I would like to dedicate this dissertation to my family who has supported and encouraged me throughout this endeavour: Thank you for your love and support throughout my entire life and helping me to realize who I am today!

ر

It is certified that the work contained in the thesis titled "Study on pyrolysis of sagwan (*Tectona grandis*) sawdust and use of biochar for aqueous Cr(VI) removal" by "Goutam Kishore Gupta" has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Prof. M. K. Mondal

(Supervisor)

Professor, Department of Chemical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi221005 India

DECLARATION BY THE CANDIDATE

I, *Goutam Kishore Gupta*, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of *Prof. M. K. Mondal* from July-2015 to September-2020, at the *Department of Chemical Engineering & Technology*, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date: 12/10/2020

Place: Varanasi

(Goutam Kishore Gupta)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my knowledge.

Prof. M.K. Mondal

(Supervisor)

Department of Chemical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi221005 India Prof. (Mrs.) V. L. Yadav

(Head of Department)

Department of Chemical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi221005 India

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Study on pyrolysis of sagwan (*Tectona grandis*) sawdust and use of biochar for aqueous Cr(VI) removal

Name of the Student: Goutam Kishore Gupta

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "*Doctor of Philosophy*".

Date: 12/10/2020

Place: Varanasi

(Goutam Kishore Gupta)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENT

This thesis is the outcome of several years of long dissertation work whereby I have been accompanied and supported by many people. It is a pleasant aspect that I have now the opportunity to express my sincere gratitude to all of them.

First and foremost, I would like to express my deep sense of gratitude and indebtedness to my esteemed supervisor, **Prof. M. K. Mondal**, Department of Chemical Engineering and Technology, IIT (BHU) for his unparalleled guidance, expertise, encouragement and wisdom to improve my research, academic writing and presentation skills throughout the whole long dissertation work. He has given me the freedom to execute the set of experiments the way I want. Also, he has always supported and strengthened me in many direct and indirect ways. His thoughtful and valuable reviews, constructive criticism and tireless review of all the manuscripts have immensely helped me to improve the work. I gratify him a lot of gratitude for showing confidence in my work.

I would also like to thank **Prof. Y. C. Sharma**, Department of Chemistry, IIT (BHU) and **Dr. H. Pramanik**, Associate Professor, Department of Chemical Engineering for the enthusiastic forward-thinking and giving valuable suggestions during my research progress evaluation committee meetings. They also taught me about the ups and downs of reviewers, which I'll never forget.

I am highly grateful to **Prof. V. L. Yadav**, Head, Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), for providing necessary facilities and encouragement during the research work.

I express my sincere thanks to all DPGC and RPEC members for their direct or indirect motivation and assistance from different corners during my research work at institute. I would like to thank **Mr. Vinay Kumar** of Chemical Engineering Department, for providing me valuable support and encouragement during the research work.

I also like to take this opportunity to express my heartfelt gratitude and regards to Prof. P. K. Mishra, Dr. Pradeep Kumar, Prof. A. S. K. Sinha, Dr. Bhawna Verma, Dr. Ankur Verma, Dr. Manoj Kumar and Dr. J.P. Chakraborty for their co-operations. Also, I express my sincere thanks to all other faculty members of the Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University) for their continued help and co-operation for completion of this dissertation work.

Further, I would appreciate Mr. Dayaram Singh Yadav, Senior Technician, Chemical and Instrumental analysis Laboratory, Mr. Shailendra Kumar Upadhyay, Mr. Arjun Prasad, Mr. Umesh, technical staffs, Sophisticated Instrumentation Laboratory, for their assistance on the experimental issues with their expertise in characterization. I also thank Mr. Ankit Kumar, Mr. Arvind Kumar, Mr. Varun Kumar from Computer Lab for providing me valuable help and support during the course of work. Mr. Ramadhar Singh, Department of Chemical Engineering provides me valuable support and encouragement during the research work. I am very thankful to all technical and office staff of Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University).

Sometimes it's really beneficial to have somebody who can give you a quick answer, rather than search it for hours. And for this I feel lacunae of words to express my most heartfelt and cordial thanks to my friends, colleagues and seniors Dr. Meghna Kapur, Mr. Sachin Rameshrao Geed, Mr. Pavan Kumar Gupta, Mr. Mahendra Ram, Mr. Munna Kumar, Mr. Zahoor Alam, Mr. Pawan Mulani, Mr. Tarun Dixit, Ms. Renu Bala, Ms.

Zeenat Arif, Mr. Vivek Kumar Patel, Mr. Naresh Sethy, Dr. Balendu Shekhar Giri, Mr. Dilip Kumar, Mr. Abhay Choudhary, Mr. Diwakar Pandey, Dr. Devendra Kumar Singh, Mr. Shailesh Kumar, Mr. Anuj Kumar Prajapati, Ms. Bineeta Singh, Mr. Shobhit Dixit, Mr. Satyansh Singh, Mr. Deoashish Panjiara, Dr. C.V. Raghunath, and who also have always helped me in all condition and stood by my side at the toughest time.

The whole credit of my achievements goes to my father Mr. Dhruba Prasad Gupta, mother Mrs. Nelam Devi, elder sisters Mrs. Gouri Gupta and brother in law Mr. Gyanendra Sahu, Mrs. Priyanka Gupta and brother in law Dr. Bijay Kumar Show, brother Dr. Kunal Kishor Gupta and his better half Mrs. Anshurani and younger sister Mrs. Arpita Gupta and brother in law Mr. Pankaj Saha who have always been a source of inspiration for me and they were always there for me in my difficulties. It was their unshakable faith in me that always helped me to proceed further. This thesis could not have been reality without the blessing of my parents and family members.

I am grateful to the Ministry of Human Resource and Development (MHRD), Government of India, Central Instruments and Facility Centre and Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi for financial and necessary supports to undertake the work.

I wish to extend a warm thank to all those who could not find a separate name but have helped directly and indirectly.

Date: 12/10/2020

Varanasi

(Goutam Kishore Gupta)

Table of contents

Title		Page No.
Thesis certificate		ii
Acknowledgements		V
Table of	contents	viii
List of fi	gures	xiv
List of ta	bles	xviii
List of al	obreviation and symbols	XX
Preface		xxii
1	Introduction	
1.1	Energy scenario	1
1.2	Biomass	4
1.2.1	Sources and types of biomass	4-5
1.2.2	Characteristics of biomass	5-9
1.2.3	Biomass: an alternative source of energy	9-10
1.3	Bio-energy conversion pathways	11
1.3.1	Biochemical conversion	11
1.3.1.1	Anaerobic digestion	12
1.3.1.2	Fermentation	12-13
1.3.2	Thermochemical conversion	13
1.3.2.1	Combustion	13
1.3.2.2	Gasification	14
1.3.2.3	Liquefaction	14-15
1.4	Pyrolysis	15-16
1.4.1	General reaction mechanism for biomass pyrolysis	17-18
1.4.2	Types of pyrolysis	18
1.4.2.1	Slow pyrolysis	18
1.4.2.2	Fast pyrolysis	19
1.4.2.3	Intermediate pyrolysis	19
1.4.2.4	Flash pyrolysis	20

1.4.3	Pyrolysis products	20-21
1.4.4	Biomass selection criteria	22
1.5	Utility of biochar	22
1.5.1	Soil amendment	22-23
1.5.2	Heavy metal removal	23
1.6	Origin of the problem	23
1.7	Objective of the present work	24
2	Literature review	
2.1	Literature review on biomass selection	25-29
2.2	Literature review on biomass degradation kinetics	30-35
2.3	Literature review on effect of process parameters on pyrolysis	35-42
2.4	Literature on optimization of process parameters for pyrolysis	43-46
2.5	Literature review on adsorption of Cr (VI) using biochar	47-52
3	Kinetic and thermodynamic studies of sagwan sawdust	
	pyrolysis for its bioenergy potential	
3.1	Introduction	53-55
3.2	Experimental	55
3.2.1	Raw material	55
3.2.2	Chemicals and reagents	55-56
3.2.3	Analytical techniques for SS characterization	56-57
3.2.4	TG experimental process	57
3.2.5	Kinetic and thermodynamic study	57-59
3.2.6	Iso-conversional models	59
3.2.6.1	FWO model	59
3.2.6.2	KAS model	59-60
3.2.6.3	Friedman method	60
3.2.7	Prediction of reaction mechanism	60-62
3.2.8	Calculation of pre-exponential factor and thermodynamic parameter	62
3.3	Results and Discussions	63
3.3.1	Physico-chemical properties of SS	63-64
3.3.2	TG and DTG analysis	65-70
3.3.3	Kinetic Study	71-76

3.3.4	Reaction mechanism	76-78
3.3.5	Thermodynamic Study	79-81
3.4	Conclusion	82
4	Sagwan sawdust pyrolysis and Product characterizations	
4.1	Introduction	83-85
4.2	Experimental	85
4.2.1	Raw material	85-86
4.2.2	Chemicals and reagent	86
4.2.3	Pyrolysis experimental procedure	86-88
4.2.4	Analytical methods and instruments used for Product	89
	characterizations	
4.2.4.1	Biochar characterization techniques	89-90
4.2.4.2	Bio-oil characterization techniques	90-91
4.2.4.3	Pyrolytic gas characterization techniques	91
4.3	Results and Discussions	91
4.3.1	Physicochemical properties of SS	91
4.3.2	Effect of process parameters on the yield of pyrolysis products	91
4.3.2.1	Effect of temperature	91-92
4.3.2.2	Effect of sweeping gas flow rate	93
4.3.2.3	Effect of packed bed height	94
4.3.2.4	Effect of particle size	95
4.3.3	Characterization of biochar	95
4.3.3.1	Physico-chemical characterization	95-99
4.3.3.2	Morphological and elemental study	99-101
4.3.3.3	FTIR analysis	101-102
4.3.3.4	BET surface area	103-104
4.3.3.5	XRD analysis	104-106
4.3.4	Bio-oil characterization	106
4.3.4.1	Physicochemical properties of bio-oil	106-107
4.3.4.2	FTIR analysis of bio-oil	108-111
4.3.4.3	GC-MS analysis of bio-oil	112-114
4.3.5	Pyrolytic gas composition	115-117
4.4	Conclusion	117-118

5	Product distributions and optimization study using	
	response surface methodology	
5.1	Introduction	119-120
5.2	Experimental	120
5.2.1	Raw material	120
5.2.2	Experimental setup and procedure	120-121
5.2.3	Analytical instruments and methods used for characterization	121
5.2.4	RSM study	121-122
5.3	Results and Discussions	123
5.3.1	Physicochemical properties of SS	123
5.3.2	Box-Behnken design and statistical analysis	123-125
5.3.3	ANOVA analysis	125-129
5.3.4	Optimization and 3D-plots	129-130
5.3.4.1	Optimization of nitrogen flow rate and temperature	130-131
5.3.4.2	Optimization of temperature and packed bed height	132-133
5.3.4.3	Optimization of nitrogen flow rate and packed bed height	133-134
5.3.4.4	Validation of optimum result	134-135
5.3.5	Characterization of products	135
5.3.5.1	Biochar characterization	135-138
5.3.5.2	Physicochemical properties of bio-oil	138-139
5.3.5.3	FTIR analysis of bio-oil	139-140
5.3.5.4	GC-MS analysis of bio-oil	141-143
5.4	Conclusion	144
6	Cr(VI) uptake onto SS biochar and statistical optimization	
	via RSM	
6.1	Introduction	145-147
6.2	Experimental	148
6.2.1	Adsorbent	148
6.2.2	Reagent preparation	148
6.2.3	Analytical instruments/equipments and methods used	148-149
6.2.4	Adsorption experimental procedure	149-150
6.2.5	Optimization using RSM	150-151
6.3	Results and Discussions	151

6.3.1	Physicochemical characteristics of adsorbent	151
6.3.1.1	BET and point of zero charge (pH_{zpc}) analysis	151-152
6.3.1.2	XRD analysis	152
6.3.1.3	FTIR analysis	153-155
6.3.1.4	SEM-EDS analysis	155-156
6.3.1.5	XPS analysis	156-157
6.3.2	Effect of process parameters	158
6.3.2.1	Effect of contact time and adsorbate concentration	158-159
6.3.2.2	Effect of adsorbent dose/Cr(VI) concentration ratio	159-160
6.3.2.3	Effect of solution pH	150-161
6.3.2.4	Effect of temperature	161-162
6.3.3	BBD and statistical analysis	162-166
6.3.4	Optimization and three-dimensional plots	166
6.3.4.1	Optimization of temperature and initial pH	166-167
6.3.4.2	Optimization of initial pH and adsorbent dose/Cr(VI)	167-168
	concentration	
6.3.4.3	Optimization of adsorbent dose/Cr(VI) concentration and	168-169
	temperature	
6.3.4.4	Validation of optimized result	169
6.3.5	Adsorption kinetics study	169-171
6.3.6	Thermodynamic study	171-172
6.3.7	Adsorption isotherms	172-173
6.3.7.1	Langmuir isotherm	173
6.3.7.2	Freundlich isotherm	174
6.3.7.3	Temkin isotherm	174
6.3.7.4	Dubinin-Radushkevich (D-R) isotherm	175-176
6.3.8	Mass transfer studies	176-177
6.3.8.1	Weber-Morris model	177-178
6.3.8.2	Boyd model	178-179
6.3.9	Adsorption mechanism	179-181
6.3.10	Regeneration study	181-182
6.4	Conclusion	182-183
7		

7 Summary and future recommendations

7.1	Summary	184-186
7.2	Future recommendations	187
	References	188-213
	List of publications	214

Figure	Caption	Page No.
1.1	Fuel consumption from 1980 - 2018	2
1.2	Energy overview of annual change in global energy demand	2
1.3	Sources of biomass	4
1.4	Different routes for thermochemical conversion	16
3.1	TG curves for SS in inert atmosphere at different heating rates	68
3.2	DTG curve for SS in inert atmosphere at different heating rates	69
3.3	Conversion as a function of temperature at different heating rates	70
3.4	FWO integral model for the calculation of the activation energy	71
3.5	KAS integral model for the calculation of the activation energy	72
3.6	Friedman model for the calculation of the activation energy	73
3.7	Comparison of activation energy as a function of progressive	74
	conversion for FWO, KAS and Friedman models	
3.8	Theoretical and experimental plots for prediction of solid state	78
	reaction mechanism using Criado method (Z-master plot)	
4.1	Schematic diagram of experimental set-up	88
4.2	Effect of temperature on yield of pyrolysis products	92
4.3	Effect of sweeping gas flow rate on yield of pyrolysis products	93
4.4	Effect of packed bed height on yield of pyrolysis products	94
4.5	Effect of particle size on yield of pyrolysis products	95
4.6	Van Krevelen diagram for SS and its biochar	98
4.7	SEM-EDX for (a) SS (b) BC 400 (c) BC 500 (d) BC 600 (e) BC	99-100
	700	
4.8	FTIR spectra of (a) SS (b) BC 400 (c) BC 500 (d) BC 600 (e) BC	102
	700	

List of Figures

4.9	N_2 adsorption/desorption isotherm of SS biochar at 600 °C	104
4.10	XRD analysis of (a) SS (b) BC 400 (c) BC 500 (d) BC 600 (e)	105
4.11	FTIR spectra of bio-oil at (a) 400 °C (b) 500 °C (c) 600 °C (d) 700 °C	108-109
4.12	GC-MS analysis of bio-oil at 600 °C	112
4.13	Non-condensable gas fraction (a) composition (N ₂ involved) (b) Higher heating value (HHV) at different pyrolysis temperature	116
5.1	Actual vs predicted yield of the model for (a) bio-oil and (b) biochar	125
5.2	3-D surface response showing effects of temperature and nitrogen flow rate on (a) bio-oil and (b) biochar yield	131
5.3	3-D surface response showing effects of temperature and packed bed height on (a) bio-oil and (b) biochar yield	132
5.4	3-D surface response showing effects of temperature and nitrogen flow rate on (a) bio-oil and (b) biochar yield	134
5.5	SEM-EDS of (a) SS and (b) biochar at optimized condition	138
5.6	FTIR spectra of bio-oil at optimized condition	140
5.7	GC-MS analysis of bio-oil at optimized condition	141
6.1	pH _{zpc} of the biochar	151
6.2	XRD analysis of the biochar before and after Cr (VI) adsorption	152
6.3	FTIR spectra of biochar (a) before and (b) after adsorption of Cr (VI)	154
6.4	SEM-EDS analysis of biochar after adsorption of Cr (V	155
6.5	Wide scan XPS analysis of the biochar after adsorption	157
6.6	Narrow scan XPS analysis for Cr after adsorption	157
6.7	Effect of initial concentration and contact time	158
6.8	Effect of adsorbent dose/Cr(VI) concentration ratio	159
6.9	Effect of solution pH	160

6.10	Effect of temperature	161
6.11	Actual vs predicted values of the model for Cr(VI) removal	163
6.12	3-D surface response for % removal of Cr(VI) showing	166
	interaction effects of temperature and pH	
6.13	3-D surface response for % removal of Cr(VI) showing	167
	interaction effects of dose/concentration and pH	
6.14	3-D surface response for % removal of Cr(VI) showing	168
	interaction effects of dose/concentration and temperature	
6.15	1 st order Kinetic model for Cr(VI) adsorption using biochar	170
6.16	2 nd order Kinetic model for Cr(VI) adsorption using biochar	170
6.17	Weber-Morris plot for adsorption of Cr(VI) using biochar	177
6.18	Boyd plot for adsorption of Cr(VI) using biochar	178
6.19	Cr(VI) adsorption mechanism by SS biochar	180
6.20	Cr(VI) removal using fresh and regenerated biochar	181

Table	Captions	Page No.
1.1	Proximate, Ultimate and HHV of different biomass wastes	8
1.2	Lignocellulosic compositions of different biomass residues	9
2.1	Literature on biomass selection criteria	29
2.2	Literature review on biomass degradation kinetics	34
2.3	Literature review on effect of process parameters on pyrolysis	42
2.4	Literature on optimization of process parameters for pyrolysis	46
2.5	Literature review on adsorption of Cr (VI) using biochar	51
3.1	Different kinetic models for solid state kinetics	61-62
3.2	Physical and chemical characteristics of SS	64
3.3	Activation energy at corresponding conversion (α) for FWO, KAS and Friedman methods	75
3.4	Comparison of activation energy of SS with other biomass	76
3.5	Thermodynamic parameters for SS degradation at the heating rate of 10 °C/min	80
4.1	Proximate, ultimate, HHV and EY analysis of biochar	97
4.2	BET surface area of the biochar at different temperatures	103
4.3	Crystallinity index for SS and biochar at different temperatures	106
4.4	Physicochemical properties of the bio-oil at different temperatures	107
4.5	FTIR peak details of the bio-oil at different temperatures	111
4.6	GC-MS analysis of bio-oil at 600 °C	113-114
5.1	Range of independent process variables and experimental levels	122
5.2	Box-Behnken experimental design matrix and results	124
5.3	ANOVA analysis for bio-oil yield	127

List of Tables

5.4	ANOVA analysis for biochar yield	128
5.5	Model summary statistics for bio-oil and biochar yield	129
5.6	Predicted and experimental yield at optimized condition	135
5.7	Physicochemical properties of biochar at optimized condition	136
5.8	Physicochemical properties of bio-oil at optimum conditions compared with the ASTM D7544-12 specifications	139
5.9	GC-MS analysis of bio-oil at optimized condition	142-143
6.1	Range of independent process variables and experimental levels	150
6.2	FTIR analysis of biochar before and after adsorption of Cr(VI)	155
6.3	Box-Behnken experimental design matrix and results	164
6.4	ANOVA analysis for Cr(VI) removal	165
6.5	Cr(VI) removal predicted and experimental values at optimized condition	169
6.6	Kinetics constants for Cr(VI) adsorption onto biochar	171
6.7	Thermodynamic Parameters for Cr(VI) adsorption onto biochar	172
6.8	Langmuir, Freundlich, Temkin and D-R isotherm constants for	176
	Cr(VI) adsorption onto biochar	
6.9	Weber-Morris constants and effective diffusivity for Cr(VI) adsorption	179
6.10	Comparison of adsorption capacity for different adsorbents	182

Abbreviations/	Full form
symbols	
AD	Anaerobic digestion
ADF	Acid detergent fiber
ANOVA	Analysis of variance
ASTM	American Society for Testing and Materials
AC	Ash content
BBD	Box-Behnken design
BET	Brunauer–Emmett–Teller
CCD	Central composite design
CrI	Crystallinity index (%)
CHNS	Carbon Hydrogen Nitrogen Sulphur
CV	Co-efficient of variation
DDW	Double distilled water
DTG	Differential thermogravimetric
EY	Energy yield (%)
EDS	Energy dispersive spectrum
FC	Fixed carbon
FTIR	Fourier Transform Infrared Spectroscopy
FWO	Flynn-Wall-Ozawa
GC	Gas chromatography
GC-MS	Gas chromatography-mass spectrometory
HHV	Higher heating value (MJ/kg)
I ₀₀₂	Crystalline intensity of diffraction plane (002)
I _{am}	Amorphous intensity of diffraction plane (002)
KAS	Kissinger-Akahira-Sunose
MAI	Mean annual volume increment
MC	Moisture content
Mtoe	Million Tonnes of Oil Equivalent
NDF	Neutral detergent fiber
RSM	Response surface methodology
SD	Standard deviation
SEM	Scanning electron microscope

List of abbreviations and symbols

SS	Sagwan sawdust
TCD	Thermal conductivity detector
TGA	Thermogravimetric analysis
TS	Total solid
VM	Volatile matter
Wt.%	Weight percentage
XRD	X-Ray diffraction
XPS	X-ray photoelectron spectra
λ	X-ray wavelength (0.15406 nm)
k	Rate constant
α	Fractional conversion
Е	Activation energy (kJ/mol)
А	Pre-exponential factor (s ⁻¹)
R	Universal gas constant
β	Heating rate (°C/min)
Т	Temperature (K)
C_0	Initial Cr(VI) concentration (mg/L)
Ct	Cr(VI) concentration at time t (mg/L)
Ce	Cr(VI) concentration at equilibrium (mg/L)
q _e	Equilibrium adsorption capacity (mg/g)
q_t	Adsorption capacity at time t (mg/g)
Wo	Initial mass of the sample
$\mathbf{W}_{\mathbf{i}}$	Mass of the sample at time t
${ m W_{f}}$	Final mass of the sample
T_{α}	Temperature at different conversion (K)
T_m	DTG Peak temperature (K)
$\Delta \mathrm{H}$	Change in enthalpy (kJ/mol)
ΔG	Change in Gibbs free energy (kJ/mol)
ΔS	Change in entropy (J/mol.K)
K_B	Boltzmann constant (1.381*10 ⁻²³ J/K)
h	Plank constant (6.626 *10 ⁻²³ J.s),

PREFACE

Due to the fast-growing population, technological development and advancement in the living standard of the people, the requirement for energy as well as the price of fossilderived fuels like petrol and diesel are increasing. The global energy demand has increased from 49 in 2015 to 328 Million Tonnes of Oil Equivalent in 2018. Fossil fuels are predominantly used to fulfil these skyrocketing global energy demands. But major concerns associated with these fossils are that these are neither sustainable nor cleaner energy source. Uses of these fossil fuels release enormous amount of pollutants such as NO_X, SO_X, particulates and CO₂. In light of this, there is a need to develop an alternative renewable energy source for partial fulfilment of required energy demand. Among the available renewable sources of energy, incidentally, biomass has gathered significant attention due to its plentiful amount, low market value, and carbon neutrality.

So, the research objective was decided to perform the pyrolysis of sagwan sawdust for bio-energy generation. The complete research work is summarized in different chapters. **Chapter 1** explains current energy scenario, energy related environmental issues, biomass as a solid waste and also as a source of energy. At present, around 90 % of the energy consumption in developing countries is fulfilled by fossil fuels (coal, petroleum and natural gas). The technological developments, on the other hand, are responsible for depleting the limited fossil fuel reserves along with the release of toxic effluents. The growing demand for energy and environmental concerns have shifted the alertness of researchers to find out a substitute renewable, sustainable, environmental friendly and cleaner energy source for the coming generation. Sagwan wood is used by different industries, especially paper and furniture industries, as it is light wood and has high durability. According to the Food and Agricultural Organisation of the United States

(FAO), after processing only around 28 % of the tree becomes timber and rest is residue. These residues are disposed of to the open atmosphere with no economical value. Every year huge amount of sagwan sawdust is produced and so for its proper utilization, pyrolysis can be performed. This chapter also explains the origin of the problem and objectives of the research work.

Chapter 2 summarizes the literature review associated with the research work. The study includes the selection criteria and feasibility analysis of biomass for pyrolysis as well as the concerned reaction mechanism involved with the pyrolysis process available in literature. The chapter also explains the kinetic and thermodynamic parameters involved in the pyrolysis process. The effect of pyrolysis process parameters on product yield and characteristics were reviewed. Finally, review was done for the utilization of biochar for Cr (VI) removal.

Chapter 3 explains the kinetic and thermodymic studies of sagwan sawdust pyrolysis for its bio-energy potential. TGA of sagwan sawdust was performed at the heating rates of 5, 10 and 20 °C/min to study its degradation behaviour. Utilizing the TG and DTG data, kinetic and thermodymic parameters were evaluated using iso-conversional models. The reaction mechanism for the degradation was studied using Z-master plot.

Chapter 4 describes the pyrolysis of sagwan sawdust for the product yield and characterization. The effect of process variables i.e. temperature, fixed bed height, sweeping gas flow rate and particle size on product yield were investigated. Temperature had the most significant role in the pyrolysis process. Characteristics of biochar, bio-oil and pyrolytic gas were studied using different characterization techniques. The pyrolysis of sagwan sawdust is effective in waste treatment, waste minimization as well as in energy generation.

Chapter 5 describes the product distribution and optimization of pyrolysis process variables for maximum bio-oil and minimum biochar yield. The optimization study was performed employing response surface methodology through box-behnken design. The study reports the interaction effect among the process variables for the product yield. The products obtained were also characterized using various characterization techniques.

Chapter 6 describes the utilization of obtained biochar after SS pyrolysis as an adsorbent for Cr (VI) removal from aqueous solution. The study was performed in batch mode varying different parameters i.e. solution pH, initial Cr(VI) concentration, adsorbent dose/Cr(VI) concentration, time and temperature. Further optimization of the process parameters were also done employing response surface methodology through box-behnken design. The kinetics, isotherms, thermodynamics and mass transfer involved in the adsorption process had also been described. The possible reaction mechanism for the adsorption process had also been explained. The regeneration and reusability of the adsorbent had been done in the study.

Chapter 7 describes the summary and future recommendations drawn on the basis of results obtained out of this research work. The results describe sagwan sawdust has the potential to be used as precursor for pyrolysis. In addition, it also helps in waste minimization and waste utilization. Biochar as adsorbent is also in adsorbing Cr(VI) from aqueous solution. In addition, there are certain recommendations that will help in future research work.