CERTIFICATE

It is certified that the work contained in the thesis titled "Investigation of Stress Distribution and its Analysis in Dragline Boom" by ASIT SHUKLA has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Professor Piyush Rai (Supervisor) Department of Mining Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi221005 India

DECLARATION BY THE CANDIDATE

I, *ASIT SHUKLA*, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of *Professor Piyush Rai* from *July-2014 to December-2020*, at the *Department of Mining Engineering*, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma.

I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date:

Place: Varanasi

(Asit Shukla)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my knowledge.

Prof. Piyush Rai (Supervisor) Department of Mining Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India Prof. Piyush Rai (Head of Department) Department of Mining Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Investigation of Stress Distribution and its Analysis in Dragline Boom Name of the Student: ASIT SHUKLA

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University), Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "*Doctor of Philosophy*".

Date: Place: Varanasi (Asit Shukla)

I grateful acknowledge the support and guidance of my thesis supervisor Prof. Piyush Rai, Department of Mining Engineering, IIT (BHU). Without his thoughtful encouragement and careful supervision, this thesis would never have taken shape. I am blessed to spent time in their tutelage.

I also extend sincere thanks to RPEC members of my committee, Dr. Mohd. Zaheer Khan Yusufzai and Prof. Suprakash Gupta for his valuable suggestions and feedback on my research, and encouragement at various stages of the research work.

I would like to give a special thanks to Ashwani Sonkar, Dr. Hira lal Yadav Sir, Shah Fateh Azam, Shailendra Chawla, and Mr. Rizwan Hasim for being wonderful friends for their help and support given to me during completion of this research work.

I would like to express my deep sense of gratitude to my parents, family members and relatives for their unwavering support and encouragement.

At last, but not least, thanks be to God for my life through all tests in the past years. You have made my life more bountiful.

(ASIT SHUKLA)

Title **Description** Page No. Certificates ii Acknowledgement v Contents vi List of figure ix List of table xiii List of abbreviation XV Abstract xviii **CHAPTER 1 INTRODUCTION CHAPTER 2** LITERATURE REVIEW

CONTENTS

2.3.3 Maximum Suspended Load (MSL)	20
2.3.4 Selection Chart	21
2.4 Assembly of Dragline	21
2.5 Design of dragline components	22
2.5.1 Dragline boom	23
2.5.2 Dragline Bucket	23
2.5.3 Suspension ropes	25
2.6 Dragline Boom Design	27
2.7 Loading of dragline boom	28
2.8 Design of Joints in boom matrix	29
2.8.1 The joint according to EUROCODE 3 and CIDECT	29
2.8.2 Type of joints used in lattice structures	30
2.9 Failure Modes of Joints	31
2.9.1 Local yield of the brace	31
2.9.2 Chord web failure	32
2.9.3 Chord shear failure	32
2.9.4 Local yielding of overlapping brace	33
2.9.5 Local chord member yielding with overlapping braces	34
2.9.6 Brace shear when overlapped by another brace of the same type	34
2.9.7 Local yielding of brace when subjected to bending moment	35
2.9.8 Chord web failure when subjected to bending moment	35
2.10 Fatigue life	36
2.11 Fatigue life S-N Curve	
2.12 Failure analysis criteria	
2.13 Finite element analysis	41
2.13.1 Basic idea of finite element analysis	42
2.13.2 Applications of finite element analysis in earthmoving equipment	43

2.	14 Summary of the literature review	.45
СНА	PTER 3	
RES	EARCH METHODOLOGY	
3.	1 Methodology for analysis of dragline boom	.46
3.	2 Data Collection	.49
3.	3 Solid 3D Model Generation of Dragline Boom	.50
3.	4 Solid 3D Model Generation of Dragline boom Cluster (Joint)	.54
3.	5 Simulation and analysis of dragline boom	.55
3.	6 Structural material properties of dragline boom	.58
3.	7 Finite element meshing and boundary conditions for static loading	. 59
3.	8 Static loading condition	.60
3.	9 Dynamic Loading Condition	.63
3.	10 Boundary conditions for dynamic loading	.65
3.	11 Static load computation	.66
	3.11.1 Dead load on boom structure (self-weight of the boom)	.66
	3.11.2 When empty bucket is on ground below dragline boom in vertical position	n
		.67
	3.11.3 When bucket is completely filled with sandstone and positioned below	
	dragline boom in vertical position	.68
3.	12 Evaluation of axial tension in suspension wire ropes	.68
3.	13 Parametric analysis of dragline boom cluster	.70
СНА	PTER 4	
RES	ULTS AND DISCUSSION	
4.	1 Modeling results for dragline boom	.74
4.	2 Stress analysis of the dragline boom	.75
4.	3 Stress analysis of the dragline boom under static loading condition	.75
	4.3.1 Boom under self- weight condition	.75
	4.3.2 Analysis of self-weight of boom along with the empty bucket acting on boon	n 81

4.3.3 Bucket with payload below boom point	
4.4 Summary of the static load cases	93
4.5 Fatigue sensitivity of dragline boom joint	96
4.6 Dynamic loading condition analysis of dragline boom	97
4.6.1 Boom swing to motion with bucket payload	97
4.6.2 Boom swing-back phase with empty bucket	
4.7 Summary for the dynamic loading case	
4.8 Results of Axial forces (tension) in wire ropes	110
4.9 Results of Parametric study of boom clusters	111
4.9.1 Effect of change of chord diameter change	111
4.9.2 Effect of change in chord thickness	113
4.9.3 Effect of change in the brace diameter	115
4.9.4 Effect of change in brace thickness	116
4.10 Summary of parametric variation analysis	118
4.11 Verification of results	120
CHAPTER 5	
CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORK	
REFERENCES	126
APPENDIX A	135
List of Publications	139

LIST OF FIGURE

Figure 1.1 Main components of dragline (Modified from Karpuz & Demirel, 2016)	4
Figure 1.2 BE Boom with cluster arrangement and weld sequence Label A, B, C, A12 and	d a,
b, c, d, e (Dragline Dictionary Edition, 2014)	5
Figure 1.3 Marion Boom detailing node section (Dragline Dictionary Edition, 2014)	6
Figure 1.4 Dragline boom with its complete assembly	7
Figure 1.5 Boom foot and Boom point sheave of a dragline (Dragline Dictionary Edition, 20)14)
	7
Figure 2.1 Dragline in a coal mine (Anonymous, 2008)	14
Figure 2.2 Economic comparison of a truck shovel and dragline (Hartman, 2002)	15
Figure 2.3 Reach Factor and operation radius	18
Figure 2.4 Dragline standard selection chart (Bucyrus Erie Company, 1977)	21
Figure 2.5 Schematic diagrams of dragline components (Mckinnell, 1995)	22
Figure 2.6 Dragline bucket suspension system (Modified after Ridley, 2004)	24
Figure 2.7 Typical rope construction (Chaplin, 2005)	25
Figure 2.8 Boom foot and Boom point sheave of a dragline (Dragline Dictionary, 2004)	27
Figure 2.9 The design of a dragline boom with main loadings (Dayawansa et al, 2006)	28
Figure 2.10 Types of joints between hollow and open sections (CEN, 2010b)	30
Figure 2.11 Local yields of the brace (CEN, 2010b)	32
Figure 2.12 Chord web failures (CEN, 2010b)	32
Figure 2.13 Chord shear failure (CEN, 2010b)	33
Figure 2.14 Type of joint with overlapping braces (CEN, 2010b)	34
Figure 2.15 T joint subjected to bending moment (CEN, 2010b)	35
Figure 2.16 Failure modes for joints between circular hollow sections (Han, 2017)	36
Figure 2.17 S-N curve for a material (William and David, 2003)	38

Figure 2.18 Yield surface corresponding to the Von Mises yield criterion (Hearn, 1997)40
Figure 2.19 FEA (a) Meshing (b) Stress Distribution (Abo-Elnor et al. 2004)
Figure 3.1 Flow chart illustrating the design of research
Figure 3.2 (a-d) Images from field visits. (a) Dragline model 8200 in SASAN coal mine (b)
Ganga dragline model in NCL (c) 24/96 dragline model in NCL and (d) Zoom view of boom
foot of the dragline
Figure 3.3 Basic Dragline Structure (Anonymous, 2004)
Figure 3.4 Wireframe model of dragline boom
Figure 3.5 Dragline Boom model with cross section assigned in ANSYS workbench design
modeler
Figure 3.6 Selected joint locations for fatigue analysis
Figure 3.7 Dragline Boom cluster (joint) design model
Figure 3.8 Solution procedures in ANSYS for a critical location in a global beam model57
Figure 3.9 Global beam model with solid sub - model of cluster
Figure 3.10 Meshed global beam model in Ansys
Figure 3.11 Meshed solid sub-model at the local joint regions
Figure 3.12 (a) loading and (b) unloading segment of a dragline cycle
Figure 3.13 Boundary and loading condition of boom model under static conditions (a) boom
with self – weight, (b) boom with empty bucket weight, (c) boom with payload in bucket 61
Figure 3.14 Boundary and loading condition of solid submodel under static conditions62
Figure 3.15 Typical dragline swing angles (Rai, P, 2000)63
Figure 3.16 Dragline swing angle variation with time (Erdem, B., & DUzgUn, H. (2005)64
Figure 3.17 Boundary condition for swing motion of boom
Figure 3.18 Figure showing set up for evaluating axial forces in a dragline suspension
ropes

Figure 3.19 Design of CHS Multiplaner KK Joint
Figure 4.1 Global beam model of dragline boom
Figure 4.2 Global beam model results for a) deformation, b) axial stress c) maximum bending
stress and d) maximum combined stress
Figure 4.3 Equivalent stresses (Von-Mises) stress distribution for four selected joints
Figure 4.4 Fatigue life results for selected locations
Figure 4.5 Fatigue based FOS for selected joint locations
Figure 4.6 Global beam model results for (a) deformation, (b) axial stress (c) maximum
bending stress and (d) maximum combined stress
Figure 4.7 Equivalent stresses (Von-Mises) stress distribution for four selected joints
Figure 4.8 Fatigue life results for selected locations
Figure 4.9 Factor of safety for selected joint locations
Figure 4.10 Global beam model results for a) deformation, b) axial stress c) maximum bending
stress and d) maximum combined stress
Figure 4.11 Equivalent stresses (Von-Mises) stress distribution for four selected joints90
Figure 4.12 Fatigue life results for selected locations
Figure 4.13 Factor of safety for selected joint locations
Figure 4.14 Fatigue sensitivity of joint 1under static loading condition (maximum loading) 96
Figure 4.15 Global beam model results for a) deformation, b) axial stress c) maximum bending
stress and d) maximum combined stress
Figure 4.16 Equivalent stress (Von-Mises) stress distribution for four selected joints 100
Figure 4.17 Fatigue life results for selected locations
Figure 4.18 Factor of safety for selected joint locations
Figure 4.19 Global beam model results for a) deformation, b) axial stress c) maximum bending
stress and d) maximum combined stress

Figure 4.20 Equivalent stresses (Von-Mises) stress distribution for four selected joints 105
Figure 4.21 Fatigue life results for selected locations
Figure 4.22 Factor of safety for selected joint locations
Figure 4.23 Main chord diameters of (a) 406 mm (b) 390 mm (c) 350 mm and (d) 300
mm
Figure 4.24 Main chord thicknesses of (a) 20 mm (b) 16 mm (c) 12 mm and (d) 8 mm 114
Figure 4.25 Equivalent stress results for brace diameters of (a) 207 mm (b) 190 mm (c) 100
mm and (d) 80 mm115
Figure 4.26 Equivalent stress results for brace thickness of (a) 8 mm (b) 6 mm (c) 4 mm and
(d) 2 mm
Figure 4.27 (a) Boom failures in an Indian coal mine and, (b) location of crack within the boom
cluster
Figure A.1 S-N curves for RHS and CHS joints in lattice structures - hot-spot stress
method
Figure A.2 Stresses on boom head and boom foot weldment under self-weight condition136
Figure A.3 Stresses on boom head and boom foot weldment under maximum loading condition

LIST OF TABLES

Table 2.1 List of dragline used in Indian coal mines. (Patel R.K. et. al., 2017)	17
Table 3.1 Specifications of boom and bucket for construction of model	48
Table 3.2 Material properties of overburden	49
Table 3.3 Chemical composition of tubular steel	
Table 3.4 Mechanical properties of tubular steel	59
Table 3.5 Variation of parameters for the design of Joint 2	73
Table 4.1 Self-weight loading case of global beam model	76
Table 4.2 Equivalent stress results of critical joints	79
Table 4.3 Fatigue life results for critical joint locations	80
Table 4.4 Factor of safety results for critical joints	80
Table 4.5 Self-weight loading case of global beam model	83
Table 4.6 Equivalent stress results of critical joints	83
Table 4.7 Fatigue life results for critical joints	85
Table 4.8 Factor of safety results for critical joints	87
Table 4.9 Static analysis results for global beam model	89
Table 4.10 Equivalent stress results of critical joints	91
Table 4.11 Fatigue life results for critical joints	92
Table 4.12 factor of safety results for critical joints	92
Table 4.13 Comparative Static analysis results for various study cases of global	beam
model	94
Table 4.14 Comparative Static analysis results for various study cases of solid sub- mod	el95
Table 4.15Results for global beam model	99
Table 4.16 Equivalent stress results of critical joints	99
Table 4.17 Fatigue life results for critical joints	101

Table 4.18 Factor of safety results for critical joints	. 103
Table 4.19 Results for global beam model	. 104
Table 4.20 Equivalent stress results of critical joints	. 105
Table 4.21 Fatigue life results for critical joints	. 106
Table 4.22 Factor of safety results for critical joints	. 108
Table 4.23 Comparative dynamic analysis results for global beam model	. 109
Table 4.24 Comparative dynamic analysis results for solid sub-model	. 109
Table 4.25 Tensile axial forces in various wire ropes of dragline	
Table 4.26 Effect of main chord diameter on stress value	113
Table 4.27 Effect of change in main chord thickness	114
Table 4.28 Effect of change in the brace diameter	116
Table 4.29 Effect of change in brace thickness	. 118
Table 4.30 Results showing equivalent Stresses for parametric changes in the model	119
Table A.1 Minimum breaking strength of the mining wire ropes (mining sur	rface
broacher)	. 137
Table A.2 Failure mode and their respective type of repair in a dragline (Minerals 2016).	138

LIST OF ABBREVIATIONS

AISC	American Institute of Steel Construction
CEN	European Committee for Standardization
CIDECT	International Committee for the Development and Study of Tubular Structures
CHS	Circular Hollow Section
RHS	Rectangular Hollow Section
SHS	Square Hollow Section
CISC	Canadian Institute of Steel Construction
EC	Eurocode
EN	European Norm

NCL Northern Coalfields Limited

SYMBOLS

Uppercases

A_0	cross-sectional area of the chord member
Av	shear resistant area of an element
Ε	Young modulus or modulus of elasticity Ov overlap ratio, expressed as a percentage
0v, lim	overlap limit for brace shear check
N_0	applied axial force in chord
Ni	applied axial force in brace i (i = 1 or 2)
Npl,0	axial yield capacity of the chord
Nu	axial ultimate capacity
M_0	applied moment in chord
$M_{pl,0}$	plastic moment capacity of the chord
Mu	ultimate moment capacity
$M_{ip,1,Rd}$	design value of the in-plane moment in brace i $(i = 1 \text{ or } 2)$
V_{Ed}	design value of the shear force in a chord member at the gap location
$V_{pl,Rd}$	design value of the shear force in a chord member
$V_s *$	design resistance of the joints, expressed in terms of the axial force in member i (i
= 1,2)	
L_0	length of the chord in test set up
L_1	length of the brace in test set up
Lower	cases
b_0	external width of the chord
b_i	external width of brace i ($i = 1$ or 2)

- d_i external diameter of brace i (i = 1 or 2)
- h_0 external height of the chord *hi* external depth of brace i (i = 1 or 2)

- *hz* distance between the centres of gravity of the effective parts of the RHS brace
- t_0 flange thickness of an I or H section chord
- t_i wall thickness of CHS or RHS brace i (i = 1 ou 2)
- t_w web thickness of an I or H chord
- t_f flange thickness of an I or H chord
- θ_i angle between the brace i and the chord (i = 1 or 2)
- g gap between the braces r inside corner radius between the web and flanges of an I or
- H section

σ_{yo}	yield stress of the chord	
σ_{yi}	yield stress of the brace i (i = 1 or 2)	
σ_u	ultimate stress ε strain v Poisson's ratio	
b ei	effective width of an RHS brace	
d_{ei}	effective width of a CHS brace bw effective width for the web of an I or H section	
d_w	depth of the web of an I or H section	
α	factor used in the equation of As be, ov effective width of an overlapping RHS brace	
at the connection to the overlapped brace		
de, ov	effective width of an overlapping CHS brace at the connection to the overlapped	
brace		
l _b , eff	effective perimeter for local yielding of the overlapping brace	
γ <i>M</i> 0	partial safety factor for the resistance of cross sections of any class	
γ <i>M</i> 1	partial safety factor for the resistance of the elements to buckling	
μ	Rotation stiffness of a joint. $\mu = 1$ for initial rotation stiffness.	
A_s	shear area of a chord member	

ABSTRACT

Draglines, the giant single-bucket excavators in existence today, are used mostly for the removal of overburden in large scale surface mines. Normally the, draglines are more than 4000 tons in weight, with boom length ranging from 70 m to 110 m and bucket capacity ranging from 10 m³ to 120 m³. The dragline boom is a key component in dragline operation. Different designs of booms are in practice to enhance the effective utilization of the dragline with minimum downtime due to major breakdown in boom. During dragline operational cycle, as bucket is directly attached to the boom point sheave, the boom is subjected to the loading and unloading loads cyclically. This cyclic loading and unloading produces high to very high stresses in the boom structure and may lead to boom failure.

The booms are constructed using hollow structural steel pipes. It consists of 3- 4 main chords and 5-6 bracing members connected along the length of the boom. The bracing members form complex overlapping or non-overlapping joints known as boom clusters. These clusters are the complex joints, which may fail over a certain period of time.

Because the boom design incorporates number of joints, hence any design or analysis of boom structure remains incomplete without critical investigation of joints. Therefore, critical joints observed on the basis of field investigation have been chosen for the analysis of stresses within the joints. Four critical locations of the joints have been selected for in depth analysis of stresses around the interaction point of brace with the main chord. These joints have been chosen on the basis of field understanding that the repairing and maintenance activities are carried out frequently at these locations.

Two type of loading conditions, namely static and dynamic loading were observed. The static loading conditions occur during the operation, when the boom and bucket of the dragline become static for a very short period of time.

The dynamic loading conditions occur during the swing-to segment of dragline bucket cycle

with filled material for unloading the material from face to disposal site. It also occurs during the swing-back segment of dragline bucket cycle with empty bucket after dumping the material at the disposal site and returning back to the blasted face.

Accordingly, a solid 3D Model of the boom was constructed in SOLIDWORKS software as wireframe design. For performing simulations, the constructed model was imported to ANSYS software in compatible file format. Simulations were performed on ANSYS 18 using finite element analysis.

The overall structural behavior of the boom along with suspension rope, A-frame, and mast has been predicted by constructing and analyzing the structure as global beam model. The global beam model has provided the stresses in the form of direct or axial stress, bending stress and maximum combined stress on the boom structure. Deformation of the boom structure and tensile axial forces in the suspension wire ropes has also been predicted to ensure the safe functioning of the structure under the applied loading conditions. Further, the selected joints have been evaluated by analyzing the models as solid submodel. The solid sub-model has provided the Von-Mises stress; fatigue life and factor of safety in the boom cluster (joints). A separate parametric study has further been performed for the critical joint to predict stress level within this critical joint.

The design of dragline boom structure as a beam model and its analysis by using the state –of –art techniques has provided suitable insights in investigating the behavior of boom under static and dynamic loading conditions. The study has been able to propose a safe design of boom structure as the values obtained for the direct stresses, maximum bending stresses and maximum combined stresses are within the safe limits. The proposed design of the boom reveals that the main chord remains in axial compression or axial tension during the loading while bracing members are subjected to bending loads. The solid sub modeling of boom cluster (Joints) reveal that the stresses within the joints are concentrated at the fillet region. However,