CERTIFICATE

It is to certify that the work contained in the thesis **Whole–Body Vibration and Its Impact on Heavy Earth Moving Machinery Operators in Opencast Coal Mines**, being submitted by **Vivekanand Kumar** has been carried out under my/our supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

N.C. Karmakar Supervisor Professor Department of Mining Engg. IIT(BHU), Varanasi S.K. Palei **Co-Supervisor** Associate Professor Department of Mining Engg. IIT(BHU), Varanasi

DECLARATION BY THE CANDIDATE

I, Vivekanand Kumar, certify that the work embodied in this thesis is my own bona fide work and carried out by me under the supervision of Prof. N.C. Karmakar and Dr. S.K Palei from July 2015 to March 2021, at the Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not wilfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date :

Place :

(Vivekanand Kumar)

CERTIFICATE BY THE SUPERVISOR(S)

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

N.C. Karmakar Supervisor Professor Department of Mining Engg. IIT(BHU), Varanasi S.K. Palei **Co-Supervisor** Associate Professor Department of Mining Engg. IIT(BHU), Varanasi

(Head of Department)

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis : Whole–Body Vibration and Its Impact on Heavy Earth Moving Machinery Operators in Opencast Coal Mines Name of the Student : Vivekanand Kumar

Copyright Transfer

The undersigned hereby assigns to the Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Doctor of Philosophy.

Date :

Place :

(Vivekanand Kumar)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENT

First of all I would like to express my immense gratitudeto my compassionate and supportive supervisor Prof. N.C. Karmakar and Co-Supervisor Dr. S K. Palei. My PhD work has been an amazing experience and I thank both of them whole heartedly, not only for their tremendous academic support, but also for giving me so many wonderful opportunities. I profoundly thank them for his unconditional help, constant effort for improving my work, providing time to time feedback and never giving upon me.Their presence, support, and optimism have left a much-needed positive influence on my career and outlook for the future.

I wish to extend my sincere gratitude towards my research performance evaluation committee (RPEC) members, Prof. S. Gupta and Dr. S. K. Rai for their encouragement, insightful comments and their kind co-operation and encouragement during this journey. I am highly indebted to Prof. Piyush Rai, Head of the Department Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi for his overall support, advice, and encouragement during the course of the project work. I would also thank him for allowing us to avail all the facilities of the Department necessary for this project.

I am also very much thankful to scholars of the Mine ventilation laboratory Mr. Atma Ram sahu, Mr.Vivek Kumar Kashi, Mr. Aishwarya Mishra, Mr. Anurag Singh Chauhan, Mr. Bibhu Ranjan Sahoo, and Mr. Khane Jithendar Singh, for providing a stimulating and friendly environment. My thanks and sincere appreciations also go to all staff members of the department.

For mine visit & data collection, I am very much thankful to Dr. D. K. Choudary, Mr. Nitesh Kumar and Mr. Mahendra Kumar Atal, of Department of Mining Engineering and the mine management.

Finally, I heartily express my sincerest gratitude to parents, my wife, my sisters and brothers. I wish to express indebtedness to my parents, for their unconditional love, extreme patience and constant support over the years. They provided me the strength and confidence to attain this task.

(Vivekanand kumar)

Table of Contents

Contents

Table	e of C	Contents	V		
List o	of Fig	gures	viii		
List o	List of Tablesix				
List o	List of Symbols xi				
ABS	TRA	.CT	xii		
Chapter 1: Introduction1					
1.1	Introduction1				
1.2	Sco	Scope of Research			
1.3	Objectives of the Research				
1.4	Organization of the Thesis4				
Chap	oter 2	2 : Literature Review	5		
2.1	Intr	Introduction5			
2.2	Bas	Basics of Mechanical Vibration Analysis5			
2.3	Wh	nole-Body Vibration	9		
2.3.1		Magnitude	10		
2.3.2		Frequency	10		
2.3.3		Direction			
2.3.	.4	Duration	11		
2.3.	.5	Variation with time	12		
2.4	Effe	ect of WBV on Equipment Operators	12		
2.5	Inv	estigation on WBV in Mines	14		
2.5.	.1	WBV exposure of dumper operators	16		
2.5.2		WBV exposure of shovel operators			
2.5.3		WBV exposure of drill machine operators			
2.6	Effe	ect of WBV on Human Health	21		
2.7	Star	ndards for WBV Measurement	22		
2.7.1 History of development of ISO 2631-1:1997 Standards		24			
2.7.2		ISO 2631-1:1997 Standard			

2.7.	.3 History of developr	nent of European Union (EU) Directive 2002/44/EC 28		
2.7.	.4 European Union Di	rective 2002/44/EC		
2.8	Research Works on Pr	evention of WBV29		
2.9	Human Vibration Ana	lyzer		
2.9.	.1 Sensors and transdu	cers used in Human Vibration Analyzer		
2.9.	.2 Transducers			
2.9.	.3 Accelerometers tech	nnology		
2.10	Specification of Accel	erometers42		
2.11	Research Gap42			
2.12	2 Summary			
Chap	oter 3 : Methodology			
3.1	Introduction			
3.2	Development of Method	odology44		
3.3		Using Human Vibration Analyzer46		
3.4	Development of Quest	ionnaire48		
3.5	Contributing Factors A	ffecting Whole-Body Vibration49		
3.5.	.1 Personal factors			
3.5.	.2 Health-related fact	ors		
3.5.	.3 Machine related fa	ctors		
3.6	Questionnaire for Disc	omfort Survey53		
3.7	Questionnaire for Case	–Control Study53		
3.8	Statistical Methods			
3.8.	.1 Case–control study			
3.8.	.2 Correlation			
3.9	Summary			
Chap	pter 4 : Case Study			
4.1	Introduction			
4.2	Case Study Mines and	Field Visits59		
4.3	Data Collection	61		
4.3.	.1 Study sites			
4.3.	.2 Study subjects			
4.4	Summary			
Chapter 5 : WBV Measurement of HEMM Operators64				
5.1 Introduction				
5.2	2 Calculation of WBV			

5.2.	1 Calculation of daily vibration exposure, A(8)	65		
5.2.	2 Calculation of crest factor (CF)	65		
5.2.	3 Calculation of daily vibration dose value, VDV(8)	65		
5.3	Vibration Explorer Software	66		
5.4	Results of WBV Measurement	67		
5.5	Evaluation of Health Risks Based on ISO 2631-1(1997) Criteria	70		
5.6	Discussion on WBV Measurement of Three Groups of Operators	71		
5.7	Summary	71		
Chap	Chapter 6 : Discomfort Survey			
6.1	Introduction	73		
6.2	Method	73		
6.3	Discomfort Index (DI) Calculations	74		
6.4	Results and Analysis	77		
6.4.	1 Effect of WBV on different parts of the body of the operators	78		
~ •		70		
6.4.	2 Correlation analysis of HEMM operators	75		
6.4. 6.5	2 Correlation analysis of HEIVIN operators			
6.5		82		
6.5	Summary	82 83		
6.5 Chap	Summary Summary	82 83 83		
6.5 Chap 7.1	Summary oter 7 : Case–Control Study Introduction	82 83 83 83		
6.5Chap7.17.2	Summary ter 7 : Case–Control Study Introduction Study Design	82 83 83 83 84		
6.5Chap7.17.27.3	Summary ter 7 : Case–Control Study Introduction Study Design Methods	82 83 83 83 84 84		
 6.5 Chap 7.1 7.2 7.3 7.4 	Summary ter 7 : Case–Control Study Introduction Study Design Methods Findings of Questionnaire Study	82 83 83 83 84 84 84		
 6.5 Chap 7.1 7.2 7.3 7.4 7.5 	Summary ter 7 : Case–Control Study Introduction Study Design Methods Findings of Questionnaire Study Characteristics of WBV Exposure	82 83 83 83 84 84 84 87 87		
 6.5 Chap 7.1 7.2 7.3 7.4 7.5 7.6 7.7 	Summary ter 7 : Case–Control Study Introduction Study Design Methods Findings of Questionnaire Study Characteristics of WBV Exposure Results of Logistic Regression	82 83 83 83 84 84 87 87 87 89		
 6.5 Chap 7.1 7.2 7.3 7.4 7.5 7.6 7.7 	Summary ter 7 : Case–Control Study Introduction Study Design Methods Findings of Questionnaire Study Characteristics of WBV Exposure Results of Logistic Regression Summary	82 83 83 84 84 84 87 87 87 89 90		
 6.5 Chap 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Chap 	Summary ter 7 : Case–Control Study Introduction Study Design Methods Findings of Questionnaire Study Characteristics of WBV Exposure Results of Logistic Regression Summary ter 8 : Conclusions	82 83 83 84 84 84 87 87 87 89 90 90		
 6.5 Chap 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Chap 8.1 	Summary ter 7 : Case–Control Study Introduction Study Design Methods Findings of Questionnaire Study Characteristics of WBV Exposure Results of Logistic Regression Summary ter 8 : Conclusions Introduction	82 83 83 84 84 84 87 87 87 89 90 90 90		
 6.5 Chap 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Chap 8.1 8.2 8.3 	Summary ter 7 : Case–Control Study Introduction Study Design Methods Findings of Questionnaire Study Characteristics of WBV Exposure Results of Logistic Regression Summary ter 8 : Conclusions Introduction Conclusions	82 83 83 84 84 84 87 87 87 90 90 90 90 93		

List of Figures

Figure 2.1 Sinusoidal vibration
Figure 2.2 Damped forced vibration in mechanical systems7
Figure 2.3 Free body diagram of damped forced vibration system
Figure 2.4 Types of dumpers
Figure 2.5 Types of shovels
Figure 2.6 Types of drill machines
Figure 2.7 Method of evaluation and assessment of WBV according to HGCZ 26
Figure 2.8 Health Guidance Caution Zone of ISO
Figure 2.9 Line diagram of seatpad of human vibration analyser
Figure 3.1 Flowchart of the research work
Figure 3.2 Human vibration analyzer, Type 4447 46
Figure 3.3 Positioning of seatpad accelerometer on dumper operator's seat
Figure 5.1 Comparison of A(8) values of HEMM operators
Figure 5.2 Comparison of VDV(8) values of HEMM operators
Figure 5.3 Comparison of crest factor of HEMM operators
Figure 6.1 Body points and regions
Figure 6.2 Discomfort percentage and MMI for body regions of HEMM operators 77

List of Tables

Table 2.1 Investigation on WBV in mines 15
Table 2.2 Investigation of WBV exposure on dumper operators 16
Table 2.3 Investigation on drill operators 20
Table 2.4 Some parameters in the context of human response to vibration
Table 2.5 WBV exposure limits and their HGCZ as per ISO 2631-1:1997 28
Table 2.6 European Union Directive 2002/44/EC 29
Table 2.7 Accelerometer specification 42
Table 3.1 Factors and contributing parameters 49
Table 3.2 Parsonal factors of operators exposed to WBV
Table 3.3 Health-related factors of equipment operators exposed to WBV
Table 3.4 Machine related factors
Table 3.5: Contingency table of dichotomous variables with coding 0 and 1
Table 4.1 Method of working and machine deployment in the case study mines 60
Table 4.2 Distribution of total number of data collected from the mines
Table 5.1 Comparison of WBV exposure of 3-groups of HEMM operators
Table 5.2 Percentage of subjects based on the HGCZ of ISO 2631-1: 1997 71
Table 6.1 Distribution of discomfort in various body regions
Table 6.2 Correlation matrix for dumper operators 80
Table 6.3 Correlation matrix for drill operators 81
Table 6.4 Correlation matrix for shovel operators
Table 7.1 Descriptive statistics of personal factors of operators 85
Table 7.2 Summary of the case and control groups

Table 7.3 WBV at work posts of case group	
Table 7.4 Results of logistic regression analysis	

List of Symbols

- WBV: Whole-Body Vibration
- HEMM: Heavy Earth Moving Machinery
- MSD: Musculoskeletal disorder
- ISO : International organization for standardization
- BMI : Body Mass Index
- BEML: Bharat Earth Movers Limited
- r.m.s.: Root Mean Square
- VDV: Vibration Dose Value
- MTVV : Maximum Transient Vibration Value
- MEMS : Micro Electro Mechanical Systems
- LBP: Lower Back Pain

ABSTRACT

Whole-body vibration (WBV) is a health hazard faced by heavy earth moving machine (HEMM) operators in mining as well as in the industries like agriculture, forestry and manufacturing. In surface coal mines, the dumper, drill, and shovel operators are the worst sufferers from WBV syndrome. WBV is perceived when a human is supported by a surface that is shaking and the vibration affects the body parts away from the point of contact. In many work environments, people are primarily exposed to vibration while working in sitting posture. They are exposed to a wide range of vibration magnitudes, waveforms, and durations, which may be continuous or transient. Depending on the magnitude and duration of exposure, WBV causes impacts on the health and safety of human being and specifically, it is reflected on the musculoskeletal system leading to musculoskeletal disorders (MSDs) for prolonged exposure.

High prevalence of MSDs, mainly in upper limbs and lower back, is found among offroad vehicle operators in mining, agriculture and construction industries. Epidemiological studies on WBV demonstrate increased risk of lower back pain, sciatic pain, and degenerative changes in the spinal system, including lumbar intervertebral disc disorders. In addition, motion sickness, headache, impotence, chest and abdominal pain, increased heart rate, high blood pressure, blurred vision, and kidney disorders are reported as WBV syndromes in the past studies.

Research work indicated that impacts of WBV depend on multiple confounding factors, including the demography and anthropometry of the operator, duration of exposure, ergonomics of the seat design and the work environmental factors. Although many factors have been discussed in the literature, the cause of WBV and its health effects are still not explored fully. Therefore, there is a need to investigate the effect of WBV on heavy earth moving machinery (HEMMs) operators in mines and to understand the correlations that exist among the various confounding factors of WBV.

While operating the HEMM, vibration is transmitted through the machine seat and footrest, which are the surfaces that support the operator. The vibration is then transmitted through the operator–seat interface, and can lead to musculoskeletal

disorders. Investigation of WBV is truly multidisciplinary in nature and the role of contributing factors are still not fully explored to bring in the clarity in the causation of the injuries related to vibration; though a deeper understanding of the factors has been discussed in many researches. Therefore, the scope of the present research work is limited to the measurement of vibration following the guidelines of ISO 2631-1:1997 (Mechanical vibration and shock – Evaluation of human exposure to whole-body vibration), supplemented by a questionnaire survey of a group of HEMM operators in coal mines. In order to understand the role of the contributing factors on causation of MSDs, a group of workers who are not exposed to machine vibrations are also considered in the questionnaire survey. The questionnaire incorporates the survey of personal information of the workers and also the discomfort/pain that the operators/workers are facing since last six months.

Though there has been considerable amount of research works on WBV exposure, there is a lack of systematic investigation of confounding factors on WBV and its related MSDs. Discomfort analysis of HEMM operators exposed to vibration, proposed in this thesis, is not found in the literature.

This research has been taken upto quantify whole-body vibration (WBV) of the operators of HEMM in four opencast mines. WBV exposure values have been compared with the ISO 2631-1:1997 guidelines. Discomfort survey is done to identify the physical problems of the operators. Case–control study is undertaken to compare the relative risk of the groups of subjects.

WBV in mines is investigated, giving focus to dumper, drill and shovel operators. Effect of WBV on human health is categorized. The guideline of the research, ISO 2631-1:1997 is stated with their history of development. The Bruel & Kjaer 'Human Vibration Analyzer type 4447' is used for the measurement of WBV.

Measurements were carried out at the operator-seat interface with a tri-axial seat pad accelerometer in combination with a control panel which records the vibrational exposure in the form of signals through the vibration analyzer type 4447. The accelerometer mounted on the seat where the operators used to sit while operating the machine. Temporary adhesive tape was used to keep the seat pad accelerometer fixed onto the operator's seat during the measurements. The accelerometer records the vibration in three translational axes with reference to the human basi-centric axes, namely, fore-and-aft (*x*-axis), lateral (*y*-axis), and vertical (*z*-axis) axes. Positioning of the vibration seat pad accelerometer has been depicted.

Nordic and Stuart-Buttle standardized questionnaires guided for the development of questionnaire. Different contributing parameters that affect whole-body vibration considered in this study are personal, health-related as well as machine related factors. The WBV measurement was carried out for 150 HEMM [110 dumper, 20 shovel & 20 drill] operators.

The periods of data collection was between May 2017 to October 2018. Result of WBV measurement is compared for dumper, drill and shovel operators using box-plot. Comparing A(8) values for the three category of vehicle operators through box plotting, it is observed that maximum median A(8) value (0.85) is for dumper operators and minimum value (0.34) is for drill operators. Comparing of VDV(8) values for the HEMM operators is presented through box plotting it is found that maximum median VDV(8) value (23.70) is for dumper operators and minimum (10.99) is for shovel operators. Comparing the crest factor for HEMM operators, it is found that maximum median CF value is for shovel operators and minimum for dumper operators. Based on ISO2631-1:1997 criteria, health risk of the operators is evaluated. 94% dumper operators, 20% drill operators and 15% shovel operators are subjected to likely health risk. The vibration magnitude is maximum in *z*-axis for the HEMM operators.

In the discomfort survey, 11 body points were considered which were divided into five body regions. Calculation for the whole-body discomfort index (WBDI), body region discomfort index (BRDI) and mean maximum intensity (MMI) are explained through the mathematical expressions. The percentage of dumper operators who had discomfort in their body regions, neck, hand, upper back, lower back and leg were 28, 20, 38, 64 and 50 % respectively. The percentage of drill operators who had discomfort in their body regions, neck, hand, upper back, lower back and leg were 40, 10, 30, 60 and 60 % respectively. The percentage of shovel operators who had discomfort in their body regions, neck, hand, upper back, lower back and leg were 25, 10, 30, 50 and 30 % respectively. Discomfort of HEMM operators in neck, hand, upper back, lower back and leg region are 30.0, 15.6, 34.4, 60.0 and 47.8 respectively. Body region discomfort index of HEMM operators in neck, hand, upper back, lower back and leg region are 0.31, 0.24, 0.39, 0.55 and 0.33 respectively. Discomfort survey also revealed that dumper operators were highly exposed to WBV compared to shovel and drill operators

Correlation matrix for dumper, drill and shovel operators is indicated that A(8) value of dumper, drill and shovel operators is directly correlated (0.81–0.97) to VDV(8) value. Body DI of only dumper and shovel operators is directly correlated (0.83–0.87) to hand DI.

The case–control study is carried out between dumper operators (n=110) as case group and control group (n=110) who were not exposed to vibration. A workers' response device (WRD) questionnaire is used to collect the data through the questionnaire. In case–control study, out of 11 variables, only two variables (Lower back and Mine-2) are found statistically significant in the logistic regression model. Examining the odds ratios of the case group showed that the risk of lower back pain is 2.52 times (95% CI [1.19, 5.31]) more as compared to control group. Case group of Mine-2 is 2.0 times (95% CI [0.98, 4.08]) more prone to vibration hazards as compared to Mine-3 (the reference mine). The case–control study concludes that the vulnerability to vibration hazards is higher in case group than the control group.

The novelty of the present research work is the combination of WBV measurement and discomfort survey in Indian mines. The present study is expected to guide the mine management to take appropriate steps in their planning against the WBV impacts. It would provide useful data-base for assessing the appropriateness of ISO 2631-1:1997 under Indian mining condition, and thereby, formulating pertinent occupational health policies to protect the millions of Indian mine workers especially the dumper operators, who are exposed to high level workplace WBV.