Table of contents

Title		Page No.
Thesis ce	ertificate	ii
Acknow	ledgements	V
Table of	contents	viii
List of fi	gures	xiv
List of ta	bles	xviii
List of al	obreviation and symbols	XX
Preface		xxii
1	Introduction	
1.1	Energy scenario	1
1.2	Biomass	4
1.2.1	Sources and types of biomass	4-5
1.2.2	Characteristics of biomass	5-9
1.2.3	Biomass: an alternative source of energy	9-10
1.3	Bio-energy conversion pathways	11
1.3.1	Biochemical conversion	11
1.3.1.1	Anaerobic digestion	12
1.3.1.2	Fermentation	12-13
1.3.2	Thermochemical conversion	13
1.3.2.1	Combustion	13
1.3.2.2	Gasification	14
1.3.2.3	Liquefaction	14-15
1.4	Pyrolysis	15-16
1.4.1	General reaction mechanism for biomass pyrolysis	17-18
1.4.2	Types of pyrolysis	18
1.4.2.1	Slow pyrolysis	18
1.4.2.2	Fast pyrolysis	19
1.4.2.3	Intermediate pyrolysis	19
1.4.2.4	Flash pyrolysis	20

1.4.3	Pyrolysis products	20-21
1.4.4	Biomass selection criteria	22
1.5	Utility of biochar	22
1.5.1	Soil amendment	22-23
1.5.2	Heavy metal removal	23
1.6	Origin of the problem	23
1.7	Objective of the present work	24
2	Literature review	
2.1	Literature review on biomass selection	25-29
2.2	Literature review on biomass degradation kinetics	30-35
2.3	Literature review on effect of process parameters on pyrolysis	35-42
2.4	Literature on optimization of process parameters for pyrolysis	43-46
2.5	Literature review on adsorption of Cr (VI) using biochar	47-52
3	Kinetic and thermodynamic studies of sagwan sawdust	
	pyrolysis for its bioenergy potential	
3.1	Introduction	53-55
3.2	Experimental	55
3.2.1	Raw material	55
3.2.2	Chemicals and reagents	55-56
3.2.3	Analytical techniques for SS characterization	56-57
3.2.4	TG experimental process	57
3.2.5	Kinetic and thermodynamic study	57-59
3.2.6	Iso-conversional models	59
3.2.6.1	FWO model	59
3.2.6.2	KAS model	59-60
3.2.6.3	Friedman method	60
3.2.7	Prediction of reaction mechanism	60-62
3.2.8	Calculation of pre-exponential factor and thermodynamic parameter	62
3.3	Results and Discussions	63
3.3.1	Physico-chemical properties of SS	63-64
3.3.2	TG and DTG analysis	65-70
3.3.3	Kinetic Study	71-76

3.3.4	Reaction mechanism	76-78
3.3.5	Thermodynamic Study	79-81
3.4	Conclusion	82
4	Sagwan sawdust pyrolysis and Product characterizations	
4.1	Introduction	83-85
4.2	Experimental	85
4.2.1	Raw material	85-86
4.2.2	Chemicals and reagent	86
4.2.3	Pyrolysis experimental procedure	86-88
4.2.4	Analytical methods and instruments used for Product	89
	characterizations	
4.2.4.1	Biochar characterization techniques	89-90
4.2.4.2	Bio-oil characterization techniques	90-91
4.2.4.3	Pyrolytic gas characterization techniques	91
4.3	Results and Discussions	91
4.3.1	Physicochemical properties of SS	91
4.3.2	Effect of process parameters on the yield of pyrolysis products	91
4.3.2.1	Effect of temperature	91-92
4.3.2.2	Effect of sweeping gas flow rate	93
4.3.2.3	Effect of packed bed height	94
4.3.2.4	Effect of particle size	95
4.3.3	Characterization of biochar	95
4.3.3.1	Physico-chemical characterization	95-99
4.3.3.2	Morphological and elemental study	99-101
4.3.3.3	FTIR analysis	101-102
4.3.3.4	BET surface area	103-104
4.3.3.5	XRD analysis	104-106
4.3.4	Bio-oil characterization	106
4.3.4.1	Physicochemical properties of bio-oil	106-107
4.3.4.2	FTIR analysis of bio-oil	108-111
4.3.4.3	GC-MS analysis of bio-oil	112-114
4.3.5	Pyrolytic gas composition	115-117
4.4	Conclusion	117-118

5	Product distributions and optimization study using	
	response surface methodology	
5.1	Introduction	119-120
5.2	Experimental	120
5.2.1	Raw material	120
5.2.2	Experimental setup and procedure	120-121
5.2.3	Analytical instruments and methods used for characterization	121
5.2.4	RSM study	121-122
5.3	Results and Discussions	123
5.3.1	Physicochemical properties of SS	123
5.3.2	Box-Behnken design and statistical analysis	123-125
5.3.3	ANOVA analysis	125-129
5.3.4	Optimization and 3D-plots	129-130
5.3.4.1	Optimization of nitrogen flow rate and temperature	130-131
5.3.4.2	Optimization of temperature and packed bed height	132-133
5.3.4.3	Optimization of nitrogen flow rate and packed bed height	133-134
5.3.4.4	Validation of optimum result	134-135
5.3.5	Characterization of products	135
5.3.5.1	Biochar characterization	135-138
5.3.5.2	Physicochemical properties of bio-oil	138-139
5.3.5.3	FTIR analysis of bio-oil	139-140
5.3.5.4	GC-MS analysis of bio-oil	141-143
5.4	Conclusion	144
6	Cr(VI) uptake onto SS biochar and statistical optimization	
	via RSM	
6.1	Introduction	145-147
6.2	Experimental	148
6.2.1	Adsorbent	148
6.2.2	Reagent preparation	148
6.2.3	Analytical instruments/equipments and methods used	148-149
6.2.4	Adsorption experimental procedure	149-150
6.2.5	Optimization using RSM	150-151
6.3	Results and Discussions	151

6.3.1	Physicochemical characteristics of adsorbent	151
6.3.1.1	BET and point of zero charge (pH_{zpc}) analysis	151-152
6.3.1.2	XRD analysis	152
6.3.1.3	FTIR analysis	153-155
6.3.1.4	SEM-EDS analysis	155-156
6.3.1.5	XPS analysis	156-157
6.3.2	Effect of process parameters	158
6.3.2.1	Effect of contact time and adsorbate concentration	158-159
6.3.2.2	Effect of adsorbent dose/Cr(VI) concentration ratio	159-160
6.3.2.3	Effect of solution pH	150-161
6.3.2.4	Effect of temperature	161-162
6.3.3	BBD and statistical analysis	162-166
6.3.4	Optimization and three-dimensional plots	166
6.3.4.1	Optimization of temperature and initial pH	166-167
6.3.4.2	Optimization of initial pH and adsorbent dose/Cr(VI)	167-168
	concentration	
6.3.4.3	Optimization of adsorbent dose/Cr(VI) concentration and	168-169
	temperature	
6.3.4.4	Validation of optimized result	169
6.3.5	Adsorption kinetics study	169-171
6.3.6	Thermodynamic study	171-172
6.3.7	Adsorption isotherms	172-173
6.3.7.1	Langmuir isotherm	173
6.3.7.2	Freundlich isotherm	174
6.3.7.3	Temkin isotherm	174
6.3.7.4	Dubinin-Radushkevich (D-R) isotherm	175-176
6.3.8	Mass transfer studies	176-177
6.3.8.1	Weber-Morris model	177-178
6.3.8.2	Boyd model	178-179
6.3.9	Adsorption mechanism	179-181
6.3.10	Regeneration study	181-182
6.4	Conclusion	182-183
7	Summary and future recommendations	

7 Summary and future recommendations

7.1	Summary	184-186
7.2	Future recommendations	187
	References	188-213
	List of publications	214

Figure	Caption	Page No.
1.1	Fuel consumption from 1980 - 2018	2
1.2	Energy overview of annual change in global energy demand	2
1.3	Sources of biomass	4
1.4	Different routes for thermochemical conversion	16
3.1	TG curves for SS in inert atmosphere at different heating rates	68
3.2	DTG curve for SS in inert atmosphere at different heating rates	69
3.3	Conversion as a function of temperature at different heating rates	70
3.4	FWO integral model for the calculation of the activation energy	71
3.5	KAS integral model for the calculation of the activation energy	72
3.6	Friedman model for the calculation of the activation energy	73
3.7	Comparison of activation energy as a function of progressive	74
	conversion for FWO, KAS and Friedman models	
3.8	Theoretical and experimental plots for prediction of solid state	78
	reaction mechanism using Criado method (Z-master plot)	
4.1	Schematic diagram of experimental set-up	88
4.2	Effect of temperature on yield of pyrolysis products	92
4.3	Effect of sweeping gas flow rate on yield of pyrolysis products	93
4.4	Effect of packed bed height on yield of pyrolysis products	94
4.5	Effect of particle size on yield of pyrolysis products	95
4.6	Van Krevelen diagram for SS and its biochar	98
4.7	SEM-EDX for (a) SS (b) BC 400 (c) BC 500 (d) BC 600 (e) BC 700	99-100
4.8	FTIR spectra of (a) SS (b) BC 400 (c) BC 500 (d) BC 600 (e) BC	102
	700	

List of Figures

4.9	N_2 adsorption/desorption isotherm of SS biochar at 600 °C	104
4.10	XRD analysis of (a) SS (b) BC 400 (c) BC 500 (d) BC 600 (e) BC 700	105
4.11	FTIR spectra of bio-oil at (a) 400 °C (b) 500 °C (c) 600 °C (d) 700 °C	108-109
4.12	GC-MS analysis of bio-oil at 600 °C	112
4.13	Non-condensable gas fraction (a) composition (N_2 involved) (b) Higher heating value (HHV) at different pyrolysis temperature	116
5.1	Actual vs predicted yield of the model for (a) bio-oil and (b) biochar	125
5.2	3-D surface response showing effects of temperature and nitrogen flow rate on (a) bio-oil and (b) biochar yield	131
5.3	3-D surface response showing effects of temperature and packed bed height on (a) bio-oil and (b) biochar yield	132
5.4	3-D surface response showing effects of temperature and nitrogen flow rate on (a) bio-oil and (b) biochar yield	134
5.5	SEM-EDS of (a) SS and (b) biochar at optimized condition	138
5.6	FTIR spectra of bio-oil at optimized condition	140
5.7	GC-MS analysis of bio-oil at optimized condition	141
6.1	pH _{zpc} of the biochar	151
6.2	XRD analysis of the biochar before and after Cr (VI) adsorption	152
6.3	FTIR spectra of biochar (a) before and (b) after adsorption of Cr (VI)	154
6.4	SEM-EDS analysis of biochar after adsorption of Cr (V	155
6.5	Wide scan XPS analysis of the biochar after adsorption	157
6.6	Narrow scan XPS analysis for Cr after adsorption	157
6.7	Effect of initial concentration and contact time	158
6.8	Effect of adsorbent dose/Cr(VI) concentration ratio	159
6.9	Effect of solution pH	160

6.10	Effect of temperature	161
6.11	Actual vs predicted values of the model for Cr(VI) removal	163
6.12	3-D surface response for % removal of Cr(VI) showing	166
	interaction effects of temperature and pH	
6.13	3-D surface response for % removal of Cr(VI) showing	167
	interaction effects of dose/concentration and pH	
6.14	3-D surface response for % removal of Cr(VI) showing	168
	interaction effects of dose/concentration and temperature	
6.15	1 st order Kinetic model for Cr(VI) adsorption using biochar	170
6.16	2 nd order Kinetic model for Cr(VI) adsorption using biochar	170
6.17	Weber-Morris plot for adsorption of Cr(VI) using biochar	177
6.18	Boyd plot for adsorption of Cr(VI) using biochar	178
6.19	Cr(VI) adsorption mechanism by SS biochar	180
6.20	Cr(VI) removal using fresh and regenerated biochar	181

Table	Captions	Page No.
1.1	Proximate, Ultimate and HHV of different biomass wastes	8
1.2	Lignocellulosic compositions of different biomass residues	9
2.1	Literature on biomass selection criteria	29
2.2	Literature review on biomass degradation kinetics	34
2.3	Literature review on effect of process parameters on pyrolysis	42
2.4	Literature on optimization of process parameters for pyrolysis	46
2.5	Literature review on adsorption of Cr (VI) using biochar	51
3.1	Different kinetic models for solid state kinetics	61-62
3.2	Physical and chemical characteristics of SS	64
3.3	Activation energy at corresponding conversion (α) for FWO, KAS and Friedman methods	75
3.4	Comparison of activation energy of SS with other biomass	76
3.5	Thermodynamic parameters for SS degradation at the heating rate of 10 °C/min	80
4.1	Proximate, ultimate, HHV and EY analysis of biochar	97
4.2	BET surface area of the biochar at different temperatures	103
4.3	Crystallinity index for SS and biochar at different temperatures	106
4.4	Physicochemical properties of the bio-oil at different temperatures	107
4.5	FTIR peak details of the bio-oil at different temperatures	111
4.6	GC-MS analysis of bio-oil at 600 °C	113-114
5.1	Range of independent process variables and experimental levels	122
5.2	Box-Behnken experimental design matrix and results	124
5.3	ANOVA analysis for bio-oil yield	127

Líst	of	Tab	les

5.4	ANOVA analysis for biochar yield	128
5.5	Model summary statistics for bio-oil and biochar yield	129
5.6	Predicted and experimental yield at optimized condition	135
5.7	Physicochemical properties of biochar at optimized condition	136
5.8	Physicochemical properties of bio-oil at optimum conditions compared with the ASTM D7544-12 specifications	139
5.9	GC-MS analysis of bio-oil at optimized condition	142-143
6.1	Range of independent process variables and experimental levels	150
6.2	FTIR analysis of biochar before and after adsorption of Cr(VI)	155
6.3	Box-Behnken experimental design matrix and results	164
6.4	ANOVA analysis for Cr(VI) removal	165
6.5	Cr(VI) removal predicted and experimental values at optimized condition	169
6.6	Kinetics constants for Cr(VI) adsorption onto biochar	171
6.7	Thermodynamic Parameters for Cr(VI) adsorption onto biochar	172
6.8	Langmuir, Freundlich, Temkin and D-R isotherm constants for Cr(VI) adsorption onto biochar	176
6.9	Weber-Morris constants and effective diffusivity for Cr(VI) adsorption	179
6.10	Comparison of adsorption capacity for different adsorbents	182

Full form
Anaerobic digestion
Acid detergent fiber
Analysis of variance
American Society for Testing and Materials
Ash content
Box-Behnken design
Brunauer–Emmett–Teller
Central composite design
Crystallinity index (%)
Carbon Hydrogen Nitrogen Sulphur
Co-efficient of variation
Double distilled water
Differential thermogravimetric
Energy yield (%)
Energy dispersive spectrum
Fixed carbon
Fourier Transform Infrared Spectroscopy
Flynn-Wall-Ozawa
Gas chromatography
Gas chromatography-mass spectrometory
Higher heating value (MJ/kg)
Crystalline intensity of diffraction plane (002)
Amorphous intensity of diffraction plane (002)
Kissinger-Akahira-Sunose
Mean annual volume increment
Moisture content
Million Tonnes of Oil Equivalent
Neutral detergent fiber
Response surface methodology
Standard deviation
Scanning electron microscope

List of abbreviations and symbols

SS	Sagwan sawdust
TCD	Thermal conductivity detector
TGA	Thermogravimetric analysis
TS	Total solid
VM	Volatile matter
Wt . %	Weight percentage
XRD	X-Ray diffraction
XPS	X-ray photoelectron spectra
λ	X-ray wavelength (0.15406 nm)
k	Rate constant
α	Fractional conversion
Е	Activation energy (kJ/mol)
А	Pre-exponential factor (s ⁻¹)
R	Universal gas constant
β	Heating rate (°C/min)
Т	Temperature (K)
C_{0}	Initial Cr(VI) concentration (mg/L)
Ct	Cr(VI) concentration at time t (mg/L)
C _e	Cr(VI) concentration at equilibrium (mg/L)
q _e	Equilibrium adsorption capacity (mg/g)
q_t	Adsorption capacity at time t (mg/g)
Wo	Initial mass of the sample
W_i	Mass of the sample at time t
W_{f}	Final mass of the sample
T_{lpha}	Temperature at different conversion (K)
T_m	DTG Peak temperature (K)
ΔH	Change in enthalpy (kJ/mol)
ΔG	Change in Gibbs free energy (kJ/mol)
ΔS	Change in entropy (J/mol.K)
K _B	Boltzmann constant (1.381*10 ⁻²³ J/K)
h	Plank constant (6.626 *10 ⁻²³ J.s),