Chapter 1

Introduction

1.1 Introduction

Unidentified and undetected faults in heavy earthmoving machinery (HEMM) can lead to
unwanted failures. The occurrence of failures causes permanent damage to the components
of a system, and the system may not perform its required functions. Failures are also
associated with reduced availability, reliability, and increased downtime and maintenance
cost. Since coal mining is cyclic in nature, it is always intended to make the equipment
operational and available in a production cycle to achieve the targeted production. Demand
of coal is increasing continuously, and India wants to double its coal production to
1100 MT by 2025 [1], and opencast coal mining produces about 93% of coal in India [2].
In mechanized coal mines, several HEMMs such as dumper, shovel, drill machine,
bulldozer, and dragline with various capacities are deployed to achieve the production
requirements of the mine. In India, most of the large surface coal mines have been
switching over from shovel mining to dragline mining for removal of overburden due to
high rate of overburden removal and subsequently, high production rate with low cost of

production [3].

Dragline is a capital-intensive HEMM used in coal mines for removal of overburden, and
its failure has major consequence on productivity of the mines. The productivity of large

draglines in Australian coal mining industry is around $8000 per hour [4]. Apart from a



Chapter 1: Introduction

high degree of flexibility, utilization of a dragline results in an entirely low cost per cubic
meter of overburden removal and subsequent low cost per ton of the desired mineral [5],
[6]. Dragline can be used to remove a large volume of overburden lying above the coal
seam and to dump them into the de-coaled area in the shortest possible time at low costs
[7], [8]. The removal of overburden using dragline saves up to 30-50% of the cost as
compared to the shovel-truck method [9]. Therefore, deployment of draglines in opencast
coal mines is highly desirable to achieve the targeted production in the mines. The
performance of dragline degrades over time due to ageing, wear, unpredicted fault and

failure, which also decreases the availability and reliability [10].

The occurrence of the unpredicted faults of HEMM increases the likelihood of failure and
downtime losses, which eventually reduces the performance, decreases production and
increases the maintenance cost [11], [12]. Therefore, identification of important failure
modes of various components of dragline is highly desirable. Although prediction of faults
in a complex system is a challenging task, fault analysis provides in-depth understanding of
the occurrence of faults and helps in identifying their root causes. Dragline is a capital-
intensive HEMM, and hence its failure is highly undesirable. The occurrence of failure of
the dragline system causes permanent damage to the system/component and the system is
unable to perform its required function. On the other hand, a fault occurs when at least one
characteristic property of the system or equipment is unacceptable. The presence of a fault
is normally detected through the sensor feedbacks, or sometimes through visual inspection
or through opinion of experts. If the value of a parameter observed through sensor feedback
exceeds the predefined threshold limit value, it is realized that a fault has occurred. In

addition, the inspection of the dragline system to identify the root causes of fault
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occurrence is not always possible since the dragline is very large, complex, and constituted

by many subsystems and components.

Therefore, advanced artificial intelligence tools are used for fault analysis of dragline using
real-time monitoring data, historical data and experts' opinion that can predict the fault and
give some indication to identify the root causes of the occurrence of the fault. The real-time
fault diagnostic model, in general, is developed to detect, isolate and identify the fault types
and to make a decision support system to undertake timely maintenance. In the decision
support system, the types of faults can decide the maintenance action, whether to continue
operating the dragline or discontinue the dragline operation to undertake suitable condition-

based maintenance (CBM) policy.

1.2 Statement of the Problem

The occurrence of unpredicted fault of HEMMs increases the likelihood of occurrence of
failure and downtime losses, which eventually reduces the performance, production loss
and increases the maintenance cost of the system [11], [12]. Since mining is cycle in nature,
the failure of one HEMM affects the whole operation of the industry, as these are mostly
dependent on one another for achieving the desired production. Depending on the
industries, the maintenance costs accounted for 15-60% of the total production cost for
plant equipment due to occurrence of failure [13]. It is reported that the US industries spend
more than $200 billion annually on maintaining plant equipment and facilities [14]. The

case study on dragline reported that occurrence of unwanted failure significantly impacts
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the machinery performance, productivity and maintenance cost which accounts for about
40-50% of the total operating cost [6]. Hence, it is necessary to put all efforts to make the
HEMM operational so that production can be achieved continuously with improved

reliability and availability and to prevent the catastrophic failure of the equipment.

For analysis of failure, the draglines working in a coal mine located in northern India were
selected. It was observed from the annual maintenance worksheet (April 2016 to March
2017) of a group of three draglines of the coal mine that about 3234 hours were lost due to
failure of the drag systems of the draglines. These downtime hours accounted for 49% of
the total breakdown hours of the draglines (Figure 1.1). The frequency of failure of the drag

system of three draglines was 26 during the above-mentioned period.

Downtime percentage of various sub-systems of dragline

Other sub-systems, 75 hours
Motor Generator set, 78 hours
Electrical system, 92 hours
Walking system, 130 hours
Lubrication system, 137 hours
Bucket and Accessories, 189 hours
Swing system, 261 hours

Rope, 902 hours

Hoist system, 1468 hours

Drag system, 3234 hours 49%

0% 10% 20% 30% 40% 50%  60%

Figure 1.1 Downtimes of various subsystems of three draglines deployed in the coal mine.
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1.3 Significance and Novelty of the Research

Since dragline is a costly equipment, research works on dragline are focused on reducing
the occurrence of unwanted failure, downtime, overall maintenance cost and improve the
productivity of draglines. Most of the research works are based on the time to failure and
time to repair data of failure components of dragline to compute the reliability and make a
preventive maintenance policy [5], [9], [15], [16]. The preventive replacement interval of
dragline component is optimized using a lifetime parameter and failure mechanism using a
reliability evaluation method and age-replacement model [5]. Moreover, the reliability
assessment and age-replacement model is developed for two draglines working in the
mines by considering cost factors to investigate optimum preventive replacement policy of
wear-out components of the draglines [17]. The replacement interval of a cluster of the
critical components of dragline is optimized using failure mode effects analysis and
reliability-centered maintenance policy [9]. The criticality and sensitivity of the subsystems
of draglines are identified using failure mode effects analysis by calculating the risk priority
number to prepare the maintenance planning to reduce the maintenance cost and production
loss [18]. The downtime of dragline is optimized to identify the component with low
reliability and maintainability to identify the cause of the failure by critically analyzing the
inherent availability, reliability and maintainability using time to failure and time to repair
data [15]. The downtime of dragline is optimized using cost-effective time counter
algorithm to optimize the inspection interval of the components based on uptime,
downtime, lifetime, repair time, and financial values of the dragline components and
minimizing the maintenance cost up to 5-6% [6]. Another research work developed an

algorithm to evaluate the random uptime/downtime characteristics of the two active
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draglines, and the optimized values of inspection interval and found the decrease in the

maintenance costs of dragline between 5.9-6.2% [19].

The research works conducted on various components/subsystems of dragline to reduce the

downtime and to improve the performance of draglines are presented in Table 1.1.

Table 1.1 Literature on the failure mechanism of various components of dragline

Assessment
component

of dragline

Methodology

Authors

Failure mechanism of a
swing pinion shaft

Chemical analysis of materials from
the tooth another shaft by using
atomic absorption spectroscopy.

Ranganath et al. [20]

Failure  mechanism  of | Finite element analysis Ridley and Algra [21],
bucket Azam and Rai [22]
Fracture mechanics of | Stress analysis Dayawansa et al. [4]
booms

Fatigue cracking of | Visual examination and | Metcalfe and Costanzi
dragline boom support | electromagnetic testing [23]

strands

Stress concentration | Weld profile and weld root gaps are | Pang et al. [24]

factors of main chord | measured wusing silicon imprint

tubular joint of dragline technique and feeler gauges.

3D dynamic modelling to | Lagrange equations and finite | Li and Liu [25]

investigate the
performance and front-end

element analysis.

structure  strength  of
dragline.
Failure analysis of | Using ultrasonic waves by studying | Jones et al. [26]

dragline cluster

both the diffraction pattern and the
reflected waves

Dragline cluster

Comparative study on the
application of several existing design
codes for prediction of the fatigue
life of a typical
dragline cluster.

four-member

Joshi and Price [27]
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It can be observed from Table 1.1 that most of the research works conducted on draglines
are mainly focused on failure analysis of the swing pinion shaft [20], bucket [21], [22],
boom [4], boom support [23], main chord tabular joint [24], front-end structure [25], and
cluster [27], [28] of the dragline. Therefore, in this research work, one of the most critical
subsystems of the dragline, i.e., drag system—responsible for 49% of the total downtime of

dragline—is considered for the fault analysis.

In the literature, fault diagnosis of the dragline expert system is developed to diagnose
faults in 18 components of a dragline by considering the descriptions of the problem,
dialogue to acquire dragline conditions and its own knowledge to propose a solution [29].
The research works on predictive fault analysis is also limited. Therefore, in this research
work, the cause, symptom and fault data of the dragline system is considered to construct
the model to analyze the fault. Hence data based fault analysis approach using artificial
intelligence tools can be an effective alternative to predict the occurrence of faults in the
dragline system. Moreover, in fault analysis literature, it is mentioned that degree of fault
detection is fixed considering the combined response of judgement of experts and
sequential trial and error. However, the process of the degree of fault detection limit is

demonstrated in this thesis.

1.4 Objectives of the Research

The objectives of this research are to overcome the challenges to prevent the dragline
failure through the development of reliable, cost-effective, and real-time fault analysis

methodology. It is expected that the proposed methodology will help in better
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understanding the occurrence of faults and to prevent subsequent failures of the dragline

system.

The elements of the main objectives are outlined below:
i.  Identification of the critical components of the dragline using failure mode, effects
and criticality analysis (FMECA).
ii.  Development of the fault analysis model of the dragline system using Bayesian
Network (BN) to identify the fault types and their root causes.
e Development of reasoning to identify various fault types (e.g., degraded
fault, catastrophic fault or intermittent fault) using the CPT.
e Evaluation of presence of conflicts among the pieces of evidences observed
and validation of the BN model using conflict analysis.
e Identification of the most critical parameters which are responsible for
occurrence of fault and validation of the model using sensitivity analysis.
iii.  Prediction of the occurrence of fault and identification of responsible causes of the
dragline system using cause to symptom and symptom to fault model using artificial

neural network (ANN).

1.5 Research Methodology

Dragline is a complex system consisting of many mechanical and electrical components.
For fault analysis of dragline, one of the critical subsystems of dragline leading to the
majority of the downtimes is considered for fault analysis. In this research work, BN and
ANN are used for fault analysis. The BN is the most powerful fault analysis method to
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explain the structure of the problems which uses probability statistics in complex fields in
reasons the uncertainty [30], [31]. The ANN is a non-statistical quantitative-based approach
used in fault analysis of both process monitoring and pattern recognition of the linear and

nonlinear system for industrial application [32]—[36].

The drag system is a large complex and more complicated system because one fault can be
linked to multiple symptoms or multiple causes, and one cause can be responsible for the
occurrence of multiple symptoms or multiple faults. Most of the artificial intelligence tools
such as fault tree, fuzzy logic and Bayesian network are used in the inference based fault
analysis to make the causal relationships between dependent and independent variables
[37]. Although the fuzzy logic and fault tree analysis are mostly used to handle the two-
layer such as cause-effect relationship or symptom-fault relationship, it is difficult to update
the model when the real-time evidence is observed [38], [39]. However, for drawing an
inference, BN is a powerful artificial intelligence tool in the area of probabilistic knowledge
to explain the multi-layer structure problems to establish the causal relationships between
multiple causes, multiple symptoms, and multiple faults [13], [40], and it can be updated
when new evidence is available. The BNs are still attractive for modeling and investigating
machine learning applications using small data sets [41], [42]. Moreover, a three-layer
cause, symptom and fault relationship was developed in the BN model suitable for deriving
the inference and handling complex cases under conditions of uncertainty, unpredictability

or imprecision [13], [43].

The artificial intelligence tools used for the fault prediction are support vector machine

[44], [45], hidden Markov model [46], [47], principal component analysis [48], [49],
9
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independent component analysis [S0]-[52], K-means cluster algorithm [53], [54], and ANN
[11], [55]. Among these, the ANN is a very powerful artificial intelligence tool for
identifying the faulty pattern and classification of fault by pattern recognition [56]. The
ANN models are also used to make a relationship between the dependent and independent
linear or nonlinear variable with high prediction accuracy, computational efficiency and its
flexibility in use [57], [58]. Therefore, ANN based fault analysis is used to improve the
predictive accuracy of the fault and to identify the root cause of the system so that
catastrophic failures of the dragline system can be prevented. Subsequently, the
combination of both models can be used in real-time application to predict the occurrence
of a fault which is expected to minimize the downtime of dragline and can help in

preparing the suitable maintenance policy of dragline.

1.6 QOutline of the Thesis

The present thesis comprises eight chapters, and the structure of the thesis is shown in

Figure 1.2.

Chapter 1: Introduction
The first chapter presents the general introduction of HEMM, basic terminology of fault
analysis, a background of the statement of the problem, significance of the research,

objectives of the research work, and finally outlined the structure of the thesis.

10



Chapter 1: Introduction

Chapter 1
Introduction

v
Chapter 2
Literature review

v
Chapter 3

Methodology
v
Chapter 4
Identification of critical components of dragline
v
Chapter 5
Drag system of dragline
v
Chapter 6
BN based fault analysis
v
Chapter 7
ANN based fault analysis
v
Chapter 8
Discussion and conclusion

Thesis flow

Figure 1.2 Structure of the thesis

Chapter 2: Literature review

The second chapter represents the comprehensive literature survey of dragline, FMECA,
and various fault analysis approaches available in the literature. A brief description of
various fault analysis methodologies is also explained along with their industrial

applications.
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Chapter 3: Methodology

The third chapter presents the methodology to fulfill the various objectives of the research
works. The tools used for fault analysis of the drag system are FMECA, BN and ANN. The
validation of BN using conflict analysis and sensitivity analysis is also described in this

chapter.

Chapter 4: Identification of critical components of dragline

The fourth chapter contains a detailed description of dragline located in the northern India.
This chapter also includes the detailed process of fault and failure data of various
components of dragline. The most critical components of dragline are identified using

FMECA by calculating the risk priority number (RPN) is also described.

Chapter 5: Drag system of dragline

The fifth chapter contains the detailed information about the drag system of dragline. This
chapter also describes the parameters of cause, symptom and fault of the drag system and
their threshold values. Finally, the process of data collection of cause, symptom and fault of

the drag system is described.

Chapter 6: Bayesian Network based fault analysis

The sixth chapter of the thesis contains description of fault analysis of drag system using
BN model. The BN and its topology to establish the causal relationship between cause,
symptom, and fault using CPT are also explained. The methodology of BN based fault

analysis consists of fault inference, fault type identification, conflict analysis, and
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sensitivity analysis. Finally, the processes of model validation, result and discussion of

some cases to identify the fault and sensitivity analysis of the BN model are described.

Chapter 7: Artificial Neural Network based fault analysis

The seventh chapter of the thesis contains description of the fault analysis of the drag
system using ANN model. This chapter describes ANN and its architecture to make the
relationships between cause to symptom and symptom to fault. Finally, the processes of
model validation, result and discussion of some cases to identify the fault are also

described.

Chapter 8: Discussion and conclusion
The eighth chapter of the thesis presents the discussion and conclusion and findings drawn
from the present research work. The industrial applications, limitations and suggestions for

future research scope are also highlighted.
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