
Bibliography

[1] About debian: https://www.debian.org/.

[2] About eclipse: https://en.wikipedia.org/wiki/eclipse-(software).

[3] About mozilla: https://www.mozilla.org/en-us/firefox/.

[4] Adf test: Microsoft excel add-in.

[5] Argouml database: argouml.tigris.org/source/browse/argouml/trunk/src/.

[6] Eclipse bug repository: https://bugs.eclipse.org/bugs/.

[7] Eclipse metrics plugin: metrics.sourceforge.net/.

[8] Function approximation and nonlinear regression:

http://www.mathworks.in/help/nnet/function-approximation-and-nonlinear-

regression.html.

[9] K-median-clustering: https://www.cs.princeton.edu/courses/archive/fall14/cos521/projects/kmedian.pdf.

[10] Markov models, hidden and otherwise: http://kochanski.org/gpk/teaching/0401oxford.

[11] Mozilla bug repository: https://bugzilla.mozilla.org/.

[12] Nonparametric estimation: http://mathworld.wolfram.com/nonparametricestimation.html.

[13] Open source software directory: http://www.ohloh.net/.

229



[14] Software fault prediction using fuzzy clustering and radial-basis function network.

[15] Ultimate debian database(bug repository): http://udd.debian.org/.

[16] Abd-El-Hafiz, S. K. (2011). Efficient detection of function clones in software sys-

tems using the fractal dimension and metrics. In Int. Conf. Software Engineering, pages

88–94.

[17] Abd-El-Hafiz, S. K. (2012). A metrics-based data mining approach for software

clone detection. In 2012 IEEE 36th Annual Computer Software and Applications Con-

ference, pages 35–41. IEEE.

[18] Alan, O. and Catal, P. D. C. (2009). An outlier detection algorithm based on object-

oriented metrics thresholds. In Computer and Information Sciences, 2009. ISCIS 2009.

24th International Symposium on, pages 567–570. IEEE.

[19] Aljahdali, S. H. and El-Telbany, M. E. (2009). Software reliability prediction using

multi-objective genetic algorithm. In 2009 IEEE/ACS International Conference on

Computer Systems and Applications, pages 293–300. IEEE.

[20] Amin, A., Grunske, L., and Colman, A. (2013). An approach to software relia-

bility prediction based on time series modeling. Journal of Systems and Software,

86(7):1923–1932.

[21] An, L. and Khomh, F. (2015). An empirical study of highly impactful bugs in mozilla

projects. In Software Quality, Reliability and Security (QRS), 2015 IEEE International

Conference on, pages 262–271. IEEE.

[22] Antoniol, G., Penta, M. D., Casazza, G., and Merlo, E. (2001). Modeling clones

evolution through time series. In Proceedings of the IEEE International Conference on

Software Maintenance (ICSM’01), page 273. IEEE Computer Society.

[23] April, A. and Abran, A. (2012). Software maintenance management: evaluation and

continuous improvement, volume 67. John Wiley & Sons.

230



[24] Areekul, P., Senjyu, T., Toyama, H., and Yona, A. (2009). Combination of artificial

neural network and arima time series models for short term price forecasting in dereg-

ulated market. In Transmission & Distribution Conference & Exposition: Asia and

Pacific, 2009, pages 1–4. IEEE.

[25] Bai, C., Hu, Q., Xie, M., and Ng, S. H. (2005). Software failure prediction based on

a markov bayesian network model. Journal of Systems and Software, 74(3):275–282.

[26] Barghout, M., Littlewood, B., and Abdel-Ghaly, A. (1997). A non-parametric ap-

proach to software reliability prediction. In Software Reliability Engineering, 1997.

Proceedings., The Eighth International Symposium on, pages 366–377. IEEE.

[27] Baxter, I. D., Yahin, A., Moura, L., Sant’Anna, M., and Bier, L. (1998). Clone

detection using abstract syntax trees. In Software Maintenance, 1998. Proceedings.,

International Conference on, pages 368–377. IEEE.

[28] Bellon, S., Koschke, R., Antoniol, G., Krinke, J., and Merlo, E. (2007). Comparison

and evaluation of clone detection tools. IEEE Transactions on Software Engineering,

33(9):577–591.

[Bhatnagar and Kakkar] Bhatnagar, R. and Kakkar, M. Predicting software reliability

using machine learning approach for sdlc life cycle.

[30] Bibi, S., Tsoumakas, G., Stamelos, I., and Vlahavas, I. (2008). Regression via clas-

sification applied on software defect estimation. Expert Systems with Applications,

34(3):2091–2101.

[31] Binkley, D., Feild, H., Lawrie, D., and Pighin, M. (2007). Software fault prediction

using language processing. In Testing: Academic and Industrial Conference Practice

and Research Techniques-MUTATION, 2007. TAICPART-MUTATION 2007, pages 99–

110. IEEE.

231



[32] Bishnu, P. S. and Bhattacherjee, V. (2012). Software fault prediction using quad

tree-based k-means clustering algorithm. IEEE Transactions on knowledge and data

engineering, 24(6):1146–1150.

[33] Boetticher, G. D. (2006). Improving credibility of machine learner models in soft-

ware engineering. Advanced Machine Learner Applications in Software Engineering

(Series on Software Engineering and Knowledge Engineering), pages 52–72.

[34] Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time series

analysis: forecasting and control. John Wiley & Sons.

[35] Brockwell, P. J. and Davis, R. A. (2013). Time series: theory and methods. Springer

Science & Business Media.

[36] Calefato, F., Lanubile, F., and Mallardo, T. (2004). Function clone detection in web

applications: a semiautomated approach. Journal of Web Engineering, 3:3–21.

[37] Carlson, D., Haynsworth, E., and Markham, T. (1974). A generalization of the

schur complement by means of the moore–penrose inverse. SIAM Journal on Applied

Mathematics, 26(1):169–175.

[38] Castillo, E., Guijarro-Berdiñas, B., Fontenla-Romero, O., and Alonso-Betanzos, A.

(2006). A very fast learning method for neural networks based on sensitivity analysis.

J. Mach. Learn. Res., 7:1159–1182.

[39] Chakraborty, K., Mehrotra, K., Mohan, C. K., and Ranka, S. (1992). Forecasting the

behavior of multivariate time series using neural networks. Neural networks, 5(6):961–

970.

[40] Challagulla, V. U., Bastani, F. B., and Yen, I.-L. (2006). A unified framework for

defect data analysis using the mbr technique. In Tools with Artificial Intelligence, 2006.

ICTAI’06. 18th IEEE International Conference on, pages 39–46. IEEE.

232



[41] Challagulla, V. U., Bastani, F. B., Yen, I.-L., and Paul, R. A. (2005). Empirical as-

sessment of machine learning based software defect prediction techniques. In Object-

Oriented Real-Time Dependable Systems, 2005. WORDS 2005. 10th IEEE Interna-

tional Workshop on, pages 263–270. IEEE.

[42] Chang, C.-P., Chu, C.-P., and Yeh, Y.-F. (2009). Integrating in-process software

defect prediction with association mining to discover defect pattern. Information and

Software Technology, 51(2):375–384.

[43] Chen, J., Liu, S., Chen, X., Gu, Q., and Chen, D. (2013). Empirical studies on

feature selection for software fault prediction. In Proceedings of the 5th Asia-Pacific

Symposium on Internetware, page 26. ACM.

[44] Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented

design. IEEE Transactions on software engineering, 20(6):476–493.

[45] Chow, T. S. (1978). Testing software design modeled by finite-state machines. IEEE

transactions on software engineering, (3):178–187.

[46] Cockburn, A. (2002). Agile software development, volume 177. Addison-Wesley

Boston.

[47] Coello, C. C., Lamont, G. B., and Van Veldhuizen, D. A. (2007). Evolutionary

algorithms for solving multi-objective problems. Springer Science & Business Media.

[48] Cukic, B. and Ma, Y. (2007). Predicting fault-proneness: Do we finally know how.

Reliability analysis of system failure data, Cambridge, UK.

[49] das Chagas Moura, M., Zio, E., Lins, I. D., and Droguett, E. (2011). Failure and reli-

ability prediction by support vector machines regression of time series data. Reliability

Engineering & System Safety, 96(11):1527–1534.

233



[50] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multi-

objective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation,

6(2):182–197.

[51] Dejaeger, K., Verbraken, T., and Baesens, B. (2013). Toward comprehensible soft-

ware fault prediction models using bayesian network classifiers. IEEE Transactions on

Software Engineering, 39(2):237–257.

[52] Denaro, G., Lavazza, L., and Pezze, M. (2003). An empirical evaluation of object

oriented metrics in industrial setting. In The 5th CaberNet Plenary Workshop, Porto

Santo, Madeira Archipelago, Portugal.

[53] Di Lucca, G. A., Di Penta, M., and Fasolino, A. R. (2002). An approach to iden-

tify duplicated web pages. In Computer Software and Applications Conference, 2002.

COMPSAC 2002. Proceedings. 26th Annual International, pages 481–486. IEEE.

[54] Ducasse, S., Rieger, M., and Demeyer, S. (1999). A language independent approach

for detecting duplicated code. In Software Maintenance, 1999.(ICSM’99) Proceedings.

IEEE International Conference on, pages 109–118. IEEE.

[55] D’Ambros, M., Lanza, M., and Robbes, R. (2012). Evaluating defect prediction ap-

proaches: a benchmark and an extensive comparison. Empirical Software Engineering,

17(4-5):531–577.

[56] El Emam, K., Melo, W., and Machado, J. C. (2001). The prediction of faulty classes

using object-oriented design metrics. Journal of Systems and Software, 56(1):63–75.

[57] Elish, M. O., Al-Yafei, A. H., and Al-Mulhem, M. (2011). Empirical comparison of

three metrics suites for fault prediction in packages of object-oriented systems: A case

study of eclipse. Advances in Engineering Software, 42(10):852–859.

234



[58] Eswaran, C., Logeswaran, R., et al. (2012). An enhanced hybrid method for

time series prediction using linear and neural network models. Applied Intelligence,

37(4):511–519.

[59] Fachinotti, V., Anca, A., and Cardona, A. (2011). A method for the solution of

certain problems in least squares. Int J Numer Method Biomed Eng, 27(4):595–607.

[60] Fathima, T. and Jothiprakash, V. (2014). Behavioural analysis of a time series–a

chaotic approach. Sadhana, 39(3):659–676.

[61] Fenton, N., Neil, M., and Marquez, D. (2008). Using bayesian networks to predict

software defects and reliability. Proceedings of the Institution of Mechanical Engi-

neers, Part O: Journal of Risk and Reliability, 222(4):701–712.

[62] Fenton, N. E. and Neil, M. (1999). A critique of software defect prediction models.

IEEE Transactions on software engineering, 25(5):675–689.

[63] Fung, K., Kwong, C., Siu, K. W., and Yu, K. (2012). A multi-objective genetic

algorithm approach to rule mining for affective product design. Expert Systems with

Applications, 39(8):7411–7419.

[64] Gao, K. and Khoshgoftaar, T. M. (2007). A comprehensive empirical study of count

models for software fault prediction. IEEE Transactions on Reliability, 56(2):223–236.

[65] Ghosh, A. and Chakraborty, M. (2012). Hybrid optimized back propagation learning

algorithm for multi-layer perceptron. International Journal of Computer Applications,

60(13).

[66] Göde, N. and Koschke, R. (2009). Incremental clone detection. In Software Main-

tenance and Reengineering, 2009. CSMR’09. 13th European Conference on, pages

219–228. IEEE.

[67] Goel, A. L. (1985). Software reliability models: Assumptions, limitations, and ap-

plicability. IEEE Transactions on software engineering, (12):1411–1423.

235



[68] Goel, A. L. and Okumoto, K. (1979). Time-dependent error-detection rate model for

software reliability and other performance measures. IEEE transactions on Reliability,

3:206–211.

[69] Grubb, P. and Takang, A. A. (2003). Software maintenance: concepts and practice.

World Scientific.

[70] Guo, L., Cukic, B., and Singh, H. (2003). Predicting fault prone modules by the

dempster-shafer belief networks. In Automated Software Engineering, 2003. Proceed-

ings. 18th IEEE International Conference on, pages 249–252. IEEE.

[71] Guo, P. and Lyu, M. R. (2000). Software quality prediction using mixture models

with em algorithm. In Quality Software, 2000. Proceedings. First Asia-Pacific Confer-

ence on, pages 69–78. IEEE.

[72] Gyimothy, T., Ferenc, R., and Siket, I. (2005). Empirical validation of object-

oriented metrics on open source software for fault prediction. IEEE Transactions on

Software engineering, 31(10):897–910.

[Hall et al.] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten,

I. The weka data mining software: an update. acm sigkdd explor newslett 2009; 11:

10–8.

[74] Hamilton, J. D. (1994). Time series analysis, volume 2. Princeton university press

Princeton.

[75] Hassan, A. E. and Holt, R. C. (2005). The top ten list: Dynamic fault prediction.

In Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE International

Conference on, pages 263–272. IEEE.

236



[76] Herraiz, I., Gonzalez-Barahona, J. M., and Robles, G. (2007). Forecasting the num-

ber of changes in eclipse using time series analysis. In Mining Software Reposito-

ries, 2007. ICSE Workshops MSR’07. Fourth International Workshop on, pages 32–32.

IEEE.

[77] Hu, S. (2007). Akaike information criterion. Center for Research in Scientific Com-

putation, 93.

[78] Huang, C.-Y. and Lyu, M. R. (2011). Estimation and analysis of some generalized

multiple change-point software reliability models. IEEE Transactions on reliability,

60(2):498–514.

[79] Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. (2004). Extreme learning machine: a

new learning scheme of feedforward neural networks. In Neural Networks, 2004. Pro-

ceedings. 2004 IEEE International Joint Conference on, volume 2, pages 985–990.

IEEE.

[80] Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. (2006). Extreme learning machine: the-

ory and applications. Neurocomputing, 70(1):489–501.

[81] Illes-Seifert, T. and Paech, B. (2008). Exploring the relationship of a file’s history

and its fault-proneness: An empirical study. In Practice and Research Techniques,

2008. TAIC PART’08. Testing: Academic & Industrial Conference, pages 13–22. IEEE.

[82] Im, K. S., Pesaran, M. H., and Shin, Y. (2003). Testing for unit roots in heteroge-

neous panels. Journal of econometrics, 115(1):53–74.

[83] Irrera, I., Duraes, J., and Vieira, M. (2014). On the need for training failure pre-

diction algorithms in evolving software systems. In 2014 IEEE 15th International

Symposium on High-Assurance Systems Engineering, pages 216–223. IEEE.

237



[84] ISO, I. (2010). Iec/ieee 24765: 2010 systems and software engineering-vocabulary.

Technical report, Technical report, Institute of Electrical and Electronics Engineers,

Inc.

[85] Jiang, L., Misherghi, G., Su, Z., and Glondu, S. (2007a). Deckard: Scalable and

accurate tree-based detection of code clones. In Proceedings of the 29th international

conference on Software Engineering, pages 96–105. IEEE Computer Society.

[86] Jiang, Y., Cukic, B., and Menzies, T. (2007b). Fault prediction using early lifecycle

data. In Software Reliability, 2007. ISSRE’07. The 18th IEEE International Symposium

on, pages 237–246. IEEE.

[87] Johnson, J. H. (1994). Visualizing textual redundancy in legacy source. In Pro-

ceedings of the 1994 conference of the Centre for Advanced Studies on Collaborative

research, page 32. IBM Press.

[88] Junhong, G., Xiaozong, Y., and Hongwei, L. (2005). Software reliability nonlinear

modeling and its fuzzy evaluation. In 4th WSEAS International Conference.

[89] Kamiya, T., Kusumoto, S., and Inoue, K. (2002). Ccfinder: a multilinguistic token-

based code clone detection system for large scale source code. IEEE Transactions on

Software Engineering, 28(7):654–670.

[90] Kanmani, S., Uthariaraj, V. R., Sankaranarayanan, V., and Thambidurai, P. (2004).

Object oriented software quality prediction using general regression neural networks.

ACM SIGSOFT Software Engineering Notes, 29(5):1–6.

[91] Kapser, C. and Godfrey, M. W. (2006). ” cloning considered harmful” considered

harmful. In Reverse Engineering, 2006. WCRE’06. 13th Working Conference on, pages

19–28. IEEE.

238



[92] Kapur, P., Pham, H., Anand, S., and Yadav, K. (2011). A unified approach for

developing software reliability growth models in the presence of imperfect debugging

and error generation. IEEE Transactions on Reliability, 60(1):331–340.

[93] Karunanithi, N., Whitley, D., and Malaiya, Y. K. (1992). Using neural networks in

reliability prediction. IEEE Software, 9(4):53–59.

[94] Kaur, J., Kumar, R., and Kaur, S. (2017). Design code clone detection system uses

optimal and intelligence technique based on software engineering. International Jour-

nal of Advanced Research in Computer Science, 8(5).

[95] Khashei, M. and Bijari, M. (2010). An artificial neural network (p, d, q) model for

timeseries forecasting. Expert Systems with applications, 37(1):479–489.

[96] Khashei, M. and Bijari, M. (2011). A novel hybridization of artificial neural

networks and arima models for time series forecasting. Applied Soft Computing,

11(2):2664–2675.

[97] Khoshgoftaar, T. M., Allen, E. B., and Busboom, J. C. (2000). Modeling software

quality: the software measurement analysis and reliability toolkit. In Tools with Artifi-

cial Intelligence, 2000. ICTAI 2000. Proceedings. 12th IEEE International Conference

on, pages 54–61. IEEE.

[98] Khoshgoftaar, T. M., Gao, K., and Szabo, R. M. (2001). An application of zero-

inflated poisson regression for software fault prediction. In Software Reliability En-

gineering, 2001. ISSRE 2001. Proceedings. 12th International Symposium on, pages

66–73. IEEE.

[99] Khoshgoftaar, T. M., Geleyn, E., and Gao, K. (2002). An empirical study of the

impact of count models predictions on module-order models. In Software Metrics,

2002. Proceedings. Eighth IEEE Symposium on, pages 161–172. IEEE.

239



[100] Khoshgoftaar, T. M. and Seliya, N. (2002). Tree-based software quality estimation

models for fault prediction. In Software Metrics, 2002. Proceedings. Eighth IEEE

Symposium on, pages 203–214. IEEE.

[101] Khoshgoftaar, T. M. and Seliya, N. (2003a). Fault prediction modeling for soft-

ware quality estimation: Comparing commonly used techniques. Empirical Software

Engineering, 8(3):255–283.

[102] Khoshgoftaar, T. M. and Seliya, N. (2003b). Software quality classification mod-

eling using the sprint decision tree algorithm. International Journal on Artificial Intel-

ligence Tools, 12(03):207–225.

[103] Khoshgoftaar, T. M. and Seliya, N. (2004). Comparative assessment of software

quality classification techniques: An empirical case study. Empirical Software Engi-

neering, 9(3):229–257.

[104] Khoshgoftaar, T. M., Seliya, N., and Gao, K. (2005). Assessment of a new three-

group software quality classification technique: An empirical case study. Empirical

Software Engineering, 10(2):183–218.

[105] Khoshgoftaar, T. M., Seliya, N., and Sundaresh, N. (2006). An empirical study

of predicting software faults with case-based reasoning. Software Quality Journal,

14(2):85–111.

[106] Khosravi, A., Nahavandi, S., Creighton, D., and Atiya, A. F. (2011a). Compre-

hensive review of neural network-based prediction intervals and new advances. IEEE

Transactions on neural networks, 22(9):1341–1356.

[107] Khosravi, A., Nahavandi, S., Creighton, D., and Atiya, A. F. (2011b). Lower upper

bound estimation method for construction of neural network-based prediction intervals.

IEEE Transactions on Neural Networks, 22(3):337–346.

240



[108] Kiran, N. R. and Ravi, V. (2008). Software reliability prediction by soft computing

techniques. Journal of Systems and Software, 81(4):576–583.

[109] Koch, S. (2004). Agile principles and open source software development: A theo-

retical and empirical. In Extreme Programming and Agile Processes in Software Engi-

neering: 5th International Conference, XP 2004, Garmisch-Partenkirchen, Germany,

June 6-10, 2004, Proceedings, volume 3092, page 85. Springer.

[110] Komondoor, R. and Horwitz, S. (2001). Using slicing to identify duplication in

source code. In International Static Analysis Symposium, pages 40–56. Springer.

[111] Konak, A., Coit, D. W., and Smith, A. E. (2006). Multi-objective optimization us-

ing genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9):992–

1007.

[112] Koru, A. G. and Liu, H. (2005a). Building effective defect-prediction models in

practice. IEEE software, 22(6):23–29.

[113] Koru, A. G. and Liu, H. (2005b). An investigation of the effect of module size

on defect prediction using static measures. In ACM SIGSOFT Software Engineering

Notes, volume 30, pages 1–5. ACM.

[114] Koru, A. G. and Liu, H. (2007). Identifying and characterizing change-prone

classes in two large-scale open-source products. Journal of Systems and Software,

80(1):63–73.

[115] Koru, A. G. and Tian, J. (2003). An empirical comparison and characterization of

high defect and high complexity modules. Journal of Systems and Software, 67(3):153–

163.

[116] Koschke, R., Falke, R., and Frenzel, P. (2006). Clone detection using abstract

syntax suffix trees. In 2006 13th Working Conference on Reverse Engineering, pages

253–262. IEEE.

241



[117] Krinke, J. (2001). Identifying similar code with program dependence graphs. In

Reverse Engineering, 2001. Proceedings. Eighth Working Conference on, pages 301–

309. IEEE.

[118] Kumar, G. and Bhatia, P. K. (2014). Comparative analysis of software engineer-

ing models from traditional to modern methodologies. In 2014 Fourth International

Conference on Advanced Computing & Communication Technologies, pages 189–196.

IEEE.

[119] Lakshmanan, I. and Ramasamy, S. (2015). An artificial neural-network approach

to software reliability growth modeling. Procedia Computer Science, 57:695–702.

[120] Larose, D. T. (2005). K-nearest neighbor algorithm. Discovering Knowledge in

Data: An Introduction to Data Mining, pages 90–106.

[121] Lee, S. and Jeong, I. (2005). Sdd: high performance code clone detection system

for large scale source code. In Companion to the 20th annual ACM SIGPLAN con-

ference on Object-oriented programming, systems, languages, and applications, pages

140–141. ACM.

[122] Li, K., Liu, W., Zhao, K., Shao, M., and Liu, L. (2015). A novel dynamic weight

neural network ensemble model. International Journal of Distributed Sensor Net-

works.

[123] Li, P. L., Herbsleb, J., Shaw, M., and Robinson, B. (2006). Experiences and results

from initiating field defect prediction and product test prioritization efforts at abb inc.

In Proceedings of the 28th international conference on Software engineering, pages

413–422. ACM.

[124] Li, Z. and Reformat, M. (2007). A practical method for the software fault-

prediction. In Information Reuse and Integration, 2007. IRI 2007. IEEE International

Conference on, pages 659–666. IEEE.

242



[125] Liu, C., Chen, C., Han, J., and Yu, P. S. (2006). Gplag: detection of software

plagiarism by program dependence graph analysis. In Proceedings of the 12th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

872–881. ACM.

[126] Liu, H., Tian, H.-q., Pan, D.-f., and Li, Y.-f. (2013). Forecasting models for wind

speed using wavelet, wavelet packet, time series and artificial neural networks. Applied

Energy, 107:191–208.

[127] Liu, W., Liu, S., Gu, Q., Chen, X., and Chen, D. (2015). Fecs: A cluster based fea-

ture selection method for software fault prediction with noises. In Computer Software

and Applications Conference (COMPSAC), 2015 IEEE 39th Annual, volume 2, pages

276–281. IEEE.

[128] Livieri, S., Higo, Y., Matushita, M., and Inoue, K. (2007). Very-large scale code

clone analysis and visualization of open source programs using distributed ccfinder: D-

ccfinder. In 29th International Conference on Software Engineering (ICSE’07), pages

106–115. IEEE.

[129] Lo, J.-H. (2009). The implementation of artificial neural networks applying to

software reliability modeling. In Control and Decision Conference, 2009. CCDC’09.

Chinese, pages 4349–4354. IEEE.

[130] Logofet, D. O. and Lesnaya, E. V. (2000). The mathematics of markov models:

what markov chains can really predict in forest successions. Ecological Modelling,

126(2):285–298.

[131] Lyu, M. R. (2007). Software reliability engineering: A roadmap. In 2007 Future

of Software Engineering, pages 153–170. IEEE Computer Society.

[132] Lyu, M. R. et al. (1996). Handbook of software reliability engineering.

243



[133] Lyu, M. R. and Nikora, A. (1992). Applying reliability models more effectively

(software). IEEE software, 9(4):43–52.

[134] Mahaweerawat, A., Sophatsathit, P., and Lursinsap, C. (2007). Adaptive self-

organizing map clustering for software fault prediction. In Fourth International Joint

Conference on Computer Science and Software Engineering, KhonKaen, Thailand,

pages 35–41.

[135] Mahaweerawat, A., Sophatsathit, P., Lursinsap, C., and Musilek, P. (2004). Fault

prediction in object-oriented software using neural network techniques. Advanced Vir-

tual and Intelligent Computing Center (AVIC), Department of Mathematics, Faculty of

Science, Chulalongkorn University, Bangkok, Thailand, pages 1–8.

[136] Manber, U. et al. (1994). Finding similar files in a large file system. In Usenix

Winter, volume 94, pages 1–10.

[137] Marcus, A., Poshyvanyk, D., and Ferenc, R. (2008). Using the conceptual cohe-

sion of classes for fault prediction in object-oriented systems. IEEE Transactions on

Software Engineering, 34(2):287–300.

[138] Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear

parameters. Journal of the society for Industrial and Applied Mathematics, 11(2):431–

441.

[139] Mayrand, J., Leblanc, C., and Merlo, E. M. (1996). Experiment on the automatic

detection of function clones in a software system using metrics. In Software Mainte-

nance 1996, Proceedings., International Conference on, pages 244–253. IEEE.

[140] Mende, T. and Koschke, R. (2009). Revisiting the evaluation of defect prediction

models. In Proceedings of the 5th International Conference on Predictor Models in

Software Engineering, page 7. ACM.

244



[141] Menzies, T., DiStefano, J., Orrego, A., and Chapman, R. (2004). Assessing predic-

tors of software defects. In Proc. Workshop Predictive Software Models.

[142] Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., and Bener, A. (2010). De-

fect prediction from static code features: current results, limitations, new approaches.

Automated Software Engineering, 17(4):375–407.

[143] Mertik, M., Lenic, M., Stiglic, G., and Kokol, P. (2006). Estimating software

quality with advanced data mining techniques. In Software Engineering Advances,

International Conference on, pages 19–19. IEEE.

[144] Milicic, D. (2005). Software quality models and philosophies. Software quality

attributes and trade-offs, pages 3–19.

[145] Mohanthy, R., Naik, V., and Mubeen, A. (2014). Software reliability prediction

by using ant colony optimization technique. In Communication Systems and Network

Technologies (CSNT), 2014 Fourth International Conference on, pages 496–500. IEEE.

[146] Moranda, P. and Jelinski, Z. (1972). Final report on software reliability study.

McDonnell Douglas Astronautics Company, MADC Report, 11.

[147] Musa, J. (1979). Software reliability data, data analysis center for software. Rome

Air Development Center, Rome, NY.

[148] Musa, J. D. (1975). A theory of software reliability and its application. IEEE

Transactions on Software Engineering, (3):312–327.

[149] Musa, J. D., Iannino, A., and Okumoto, K. (1980). Software reliability measure-

ment. Journal of Systems and Software, 1(3):223–241.

[150] Muthukumaran, K., Murthy, N. B., Reddy, G. K., and Talishetti, P. (2016). Testing

and code review based effort-aware bug prediction model. In Software Engineering,

Artificial Intelligence, Networking and Parallel/Distributed Computing, pages 17–30.

Springer.

245



[151] Neamtiu, I., Xie, G., and Chen, J. (2013). Towards a better understanding of soft-

ware evolution: an empirical study on open-source software. Journal of Software:

Evolution and Process, 25(3):193–218.

[152] Nikora, A. P. and Munson, J. C. (2006). Building high-quality software fault pre-

dictors. Software: Practice and Experience, 36(9):949–969.

[153] Noekhah, S., Hozhabri, A. A., and Rizi, H. S. (2013). Software reliability predic-

tion model based on ica algorithm and mlp neural network. In e-Commerce in Devel-

oping Countries: With Focus on e-Security (ECDC), 2013 7th Intenational Conference

on, pages 1–15. IEEE.

[154] Nof, S. Y. (2009). Springer handbook of automation. Springer Science & Business

Media.

[155] Olague, H. M., Etzkorn, L. H., Gholston, S., and Quattlebaum, S. (2007). Empirical

validation of three software metrics suites to predict fault-proneness of object-oriented

classes developed using highly iterative or agile software development processes. IEEE

Transactions on software Engineering, 33(6).

[156] Ostrand, T. J., Weyuker, E. J., and Bell, R. M. (2005). Predicting the location and

number of faults in large software systems. IEEE Transactions on Software Engineer-

ing, 31(4):340–355.

[157] Ostrand, T. J., Weyuker, E. J., and Bell, R. M. (2007). Automating algorithms

for the identification of fault-prone files. In Proceedings of the 2007 international

symposium on Software testing and analysis, pages 219–227. ACM.

[158] Pai, G. J. and Dugan, J. B. (2007). Empirical analysis of software fault content and

fault proneness using bayesian methods. IEEE Transactions on software Engineering,

33(10).

246



[159] Pai, P.-F. and Hong, W.-C. (2006). Software reliability forecasting by support vec-

tor machines with simulated annealing algorithms. Journal of Systems and Software,

79(6):747–755.

[160] Palviainen, M., Evesti, A., and Ovaska, E. (2011). The reliability estimation, pre-

diction and measuring of component-based software. Journal of Systems and Software,

84(6):1054–1070.

[161] Patenaude, J.-F., Merlo, E., Dagenais, M., and Laguë, B. (1999). Extending soft-

ware quality assessment techniques to java systems. In Program Comprehension, 1999.

Proceedings. Seventh International Workshop on, pages 49–56. IEEE.

[162] Pati, J., Kumar, B., Manjhi, D., and Shukla, K. (2017a). A comparison among

arima, bp-nn and moga-nn forsoftware clone evolution prediction. IEEE Access.

[163] Pati, J., Kumar, B., Manjhi, D., and Shukla, K. (2017b). Machine learning strate-

gies for temporal analysis of software clone evolution using software metrics. Interna-

tional Journal of Applied Engineering Research, 12(11):2798–2806.

[164] Pati, J. and Shukla, K. (2014a). A comparison of arima, neural network and a

hybrid technique for debian bug number prediction. In Computer and Communication

Technology (ICCCT), 2014 International Conference on, pages 47–53. IEEE.

[165] Pati, J. and Shukla, K. (2014b). A neural network approach to debian bug number

prediction. In Computer Application and Signal Processing. CIIT.

[166] Pati, J. and Shukla, K. (2014c). Prediction of temporal bug patterns of debian using

markov model. nternational Journal of Advanced Research in Computer Science and

Software Engineering, 4(1):1–6.

[167] Pati, J. and Shukla, K. (2015a). A hybrid modeling approach for software clone

evolution prediction. In International Conference on Electrical Engineering and Com-

puter Sciences. HEF.

247



[168] Pati, J. and Shukla, K. (2015b). A nonlinear arima technique for debian bug number

prediction. International Journal of Software Engineering and Its Applications, 4(4).

[169] Pati, J. and Shukla, K. (2017). Analysis of temporal bug patterns in open source

software using hidden markov model. International Journal of Software Engineering

and Its Applications, 11(4):11–24.

[170] Pati, J. and Shukla, K. K. (2015c). A hybrid technique for software reliability

prediction. In Proceedings of the 8th India Software Engineering Conference, pages

139–146. ACM.

[171] Payal, A., Rai, C., and Reddy, B. (2013). Comparative analysis of bayesian regular-

ization and levenberg-marquardt training algorithm for localization in wireless sensor

network. In Advanced Communication Technology (ICACT), 2013 15th International

Conference on, pages 191–194. IEEE.

[172] Pham, H. and Teng, X. (2006). Statistical models for predicting reliability of soft-

ware systems in random environments. In Springer Handbook of Engineering Statis-

tics, pages 507–520. Springer.

[173] Pigoski, T. M. (1996). Practical software maintenance: best practices for manag-

ing your software investment. Wiley Publishing.

[174] Pindyck, R. S. and Rubinfeld, D. L. (1998). Econometric models and economic

forecasts, volume 4. Irwin/McGraw-Hill Boston.

[175] Pizzi, N. J., Summers, A. R., and Pedrycz, W. (2002). Software quality prediction

using median-adjusted class labels. In Neural Networks, 2002. IJCNN’02. Proceedings

of the 2002 International Joint Conference on, volume 3, pages 2405–2409. IEEE.

[176] Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applica-

tions in speech recognition. Proceedings of the IEEE, 77(2):257–286.

248



[177] Rahman, F., Bird, C., and Devanbu, P. (2012). Clones: What is that smell? Empir-

ical Software Engineering, 17(4-5):503–530.

[178] Raja, U., Hale, J. E., Hale, D. P., et al. (2011). Temporal patterns of software

evolution defects: A comparative analysis of open source and closed source projects.

Journal of Software Engineering and Applications, 4(08):497.

[179] Ramasamy, S. and Govindasamy, G. (2006). Generalized exponential poisson

model for software reliability growth. International Journal of Performability Engi-

neering, 2(3):291–301.

[180] Rathore, S. S. and Kumar, S. (2015). Predicting number of faults in software system

using genetic programming. Procedia Computer Science, 62:303–311.

[181] Rattan, D., Bhatia, R., and Singh, M. (2013). Software clone detection: A system-

atic review. Information and Software Technology, 55(7):1165–1199.

[182] Ravi, V., Chauhan, N. J., and Kiran, N. R. (2009). Software reliability predic-

tion using intelligent techniques: Application to operational risk prediction in firms.

International Journal of Computational Intelligence and Applications, 8(02):181–194.

[183] Reformat, M. (2003). A fuzzy-based meta-model for reasoning about the number

of software defects. In International Fuzzy Systems Association World Congress, pages

644–651. Springer.

[184] Riquelme, J., Ruiz, R., Rodrı́guez, D., and Moreno, J. (2008). Finding defective

modules from highly unbalanced datasets. Actas de los Talleres de las Jornadas de

Ingenierı́a del Software y Bases de Datos, 2(1):67–74.

[185] Robinson, D. and Dietrich, D. (1989). A nonparametric-bayes reliability-growth

model. IEEE Transactions on Reliability, 38(5):591–598.

249



[186] Rossen, A. (2016). On the predictive content of nonlinear transformations of

lagged autoregression residuals and time series observations. Jahrbücher für Na-

tionalökonomie und Statistik, 236(3):389–409.

[187] Roy, C. K., Cordy, J. R., and Koschke, R. (2009). Comparison and evaluation of

code clone detection techniques and tools: A qualitative approach. Science of Com-

puter Programming, 74(7):470–495.

[188] Ruta, D. and Gabrys, B. (2007). Neural network ensembles for time series predic-

tion. In 2007 International Joint Conference on Neural Networks, pages 1204–1209.

IEEE.

[189] Schneidewind, N. F. (2001). Investigation of logistic regression as a discriminant of

software quality. In Software Metrics Symposium, 2001. METRICS 2001. Proceedings.

Seventh International, pages 328–337. IEEE.

[190] Seliya, N. and Khoshgoftaar, T. M. (2007). Software quality estimation with lim-

ited fault data: a semi-supervised learning perspective. Software Quality Journal,

15(3):327–344.

[191] Shafi, S., Hassan, S. M., Arshaq, A., Khan, M. J., and Shamail, S. (2008). Software

quality prediction techniques: A comparative analysis. In Emerging Technologies,

2008. ICET 2008. 4th International Conference on, pages 242–246. IEEE.

[192] Shanthini, A. and Chandrasekaran, R. (2014). Analyzing the effect of bagged en-

semble approach for software fault prediction in class level and package level metrics.

In Information Communication and Embedded Systems (ICICES), 2014 International

Conference on, pages 1–5. IEEE.

[193] Sharma, K., Garg, R., Nagpal, C., and Garg, R. (2010). Selection of optimal soft-

ware reliability growth models using a distance based approach. IEEE Transactions on

Reliability, 59(2):266–276.

250



[194] Shrestha, D. L. and Solomatine, D. P. (2006). Machine learning approaches for

estimation of prediction interval for the model output. Neural Networks, 19(2):225–

235.

[195] Shumway, R. H. and Stoffer, D. S. (1982). An approach to time series smoothing

and forecasting using the em algorithm. Journal of time series analysis, 3(4):253–264.

[196] Shumway, R. H. and Stoffer, D. S. (2006). Time series analysis and its application

with r examples. University of California, Davis, CA.

[197] Shumway, R. H. and Stoffer, D. S. (2010). Time series analysis and its applica-

tions: with R examples. Springer Science & Business Media.

[198] Siegmund, J., Siegmund, N., and Apel, S. (2015). Views on internal and external

validity in empirical software engineering. In 2015 IEEE/ACM 37th IEEE Interna-

tional Conference on Software Engineering, volume 1, pages 9–19. IEEE.

[199] Smith, R. and Horwitz, S. (2009). Detecting and measuring similarity in code

clones. In Proceedings of the International workshop on Software Clones (IWSC).

[200] Sneed, H. M. (2008). Offering software maintenance as an offshore service. In

Software Maintenance, 2008. ICSM 2008. IEEE International Conference on, pages

1–5. IEEE.

[201] Soleimani, A. and Asdaghi, F. (2014). An ais based feature selection method for

software fault prediction. In Intelligent Systems (ICIS), 2014 Iranian Conference on,

pages 1–5. IEEE.

[202] Stamp, M. (2004). A revealing introduction to hidden markov models. Department

of Computer Science San Jose State University.

[203] Standard, I. (2006). Software engineering–software life cycle processes–

maintenance. ISO Standard, 14764:2006.

251



[204] Subburaj, R., Gopal, G., and Kapur, P. (2007). A software reliability growth model

for vital quality metrics. South African Journal of Industrial Engineering, 18(2):93.

[205] Svozil, D., Kvasnicka, V., and Pospichal, J. (1997). Introduction to multi-layer

feed-forward neural networks. Chemometrics and intelligent laboratory systems,

39(1):43–62.

[206] Thwin, M. M. T. and Quah, T.-S. (2005). Application of neural networks for soft-

ware quality prediction using object-oriented metrics. Journal of systems and software,

76(2):147–156.

[207] Tomaszewski, P., Håkansson, J., Grahn, H., and Lundberg, L. (2007). Statistical

models vs. expert estimation for fault prediction in modified code–an industrial case

study. Journal of Systems and Software, 80(8):1227–1238.

[208] Tomaszewski, P., Lundberg, L., and Grahn, H. (2005). The accuracy of early fault

prediction in modified code. In Fifth Conference on Software Engineering Research

and Practice in Sweden, pages 57–63.

[209] Tosun, A., Turhan, B., and Bener, A. (2009). Validation of network measures

as indicators of defective modules in software systems. In Proceedings of the 5th

international conference on predictor models in software engineering, page 5. ACM.

[210] Tran, N. and Reed, D. A. (2001). Arima time series modeling and forecasting

for adaptive i/o prefetching. In Proceedings of the 15th International Conference on

Supercomputing, ICS ’01, pages 473–485, New York, NY, USA. ACM.

[211] Tsay, R. S. (2005). Analysis of financial time series, volume 543. John Wiley &

Sons.

[212] Turhan, B. and Bener, A. (2009). Analysis of naive bayes’ assumptions on software

fault data: An empirical study. Data & Knowledge Engineering, 68(2):278–290.

252



[213] Turhan, B., Bener, A., and Menzies, T. (2010). Regularities in learning defect pre-

dictors. In International Conference on Product Focused Software Process Improve-

ment, pages 116–130. Springer.

[214] Ueda, Y., Kamiya, T., Kusumoto, S., and Inoue, K. (2002). On detection of gapped

code clones using gap locations. In Software Engineering Conference, 2002. Ninth

Asia-Pacific, pages 327–336. IEEE.

[215] Ullah, N., Morisio, M., and Vetro, A. (2015). Selecting the best reliability model

to predict residual defects in open source software. Computer, 48(6):50–58.

[216] Volanschi, N. (2012). Safe clone-based refactoring through stereotype identifica-

tion and iso-generation. In Proceedings of the 6th International Workshop on Software

Clones, pages 50–56. IEEE Press.

[217] Von Krogh, G. (2003). Open-source software development. MIT Sloan Manage-

ment Review, 44(3):14.

[218] Wahler, V., Seipel, D., von Gudenberg, J. W., and Fischer, G. (2004). Clone de-

tection in source code by frequent itemset techniques. In SCAM, volume 4, pages

128–135.

[219] Wang, J. and Carroll, J. M. (2011). Behind linus’s law: A preliminary analysis of

open source software peer review practices in mozilla and python. In Collaboration

Technologies and Systems (CTS), 2011 International Conference on, pages 117–124.

IEEE.

[220] Wang, Q., Yu, B., and Zhu, J. (2004). Extract rules from software quality prediction

model based on neural network. In Tools with Artificial Intelligence, 2004. ICTAI 2004.

16th IEEE International Conference on, pages 191–195. IEEE.

[221] Wang, Q., Zhu, J., and Yu, B. (2007). Feature selection and clustering in software

quality prediction. In EASE.

253



[222] Wei, W. W.-S. (1994). Time series analysis. Addison-Wesley publ Reading.

[223] Wiener, N. (1949). Extrapolation, interpolation, and smoothing of stationary time

series, volume 7. MIT press Cambridge, MA.

[224] Wiper, M., Palacios, A., and Marı́n, J. (2012). Bayesian software reliability predic-

tion using software metrics information. Quality Technology & Quantitative Manage-

ment, 9(1):35–44.

[225] Wolf, T., Schroter, A., Damian, D., and Nguyen, T. (2009). Predicting build failures

using social network analysis on developer communication. In Proceedings of the

31st International Conference on Software Engineering, pages 1–11. IEEE Computer

Society.

[226] Wood, A. (1997). Software reliability growth models: assumptions vs. reality. In

Software Reliability Engineering, 1997. Proceedings., The Eighth International Sym-

posium on, pages 136–141. IEEE.

[227] Wu, W., Zhang, W., Yang, Y., and Wang, Q. (2010). Time series analysis for bug

number prediction. In Software Engineering and Data Mining (SEDM), 2010 2nd

International Conference on, pages 589–596. IEEE.

[228] Xie, G., Chen, J., and Neamtiu, I. (2009). Towards a better understanding of soft-

ware evolution: An empirical study on open source software. In ICSM, volume 9,

pages 51–60.

[229] Xie, M. (1991). Software reliability modelling, volume 1. World Scientific.

[230] Xie, M. and Ho, S. (1999). Analysis of repairable system failure data using time

series models. Journal of Quality in Maintenance Engineering, 5(1):50–61.

[231] Xie, M., Hong, G. Y., and Wohlin, C. (1999). Software reliability prediction

incorporating information from a similar project. Journal of Systems and Software,

49(1):43–48.

254



[232] Xing, F., Guo, P., and Lyu, M. R. (2005). A novel method for early software quality

prediction based on support vector machine. In Software Reliability Engineering, 2005.

ISSRE 2005. 16th IEEE International Symposium on, pages 10–pp. IEEE.

[233] Xu, Z., Khoshgoftaar, T. M., and Allen, E. B. (2000). Prediction of software faults

using fuzzy nonlinear regression modeling. In High Assurance Systems Engineering,

2000, Fifth IEEE International Symposim on. HASE 2000, pages 281–290. IEEE.

[234] Yang, B., Li, X., Xie, M., and Tan, F. (2010). A generic data-driven software reli-

ability model with model mining technique. Reliability Engineering & System Safety,

95(6):671–678.

[235] Yang, B., Yao, L., and Huang, H.-Z. (2007). Early software quality prediction

based on a fuzzy neural network model. In Natural Computation, 2007. ICNC 2007.

Third International Conference on, volume 1, pages 760–764. IEEE.

[236] Yang, B., Yin, Q., Xu, S., and Guo, P. (2008). Software quality prediction using

affinity propagation algorithm. In Neural Networks, 2008. IJCNN 2008.(IEEE World

Congress on Computational Intelligence). IEEE International Joint Conference on,

pages 1891–1896. IEEE.

[237] Yang, W. (1991). Identifying syntactic differences between two programs. Soft-

ware: Practice and Experience, 21(7):739–755.

[238] Yeresime, S., Pati, J., and Rath, S. K. (2014). Review of software quality metrics for

object-oriented methodology. In Proceedings of International Conference on Internet

Computing and Information Communications, pages 267–278. Springer.

[239] Zaidi, S. J. H., Danial, S. N., and Usmani, B. A. (2008). Modeling inter-failure

time series using neural networks. In Multitopic Conference, 2008. INMIC 2008. IEEE

International, pages 409–411. IEEE.

255



[240] Zeitler, D. (1991). Realistic assumptions for software reliability models. In Soft-

ware Reliability Engineering, 1991. Proceedings., 1991 International Symposium on,

pages 67–74. IEEE.

[241] Zhang, G. P. (2003). Time series forecasting using a hybrid arima and neural net-

work model. Neurocomputing, 50:159–175.

[242] Zhang, H. (2008). An initial study of the growth of eclipse defects. In Proceedings

of the 2008 international working conference on Mining software repositories, pages

141–144. ACM.

[243] Zhang, H. and Zhang, X. (2007). Comments on ”data mining static code attributes

to learn defect predictors”. IEEE Transactions on Software Engineering, 33(9):635–

637.

[244] Zhang, P. and Chang, Y.-t. (2012). Software fault prediction based on grey neural

network. In Natural Computation (ICNC), 2012 Eighth International Conference on,

pages 466–469. IEEE.

[245] Zhong, S., Khoshgoftaar, T. M., and Seliya, N. (2004). Unsupervised learning for

expert-based software quality estimation. In HASE, pages 149–155.

[246] Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., and Zhang, Q. (2011a).

Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and

Evolutionary Computation, 1(1):32–49.

[247] Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., and Zhang, Q. (2011b).

Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and

Evolutionary Computation, 1(1):32 – 49.

[248] Zhou, Y. and Leung, H. (2006). Empirical analysis of object-oriented design met-

rics for predicting high and low severity faults. IEEE Transactions on software engi-

neering, 32(10):771–789.

256



[249] Zimmermann, T., Nagappan, N., Gall, H., Giger, E., and Murphy, B. (2009). Cross-

project defect prediction: a large scale experiment on data vs. domain vs. process. In

Proceedings of the the 7th joint meeting of the European software engineering confer-

ence and the ACM SIGSOFT symposium on The foundations of software engineering,

pages 91–100. ACM.

[250] Zissis, D., Xidias, E. K., and Lekkas, D. (2016). Real-time vessel behavior predic-

tion. Evolving Systems, 7(1):29–40.

257


