DEPARTMENT OF CHEMICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY (BANARAS HINDU UNIVERSITY) VARANASI - 221005

CERTIFICATE

It is certified that the work contained in the thesis titled "A study on bioremediation of azo dyes in microbial fuel cell and its feasibility for simultaneous electricity generation" by Ms. Amrita Shahi has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Prof. R.S. Singh (Supervisor) Department of Chemical Engineering & Technology (Banaras Hindu University) Varanasi–221005

DECLARATION BY THE CANDIDATE

I, Amrita Shahi, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of Prof. R.S. Singh from July 2014 to March 2021, at the Department of Chemical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports, dissertations, thesis, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date:

Place: Varanasi

(Ms. AMRITA SHAHI)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of our knowledge.

Prof. R.S. Singh (Supervisor) Department of Chemical Eng. & Tech. Indian Institute of Technology (Banaras Hindu University) Varanasi Prof. Vijay Laxmi Yadav (Head) Department of Chemical Eng. & Tech. Indian Institute of Technology (Banaras Hindu University) Varanasi

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: A study on bioremediation of azo dyes in microbial fuel cell and its feasibility for simultaneous electricity generation

Name of the Student: Ms. Amrita Shahi

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Doctor of Philosophy degree.

Date:

Place: Varanasi

(Ms. AMRITA SHAHI)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENTS

Though words are seldom sufficient to express gratitude and feeling, it somehow gives me an opportunity to acknowledge those who helped me during the course of my study.

I wish to express my deep sense of appreciation and everlasting indebtedness to my supervisor, **Prof. Ram Sharan Singh**, Department of Chemical Engineering & Technology, IIT (BHU), for his meticulous guidance and wholehearted cooperation in carrying out this work. His inspiring comments and suggestions motivated me to continue my research work. From his remarkable support and advice during my Ph.D. studies, I gained a lot of experience and knowledge which will help me in the future.

I would like to thank **Prof. Vijay Laxmi Yadav (Head),** Department of Chemical Engineering & Technology, IIT (BHU), for encouraging me and providing me all the facilities to carry out my research work.

It is a great pleasure to acknowledge my deepest thanks and gratitude to **Prof. B. N. Rai**, Department of Chemical Engineering & Technology, IIT (BHU), for their immense guidance and valuable suggestions during my research work.

I would also like to express my sincere thanks to my RPEC membrane, **Dr**. **Bhavana Verma**, Department of Chemical Engineering & Technology IIT (BHU), and **Prof. Y. C. Sharma**, Department of Chemistry, IIT (BHU), for their stimulating help and criticism which incented me to widen my research from various perspectives. I would like to express my sincere thanks to **Prof. A. S. K. Sinha** and **Prof. P. K. Mishra**, Ex- Head , Department of Chemical Engineering & Technology, IIT (BHU), for their guidance and support during my research work.

I would like to express my sincere thanks, **Prof, H. L. Pramanik, Prof. M. K. Mondal, Dr. Ravi Jaiswal,** and **Dr. Ankur Verma**, Department of Chemical Engineering & Technology, IIT (BHU), for their valuable suggestion during my thesis writing. I wish to express deep regards to all the teachers of the Chemical Engineering Department for their kind support at all moment during the progress of my research.

I want to express my sincere thanks to **Dr. V. C. Padmanaban**, Department of Biotechnology, Kamaraj College of Engineering & Technology, Madurai, Tamilnadu, for their sincere help and guidance during my research work.

I express my sincere thanks to, Dr. Balendu Shekher Giri and Dr. Arpana Yadav for their constant support and motivation throughout the work. I am extremely thankful to my dear friends, Dr. Nirupama Patra, Dr. Suverna Trivedi, Dr. Vineeta Gautam, Ms. Poornima Pandey, Dr. Mithilesh Rai, Dr. Munaa Kumar, Mr. Tarun Dixit, Dr. Ravi Sonwani, Mr. Yogesh Vishwakarma, and many more, for their co-operation, motivation, and sincere help during my research. I am grateful to Mr. Sudhir Kumar, Mr. Ajeet Yadav, Mr. Ajay Yadav, and Mr. Rakesh Kumar Chaudhary for the assistance extended by them from time to time during the research work. I am also grateful to all office staff of the department and authorities of IIT (BHU), for their kind help to complete the thesis work. Finally, I am extremely grateful to my in-law's family members, especially to my father-in-law **Mr. Ganesh Prasad**, and my mother-in-law **Ms. Kamla Devi**, **Dr. Govind Malik** and **Dr. Mukesh Vishwakarma** for their continuous support and encouragement. **My father Dr. Jai Prakash Shahi** and **my mother Ms. Prabhawati Shahi**, have been a guiding force throughout my life. Without their love and encouragement, this dissertation wouldn't have happened. I would like to thanks my elder brother **Dr. Alok Kumar Shahi** and **Mr. Prabhas Kumar Shahi** and my younger brother, **Mr. Himanshu Singh**, their encouragement strengthened my faith and confidence. They were always keen to know what I was doing and how I was proceeding. In particular, I would like to thank my Husband, **Mr. Arun Kumar**, for his tremendous love, companionship, encouragement, and support over these years for completing my thesis.

Finally, I bow with reverence and gratitude to thank the Almighty who has enriched me with such an excellent opportunity and infused the power in my mind to fulfill the work assigned to me.

(AMRITA SHAHI)

TABLE OF CONTENTS

Contents		Page No.
Certificate		i
Declaration	by the Candidate & Certificate by the Supervisor	ii
Copyright T	ransfer Certificate	iii
Dedication		iv
Acknowledgements		v-vii
Table of Contents		viii-xi
List of Figur	es	xii-xv
List of Table	S	xvi-xvii
List of Symb	ols/Abbreviation	xviii-xx
Preface		xxi-xxiv
CHAPTER 1	: INTRODUCTION	1
1.1 Microb	vial Fuel cell for Azo dyes treatment	10
1.2 Dye degradation mechanism in microbial fuel cell (MFC)		12
1.3 Effects	of operational parameters on dye removal efficiency in MFC	13
1.4 Problem	m statement	16
1.5 Significance of research		17
CHAPTER 2	: LITERATURE REVIEWS	18
2.1 Dyes	and their history	18
2.1.1	Classification of dyes	19
2.1.2	Potential threats of Azo dyes to the environment and their	29
	treatment technology	
2.1.3	Current treatment technology for dyes degradation	33
2.2 Microbial fuel cell and its history		43
2.2.1	Working principle of MFCs	50
2.2.2	Metabolism in MFCs	53
2.2.3	Current research on MFCs	55
2.2.4	Types of MFCs	58
2.2.5	Parameter affecting the performance of MFCs	62

2.2.6	Limitation of MFCs	65
2.2.7	Research Gap	65
2.2.8	Research Objective	66
CHAPTER 3:	MATERIALS & METHODS	67
3.1 Dye d	legrading bacteria isolation, and their study for dye	67
decolo	rizing capacity	
3.1.1	Sample selection for isolation of bacteria	67
3.1.2	Dye selection	67
3.1.3	Media used for the growth of Culture	71
3.1.4	Screening and identification of the isolated organism	72
3.1.5	Study for dye decolorizing capacity	73
3.2 MFC s	setup construction	74
3.2.1	MFC 1	75
3.2.2	MFC 2	76
3.3 Analyt	ical Procedure	77
3.3.1	Assessment of dye decolorization in batch study and in MFC	77
3.3.2	COD Removal efficiency	78
3.3.3	Dry biomass estimation	78
3.3.4	CO ₂ measurement	79
3.3.5	CFU estimations	79
3.3.6	Fourier-transform infrared spectroscopy (FTIR) analysis	79
3.3.7	Identification of metabolites using Liquid chromatography and	80
	mass spectroscopy analysis (LCMS)	
3.3.8	SEM analysis	80
3.3.9	Electrochemical monitoring	80
3.4 Kinetio	c Study	81
3.5 Statisti	ical Modeling for the analysis of dye decolorization &	82
curren	t density though Response surface methodology (RSM)	
3.6 Phytot	oxicity Studies	83

RESULTS & DISCUSSIONS	
CHAPTER 4:	
4.1 Dye degrading bacteria isolation & screening and their batch	n 84
study for dye decolorizing capacity	
4.1.1 Screening and Isolation of Dye Decolorizing Bacterial Strains	84
4.1.2 The Identification of Isolated Microorganisms	85
4.1.3 Dye Decolorization Studies	88
4.1.4 Concluding remarks	94
CHAPTER 5:	95
5.1 A comparative study of a bio fuel cell with two different proton	ı 95
exchange membrane for the production of electricity from waste	•
water	
5.1.1 Experiment design	95
5.1.2 Results & discussions	95
5.1.3 Concluding remarks	100
CHAPTER 6:	
6.1 Biodegradation of Reactive Orange 16 Dye in Microbial Fuel Cell:	
An Innovative Way to Minimize Waste Along with Electricity	
Production	
6.1.1 Experiment design	101
6.1.2 Results & discussions	101
6.1.3 Concluding remarks	112
CHAPTER 7:	
7.1 Biodegradation of reactive red 120 in microbial fuel cell by	
Staphylococcus equoruma RAP1: Statistical modelling and process	
optimization	
7.1.1 Experiment design	113
7.1.2 Results & discussions	113
7.1.3 Concluding remarks	137
CHAPTER 8:	
8.1 A comparative study on the performance of Microbial Fuel Cell for	
	1

the treatment of Reactive Orange 16 dye using mixed and pure	
bacterial species and its optimization using response surface	
methodology	
8.1.1 Experiment design	138
8.1.2 Results & discussions	138
8.1.3 Concluding remarks	162
CHAPTER 9:	
9.1 CONCLUSIONS	
9.2 FUTURE RESEARCH PROSPECTIVE	
REFERENCES	
APPENDIX	
LIST OF PUBLICATIONS	
CONFERENCES	

LIST OF FIGURES	List	of	Fig	ures
-----------------	------	----	-----	------

Figure No.	Figure Captions	Page No.
Figure 1.1	Sources of dye wastewater	1
Figure 1.2	Wastewater discharge into the river	3
Figure 1.3	Mechanism of waste remediation and electricity production	6
Figure 1.4	Dye remediation in MFC	7
Figure 1.5	Mechanism of waste degradation in MFC	13
Figure 2.1	Effects of dye wastewater	30
Figure 2.2	Dye treatment technology	34
Figure 2.3	Mechanism of electron transport to the anode surface	51
Figure 2.4	Electron transport mechanism from bacterial metabolism to	52
	the surface of the anode	
Figure 2.5	Metabolism of a substrate (waste) in MFC	54
Figure 2.6	Schematics of single-chambered MFC	59
Figure 2.7	Schematics of double-chambered MFC	60
Figure 2.8	Schematics of Up-flow MFC	61
Figure 3.1	Calibration plot for model dyes (a) Reactive orange 16 (b)	70
	Reactive red 120	
Figure 3.2	MFC 1	76
Figure 3.3	MFC 2	77
Figure 4.1	Isolated strains	84
Figure 4.2 (a)	SEM images of Acinetobacter pitii at 20 K X on the surface	86
	of cellulose filter 0.2 microns, 4.2	
Figure 4.2 (b)	SEM images of cellulose filter 0.2 microns with growth	86
	media without bacteria at 20KX	
Figure 4.3	Phylogenic tree of the bacterial isolate (Acinetobacter pitii)	86
Figure 4.4 (a)	SEM images of <i>Staphylococcus equorum</i> ta at 20 K X on	87
	the surface of cellulose filter 0.2 microns	
Figure 4.4 (b)	SEM images of cellulose filter 0.2 microns with growth	87
	media without bacteria at 20KX	
Figure 4.5	Phylogenic tree of the bacterial isolate (Staphylococcus	88
	equorum RAP1)	

Figure 4.6	Study on isolated strains for (a) Staphylococcus eqrum and	89
	(b) Acinetobacter pitti degradation of RO16 dye and RR120	
	Dye in batch and MFC for 100 ppm initial concentration of	
	dyes	
Figure 4.7	Study on isolated strains for (a) Staphylococcus eqrum and	91
	(b) Acinetobacter pitti degradation of RO16 dye and RR120	
	Dye in batch and MFC for 100 ppm initial concentration of	
	dyes at 72 h	
Figure 4.8	Study on isolated strains for (a) Staphylococcus eqrum and	93
	(b) Acinetobacter pitti degradation of RO16 dye and	
	RR120 Dye in batch and MFC for 100 ppm initial	
	concentration of dyes at 72 h.	
Figure 5.1	Comparison of voltage produced by Nafion as separator and	96
	agar salt bridge as a separator	
Figure 5.2	Comparison of current density produced by Nafion as	97
	separator and agar salt bridge as a separator	
Figure 5.3	Polarization curve for Nafion and agar salt bridge as PEM	99
Figure 6.1(a)	Variation of voltage and current over time and	102
Figure 6.1(b)	Variation of voltage and Colony-forming unit with time	102
Figure 6.2	Relation between power density and COD removal over	103
	time	
Figure 6.3	Variation of % color removal and bacterial growth with	104
	dye concentration	
Figure 6.4	Relation between COD Removal Vs Dye Concentration	107
Figure 6.5	Relation between CO2 production and Dye concentration	109
Figure 6.6	Monod Equation fitted till 400 ppm of dye (obtained	110
	experimental value)	
Figure 7.1(a)	voltage variation with time at different pH for 100 ppm dye	115
Figure 7.1 (b)	voltage variation with time at pH 7.0 for different	115
	concentration of dye	
Figure 7.1 (c)	power density variation with time at different pH for 100	116
	ppm dye	

Figure 7.1 (d)	power density variation with time at pH 7.0 for different	116
	concentration of dye	
Figure 7.2 (a)	Degradation of dye at different pH at concentration range of	118
	100 to 300 ppm	
Figure 7.2 (b)	% Degradation of dye at different pH at concentration range	118
	of 100 to 300 ppm	
Figure 7.3	COD removal efficiency	119
Figure 7.4	Actual vs Predicted value of RR120 dye	121
Figure 7.5 (a)	2D Contour plot for the degradation of RR120 dye as a	124
	function of the concentration of dye and pH	
Figure 7.5 (b)	3D Response surface plot for the degradation of RR120 dye	124
	as a function of the concentration of dye and pH	
Figure 7.5 (c)	2D Contour plot for the degradation of RR120 dye as a	125
	function of time and pH	
Figure 7.5 (d)	3D Response surface plot for the degradation of RR120 dye	125
	as a function of time and pH	
Figure 7.5 (e)	2D Contour plot for the degradation of RR120 dye as a	126
	function of time and concentration of dye	
Figure 7.5 (f)	3D Response surface plot for the degradation of RR120 dye	126
	as a function of time and concentration of dye	
Figure 7.6	Predicted Vs actual value of current density	127
Figure 7.7 (a)	2D Contour plot for current density as a function of	129
	concentration and pH	
Figure 7.7 (b)	3D Response surface plot for current density as a function	129
	of concentration and pH	
Figure 7.7 (c)	2D Contour plot for current density as a function of time	130
	and pH	
Figure 7.7 (d)	3D Response surface plot for current density as a function	130
	of time and pH	
Figure 7.7 (e)	2D Contour plot for current density as a function of time	131
	and concentration	
Figure 7.7 (f)	3D Response surface plot for current density as a function	131
	of time and concentration	

Figure 7.8	FTIR spectra of RR120 dye (Control) and (b) FTIR spectra	133
	of degraded metabolites	
Figure 7.9	Proposed mechanism of biodegradation of RR120 dye by Staphylococcus equorum RAP1	135
Figure 7.10	Phytotoxicity effect of treated dye samples using	136
	Staphylococcus equrumin MFC	
Figure 8.1 (a)	Voltage variation along with the time of mixed and isolated	140
	species	
Figure 8.1 (b)	Effect of CFU/ml on Voltage.	140
Figure8.2	COD removal efficiency	142
Figure 8.3	Variation of color removal efficiency with time	143
Figure 8.4	CO ₂ variation with time	144
Figure 8.5	predicted vs actual data of dye degraded	147
Figure 8.6 (a, b)	Dye degradation as function of pH and concentration	148
Figure 8.6 (c, d)	Dye degradation as function of pH and time	149
Figure 8.6 (e, f)	Dye degradation as function of time and concentration	150
Figure 8.7	Predicted vs actual data of current density	152
Figure 8.8 (a,b)	current density as function of pH and concentration,	153
Figure 8.8 (c,d)	current density as function of pH and time	154
Figure 8.8 (e,f)	current density as function of time and concentration	155
Figure 8.9 (a)	FTIR spectrums of control reactive orange 16	158
Figure 8.9 (b)	decolorized reactive orange 16	158
Figure 8.10	Proposed biodegradation pathway for reactive orange 16	160
	degradation by Acinetobacter pitii	
Figure 8.11	Phytotoxicity study	161

List of Tables

Table No.	Table Captions	Page No.
Table 1.1	Electricity production using Dyes	11
Table 2.1	Classification of dyes based on chromophore group	21
Table 2.2	Examples of dyes based on affinity towards material	24
Table 2.3	Examples Based on application methods	28
Table 2.4	Characteristics of textile industry effluent	31
Table 2.5	International standard of dye effluent discharge into the	32
	environment	
Table 2.6	Advantages and disadvantages of various physical and chemical	38
	methods	
Table 2.7	Work done by other researchers in MFC	44
Table 3.1	Waste water characteristics used for MFC	67
Table 3.2	Physicochemical Characteristics of Dyes	68
Table 3.3	Medium specific to Geobacter sp. (For1 L).	71
Table 3.4	Experimental Design for the degradation of RR120	83
Table 3.5	Experimental Design for the degradation of RO 16	83
Table 4.1	Decolorization efficiency of all the isolated strains for RO 16 and	85
	RR 120 dyes for 100 ppm for 24 h.	
Table 6.1	Electricity production using dyes	105
Table 6.2	Haldane kinetic parameter for different dyes	111
Table 7.1	Design table for Face Centred Central Composite design for	119
	MFC	
Table 7.2	Analysis of variance (ANOVA) for the degradation of RR120 by <i>Staphylococcus equorum</i> RAP1 terms of concentration of dye	122
	degraded	
Table 7.3	Analysis of variance (ANOVA) for the degradation of RR120 by	128
	Staphylococcus equorum RAP1 terms of current density	
Table 7.4	Optimized numerical solutions for degradation of dye and current	132
	density	
Table 8.1	Design table for Face Centred Central Composite design for MFC	144

Table 8.2	Analysis of variance (ANOVA) for the degradation of RO 16 by Acinetobacter pitii terms of Concentration of dye degraded	146
Table 8.3	Analysis of variance (ANOVA) for the degradation of RO 16 by Acinetobacter pitii in terms of Current density	151
Table 8.4	Optimized numerical solutions for degradation of dye and current	156

List of Symbols and Abbreviations

List of Symbols

Mo ₂	Molar Mass of Oxygen (gm/mol),
V	Volume of Anode Chamber (L)
F	F is the Faraday constant (96485 C/mole)
Ι	I is the current (A),
$\Delta \operatorname{COD}$	Changed in COD over time t (gm/L)
μ	Specific Growth Rate (1/day),
μ_{max}	Maximum Specific Growth Rate (1/day)
Ks	Half-Saturation Constant (mg/L).
Ki	Substrate Inhibition Constant (mg/L).
S	Substrate Concentration (mg/L)

List of Abbreviations

MFC	Microbial Fuel Cell
PEM	Proton Exchange Membrane
MSM	Mineral Salt medium
COD	Chemical Oxygen Demand
ТСА	Tricarboxylic Acid Cycle
HRT	Hydraulic Retention Time
LDH	Layered Double Hydroxide
ТВР	Tributyl phosphate
ORP	oxidation-reduction potential
UV-Vis	Ultraviolet-Visible
FTIR	Fourier-transform infrared spectroscopy
LCMS	Liquid chromatography and mass spectroscopy
LC-ESI	liquid chromatography-electrospray ionization
FESEM	Field Emission Scanning Electron Microscopy
SAIF	Sophisticated Analytical Instrumentation Facility
CDRI	Central Drug Research Institute
DET	Direct electron transfer
MET	Mediated electron transfer
RO16	Reactive Orange 16
RR120	Reactive Red 120
rDNA	Ribosomal DNA
NCBI-	National Center for Biotechnology - Basic Local Alignment Search Tool
CFU	Colony Forming Unit
СЕ	Coulombic efficiency
EC	Elimination Capacity
RSM	Response surface methodology

DX	Design Expert
CCD	Central composite design
FCC	Face Centered Central
ANOVA	Analysis of Variance
LO	Light Orange
DO	Dark Orange
PW	Pure White
LP	Light Pink
DP	Dark Pink
PW	Peach White
LY	Light Yellow
WO	White Orange
WY	White-Yellow
WP	White Pink
WW1	White White 1
WW2	White White 2
WW3	White White 3

Preface

Extensive use of Azo dyes by various industries and discharge of colored wastewater directly to the aquatic system leads to deterioration of our environment. Toxicity and aesthetic effects of these dye wastewater make them necessary to be treated before discharge. There are many efficient physical and chemical technologies for the treatment of dye-containing wastewater, but they have the disadvantage of high operating costs and secondary waste generation. Nowadays, biological methods seek attention for the treatment of dyes due to their low cost, eco-friendly nature and versatility, and their capability to degrade a variety of dyes to partially or wholly to a stable and non-toxic compound. Generally, dyes degraded easily in an anaerobic environment but they lead to the formation of aromatic amines. Therefore, further treatment is recommended for complete mineralization of amines into non -toxic compounds. Several combinations of anaerobic and aerobic biological treatments have been suggested for enhanced dye degradation. Most of the Azo dyes are degraded under anaerobic conditions. Developments of the toxic intermediates during anaerobic degradation and lower decolorization are some of the operational limitations of biological methods. Hence the study is being diverted in search of new technology that increases the overall biological process efficiency. Microbial Fuel Cell (MFC) is a new emerging green and non-combustion based degradation technology that utilizes the potential of microbes for the degradation of waste along with the production of electricity. It has the dual advantage of producing electricity, and simultaneously it degraded waste. It has proven its utility for treating many industrial wastes such as food industry waste, pharmaceuticals waste, paint industry waste, and sewage wastewater along with electricity production. The MFC technology has already been well established for electricity production, but it has the only disadvantage of low power output,

which limits its large scale use commercialization. If this MFC technology is combined with the bioremediation of dyes, then the overall performance of MFC can be increased. Avery small amount of work in the area of dye degradation with electricity production has been reported to date. Therefore taking all these research gaps, the present work was planned which emphasizes decolorization and degradation of two different Azo dyes, namely Reactive Orange 16 and Reactive Red 120, using mixed and isolated strain. Then the degradation of both the dyes is optimized using response surface methodology (RSM) combined with central composite design (CCD). The bacterial kinetic study was also carried out for inhibition study in MFC. Before this study, a preliminary setup (MFC1 and MFC2) was constructed, and sewage wastewater from a primary clarifier fed with glucose as a carbon source was used. From the literature review, Nafion and agar salt bridge were taken as proton exchange membrane (PEM), and the most suitable membrane was chosen for further studies. It was concluded from different preliminary experiments that Nafion as PEM and carbon cloth as a current collector would be suitable for dye degradation and electricity generation. Experimental results are analyzed, discussed, and compared against results from similar investigations and correlations. An extensive literature survey has been conducted before all experimental studies.

Thesis Overview

Chapter 1of the thesis contains the general introduction of dyes, their use, toxic effects, different treatment technologies, and treatment of these dyes using MFCs along with the production of electricity. Problem statements and the significance of researches have also been discussed here.

Chapter 2 represents detailed reviews of relevant literature related to synthetic dyes, classification, potential threats to the environment, and current treatment technologies. It also contains a review on MFC, its working principle and metabolism, recent researches, and parameters affecting its performance. It also highlights the significant research gap for the treatment of dyes and in MFC technologies. Research objectives of the present studies have also been discussed here.

Chapter 3 describes the details of materials and methods involved in the present study, which includes sampling, enrichment, and acclimatization, isolation and identification of dye degrading bacterial strain, optimization of process parameters in MFC for dye degradation. Also, different analytical techniques used for the analysis of the performance of MFC have been discussed in detail.

The result and discussion part are divided into five chapters (4,5,6,7,8). In **Chapter 4**, isolation and identification of bacterial strain for dye degradation have been carried out for finding out potent dye degrading bacterial strain. **Chapter 5** contains a comparative study of two MFCs with different proton exchange membranes. The **Chapter 6** describes the behavior of MFCfor Azo dye degradation using mixed culture and their microbial kinetics study. The**Chapter 7** contains process optimization using RSM for dye degradation using a single strain in MFC. The **Chapter 8** of this thesis describes the comparative study of mixed and isolated strain in MFC for enhanced dye degradation and its process optimization.

An effort has been made to conclude the thesis in **chapter 9**. In the concluding chapter, valuable experiences gained as a result of the work done for this thesis are discussed. From

the lessons learned, recommendations are made to carry forward the present work more efficiently and systematically. References used in this thesis have been compiled at the end of the thesis. Three papers from the work have already been published in the referred journals and one paper has been communicated for the publication and is under review.