model in detail.

1.2.2.1 Autoregressive Model

An AR model[197] is one in which Yt depends on Yt−1,Yt−2,Yt−3,εt etc.

Yt = f (Yt−1,Yt−2,Yt−3,εt)

A common representation of Autoregressive Model where it depends upon past p Values

is AR(p):

Chapter 1. Introduction 5

Yt = β0 +β1Yt−1 +β2Yt−2 +β3Yt−3 +βpYt−p + εt

βp are the parameters of the autoregressive part of the model. βp 6= 0.

1.2.2.2 Moving Average Model

A moving average model[197] is one in which Yt depends only on random error terms.

Yt = f (εt−1,εt−2,εt−3......)

A common representation of Moving Average Model where it depends upon past q Values

is called MA(q). The error terms εt are assumed to be white noise process with zero mean

and constant variance.

Yt = β0 + εt +Φ1εt−1 +Φ2εt−2 +Φ3εt−3...Φqεt−q

Φq are the parameters of the moving average part. Φq 6= 0

1.2.2.3 ARMA Model

In ARMA model[197] time series is represented as a mix of both AR(p) and MA(q)

Model. This model is referred as ARMA(p,q). The time series depends on p of its past

own values and q past white noise disturbances.

Yt = β0+β1Yt−1+β2Yt−2+β3Yt−3+βpYt−p+εt +Φ1εt−1+Φ2εt−2+Φ3εt−3...Φqεt−q

βp are the parameters of the autoregressive part of the model.

Φq are the parameters of the moving average part.

βp 6= 0.

Φq 6= 0

Chapter 1. Introduction 6

1.2.3 Stationary Time Series

Stationary Process is a stochastic process[82] whose joint probability distribution does

not change when shifted in time. P(Yt) = P(Yt+k)

P(Yt ,Yt+k) does not depend on t.

A time series Yt(t = 1,2,3...N) is said to be stationary if it has its all statistical properties,

such as mean, variance, and autocorrelation constant over time.

The stationarity of time series can be checked using ADF (Augmented Dickey-Fuller

Test)[223]. Autocorrelation Function Plot (ACF)[174] can also be used to check the sta-

tionary behavior of time series.

1.2.3.1 Augmented Dickey-Fuller Test

The ADF[223] test is used to check the presence of a unit root which leads to violation of

assumption of classical linear regression in autoregressive time series models. Presence

of a unit root indicates the non stationary behavior of a time series. The standard Dickey

Fuller test estimates the equation as given below:

∆yt = Yt−1 + εt

The Dickey Fuller test is only valid for AR(1) processes. If the time series is correlated at

higher lags, the augmented Dickey Fuller test performs a parameter correction for higher

order correlation, by adding lag differences of the time series. In this paper The ADF

test is performed in the [web:reg] [4] (an Add-In to Excel written by Kurt Annen.). The

unit-root existence is checked in the following formulations:

1. With Constant or intercept ∆yt = α + γYt−1 + εt

Chapter 1. Introduction 7

2. With constant+trend ∆yt = α + γYt−1 +β × t + εt

The ADF test is basically H0 : γ = 0

If the test statistic is less (Due to non-symmetrical nature of the test absolute value is not

considered) than (a larger negative) the critical value, then the null hypothesis of H0 : γ = 0

is rejected and it indicates absence of unit roots.

1.2.3.2 Autocorrelation Function Plots.

The sample autocorrelation function (ACF)[211] for a series gives correlations between

the series xt and lagged values of the series for lags of 1,2,3, and so on. The lagged

values can be written as Yt−1,Yt−2,Yt−3, ... and so on. The ACF gives correlations

between Yt−1 , Yt−2, Yt−3, and so on.

ρk =Corr(Yt ,Yt−p) =
Cov(Yt ,Yt−p)

(
√

var(Yt)
√

var(Yt−p))

For a stationary time series, the ACF will drop to zero relatively quickly, while the ACF

of non-stationary data decreases slowly. Figure 1.2 presents the ACF plots for the non-

Stationary and stationary time series respectively.

1.2.4 ARIMA Model[197]

1. ARIMA (p, d, q) consists of AR (p), MA(q) and ARMA (p, q) classes.

2. AR (p) is a autoregressive model of order P which represents the value of a series

as a linear regression of previous P values.

3. The moving average MA (q) take care of the white noise terms. ARMA (p, q) is the

combination of AR (p) and MA (q) model.

Chapter 1. Introduction 8

FIGURE 1.2: First One: Non-Stationary, Second One: Stationary

4. For a Non-Stationary time Series, the time series needs to be differentiated before

applying ARMA (p, q) model. ARIMA includes the differentiating operator d.

1.2.4.1 Calculating Model Parameter for ARIMA

1. Partial Auto Correlation are used to measure the degree of association between Yt

and Yt−p when the effects of lags 1,2,3,(p−1) removed.

2. The theoretical ACFs and PACFs are available for various lags of auto regressive

and moving average components. i.e. p and q.

3. Therefore, a comparison of Correlograms(Plot of ACFs versus lags) of the time se-

ries data with the theoretical ACFs and PACFs leads to selection of the Appropriate

ARIMA(p,q).

ARIMA Model is implemented in three basis steps:

Chapter 1. Introduction 9

TABLE 1.1: Model Parameter for ARIMA

Model ACF PACF

AR(p) Spikes decay towards zero. Spikes cutoff to zero

MA(q) Spikes cutoff to zero Spikes decay towards zero.

ARMA(p,q) Spikes decay towards zero. Spikes decay towards zero.

1. Model Identification: In the Model identification phase the d value has to be set. It

decides the stationary (d = 0) or non-stationary (d > 0) behavior of a time series.

ACF and PACF plots are plotted to find out the parameters. The identification of

(p,q) is based on Akaike Information Criterion (AIC). The model with smallest

AIC is chosen [77]

2. Estimation: In this phase, the coefficient βp and Φq are estimated [227].

3. Diagnostic Checking: The diagnostic phase deals with model adequacy by plotting

the residuals. The model with the smallest residual is chosen [227].

1.3 Motivation

Fundamental analysis attempts to determine the value of an object by focusing on un-

derlying factors that affect the movement of the object. Technical analysis (Time Series

Analysis), on the other hand, looks only at the increasing and decreasing movement of

a particular object and uses this data to predict its future movements. The advantages of

time series modeling are that it does not consider the internal characteristic of an object

into account. It only considers the temporal ordering into account. Time Series Mod-

elling is frequently used in statistics, signal processing, pattern recognition, econometrics,

mathematical finance, weather forecasting, intelligent transport and trajectory forecasting,

earthquake prediction, electroencephalography, control engineering, astronomy, commu-

nications engineering, and largely in any domain of applied science and engineering which

involves temporal measurements[250].

Chapter 1. Introduction 10

In the field of Software Engineering, there also exist many complex processes like soft-

ware defect prediction, software reliability production and also software clone evolution

prediction. The internal mechanism of all these modelling techniques is a complex phe-

nomenon as it requires access to underlying factors and internal characteristics . There

are a number of fundamental techniques used for prediction of above mention attributes.

However, a few research [227, 76] have been conducted on analyzing temporal patterns

of above attributes across different versions of a software application. Below we provide

a brief description of motivation behind our research work.

Temporal Bug Pattern Prediction: The likelihood of bugs in any software application

depends upon many invariant parameters like code complexity, problem domain, amount

code change and also on internal software process adopted [249]. A bug or defect may be

caused during different stages of development of software like coding, design or testing

phase. The causal modelling of the bug growth patterns in any software is a complex and

tedious task as it inquiries many internal details of the software which sometimes is also

impossible. The event of reporting a bug, fixing a bug and a new developer assigned to

a project are all uncertain [76]. However in aggregate, all these random like interactions

shows some rules and patterns, which is not purely random. Effective time series mod-

elling approach is required to model these bug growth patterns.

Clone Evolution Prediction: As modern software is developed using Agile or Open

Source Software Development, they are prone to frequent changes as per customer re-

quirements. During software improvements, there is always a chance of code fragment

being copied or changed slightly in the subsequent version. These exact or slightly modi-

fied code fragments are called clones. If we can detect these recurring code fragments and

model them, it can be immensely helpful in software maintenance activities. Effective

time series analysis is required to model these evolving cloned components.

Software Reliability Prediction: Modeling the software reliability is a challenging issue

as it depends on many internal parameters like size of software, failure count, and also to-

tal time. The reliability prediction based on the internal parameters is always not accurate

Chapter 1. Introduction 11

due to the complex relationship between the parameters. There are also many statistical

models used for prediction of software reliability, but they are not so accurate. There ex-

ist a good deal of software reliability growth models (SRGMs), but they also suffer from

unrealistic assumptions and dependency on the particular environment. An effective so-

lution is to apply used a time series approach for software reliability prediction. Software

reliability is usually measured regarding Time between Failure (TBF) [148].

1.4 Clones, Bugs and Failures

In this section, we provide a brief description of inter-relationship between the three soft-

ware characteristics used for modelling. As discussed in the previous section, clones are

duplicated passage of source code. Although reuse is a well-documented and controlled

process, clones are undocumented and uncontrolled. Cloning enhances the probability of

increasing number of bugs [216] in the software application due to the faulty code frag-

ment being repeatedly used in different places. Many research papers have reported that

cloning increases the probability of bug propagation[199]. The probability of a software

component towards failure increases due to the increased number of bugs. So, there exists

a direct relationship between clones, bugs, and failures, i.e. a potential increase in cloned

fragments will lead to increase in a number of bugs in a software application, and this also

lead to increased numbers of failures being reported. An increased number of failures will

lead to a reduction in the Time between Failures (TBF) and make the software unreliable.

Therefore, modeling these growing temporal patterns is a challenging issue in the field of

software engineering. Figure 1.3 presents Clone-Bug-Failure relationship,

Chapter 1. Introduction 12

FIGURE 1.3: Clone-Bug-Failure Relationship

1.5 Thesis Objectives

Let an observed temporal sequence be {O1,O2,O3,OT} observed over equally spaced

time intervals.

A fairly general model for the time series can be written:

Ot = f (t)+ εt Here, we have two components: Systematic Part: f (t) = The Component

to be Modelled using Time Series.

Stochastic Part: εt , a residual term also called noise, which follows some unknown prob-

abilistic law.

The objective is to predict Ot from p past observations.

Ot = f (O1,O2,O3,Ot−p) + εt

The objective is also to have a suitable model which can predict the temporal patterns

accurately with minimum value of error (εt).

Chapter 1. Introduction 13

1.6 Thesis Contribution

1. In the Thesis, Time Series Analysis Approach is used to improve Software Bug

Prediction, Clone Evolution Prediction and Software Reliability Prediction.

2. Advanced Time Series Modeling using Statistical and Machine Learning Approaches

have been used for modelling the temporal patterns.

3. The dataset used are obtained from Open Source Software Repository and also

Closed Source Software Repository.

4. The results are evaluated using Standardized Evaluation Techniques and compared

against other reported methods.

The Detailed Contribution is briefly described in this section.

1.6.1 Temporal Bug Pattern Prediction

The monthly, weekly and daily bug number information is extracted from the repositories.

These extracted bug number data can be used for time series analysis.

Advanced time series techniques are used for prediction of the increases and decreases in

bug numbers of a software system. The bug pattern across different versions of a software

system is also predicted using Markov Model and Hidden Markov Model. A systematic

comparison of result with traditional models is also presented.

1.6.2 Clone Evolution Prediction

In this work, the objective is on the identification of the different type of clone components

and prediction of cloned components in another version of the software application. In the

Chapter 1. Introduction 14

first part of our work, the cloned components are identified using various clone detection

techniques[27]. In The second part, the evolution of the cloned components is predicted

using advanced time series modeling. A large number of papers [27] have identified

clones based on the same version of software systems. The primary work of this paper is

to model the clones evolution across different versions of the software systems.

The analysis is done on 31 versions of ArgoUML ranging from version 0.9.5 to the latest

stable release 0.34.0. This span a duration of over 6 years from 2006 to 2011. For the

subsequent versions of the software, the clone amount was successfully predicted using

the time series modeling techniques.

1.6.3 Software Reliability Prediction Using TBF

Software reliability is usually measured regarding Time between Failure (TBF). In this

thesis, time series approach is used for software reliability prediction [148]. In the first

phase, the Time between Failure (TBF) series for three different types of the software

applications is collected . The next step is temporal modelling of TBF series for accurate

prediction of software reliability. The models are validated on three different types of

software systems: 1: Real Time System 2: Military System 3: Word processing System

The failure interval data for these systems is available on CSIAC Software Reliability

Dataset given by J Musa [147].

1.7 Thesis Organization

In this thesis, the temporal pattern across different versions of the various software ap-

plication is modelled using time series analysis. The objective is to have cost effective

and parameter independent models for analyzing important software characteristics like

Chapter 1. Introduction 15

Bugs, Clones, and Failures. This will help in reduction of maintenance and testing effort.

Advance knowledge about failure intervals will be helpful in building a more reliable

software. The Organization of the thesis is as follows.

Chapter 2 presents a comprehensive survey of various models on defect prediction, clone

prediction and software reliability prediction. The chapter contains a description of dif-

ferent tools and techniques used for modelling above software characteristics. It also

presents a brief description of the result and also reports the remarks and suggestion by

the authors.

Chapter 3 introduces a time series approach for modelling the increases and decreases

in bug numbers. The bug information about different software applications is collected

from bug repositories [15]. A number of advanced techniques like Artificial Neural Net-

work, Hybrid Model (ARIMA +ANN), Ensemble Model are applied for modelling the

temporal bug number series. Finally, Markov Model and Hidden Markov Model(HMM)

is also applied for predicting the temporal patterns across different versions of software

applications.

Chapter 4 introduces a two phase modelling approach for predicting clone evolution. In

the first phase, the cloned components have been identified using a systematic clone de-

tection process. In the second phase, advanced time series modelling approaches like Hy-

brid Model (ARIMA +ANN) are used for predicting the evolution of cloned components

across different versions of software applications. In another approach software metrics

information is also used along with lag values of time series for improving the accuracy

of the model. This chapter also introduces a prediction interval based approach using

MOGA-NN for predicting clone evolution with more certainty. The results are compared

with other reported methods.

Chapter 5 introduces a time series approach for modelling software reliability using Time

Chapter 1. Introduction 16

Between Failure(TBF) patterns. In the first phase, TBF series is collected for three differ-

ent software systems from CSIAC Software Reliability Dataset. In the next phase, a point

estimation approach using Hybrid Model (ARIMA +ANN) is applied to predict software

reliability from TBF series. In the next section, an interval based estimation approach

using MOGA-NN and ELM +KNN is also applied to predict software reliability with in-

creased certainty and confidence. The chapter also presents a systematic comparison of

results with different modelling techniques.

Chapter 6 concludes the dissertation and give direction for future enhancements.

The list of publications is presented in Appendix A

The Dataset used in this thesis is presented in Appendix B.

