
Chapter 7

Closed High Utility Itemsets Mining
with Negative Utility Value

In previous chapter, we have developed efficient algorithm named EHNL for mining

HUIs with negative utility and length constraints. Although, EHNL remove very small

and too long itemsets, it mine a large number of redundant HUIs. In order to overcome

this issue, closed HUIs mining algorithms have been proposed which avoids duplicate

itemsets. However, closed HUIs mining algorithms work only with positive utility value.

Mining closed HUIs mining algorithm with negative utility has not yet been proposed,

although negative utility mining is commonly seen in many real-world applications. To

address this issue, we propose an efficient algorithm named CHN (Closed High utility

itemsets mining with Negative utility).

Definition 7.0.1. (Closed high utility itemsets). An itemset X is called a closed HUIss

if it is HUIs and there does not exist any HUIs Y such that X ⊂ Y and support(X) =

support(Y).

For example, we utilize transactional datasets presented in TABLE 2.8 and TABLE 2.9 in

Chapter 2 for understand the definitions and strategies. CHUIs for the example is shown

in TABLE 7.2 where min util is 15.

Problem statement. We determine all the non-redundant itemsets containing negative

utility item whose utility is not less than user-defined min util threshold.

149

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 150

7.1 The Proposed Algorithm

In this section, we give a step-by-step analysis of the proposed algorithm. Section 7.1.1

describes the dataset cost reduction techniques to reduce the dataset scanning. Section

7.1.2 describes the pruning strategies. Section 7.1.3 introduces array-based utility

counting technique. Section 7.1.4 describes the CHUIs mining strategies. Finally,

Section 7.1.5 gives the pseudo-code and explanation of the proposed algorithm.

7.1.1 Efficient Dataset Scanning Techniques

The proposed algorithm reduces the dataset scanning costs by reducing the dataset size

using dataset projection and transaction merging techniques. The projected dataset is

scanned only once for merge the identical transactions.

Definition 7.1.1. (Transaction merging). Let the identical transactions as T1, T2, T3, Tn

replace by a new transaction TM= T1= T2 = T3 = Tn (Identical transactions may not contain

the same quantity values of each item). And quantity of each item in these identical

transactions is x ∈ TM is defined as IU(x,TM) = ∑i=1,...,n IU(x,Ti).

In the running example, transaction T2 and T7 are identical and after transaction merging

we get a new transaction T2 7. where IU(C,TM) = 7, IU(E,TM) = 3 and IU(B,TM) = 4.

We need to merge the transaction in projected datasets. Projected transactions merging

produces higher dataset reduction than original transaction merging because projected

transactions are smaller than original transactions. Therefore, the projected transaction

could be more likely to be identical.

Definition 7.1.2. (Projected dataset). The projection of a transaction Tj using an itemset

α is denoted as α−T and is defined as α−T = {i |i ∈ T ∧ i ∈ E(α)}. The projection of

a dataset D using an itemset α is denoted as α−D and is defined as the multi-set α−D

= {α−T | T ∈ D∧α−T 6= /0}.

Definition 7.1.3. (Projected transaction merging). Let the identical transactions as T1, T2,

T3, Tn in the projected dataset α −D is replace by a new transaction TM= T1= T2 = T3 =

Tn, And quantity of these identical transactions x ∈ TM is defined as IU(x,TM) = ∑i=1,...,n

IU(x,Ti).

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 151

The projected dataset α−D for α = {D} contains the identical projected transactions as

α −T1 = {E,B}, α −T3 = {E,B}, α −T4 = {E} and α −T6 = {E,B} is further merged

by a new projected transaction using offset pointers in the original dataset. Transactions

α −T1, α −T3 and α −T6 can be replaced by a new transaction T1 3 6 = {E,B} where

IU(E,T1 3 6) = 6 and IU(B,T1 3 6) = 5. The example also shows, when as we mine long

itemsets the α−D become shorter and shorter.

Transaction merging technique is desirable to reduce the size of the dataset. The main

problem to implement this technique is that to identify the identical transactions. To

achieve this, we need to compare all transactions with each other. But this technique

to compare all the transactions to each is not an efficient technique. To overcome this

problem, we follow the same transaction sorted technique �T proposed in [28]. This

sorting technique is not computationally expensive and perform only once.

Definition 7.1.4. (Total order on the transactions). For the dataset D, the total order �T

is defined as lexicographical order when the transactions are being read backward. For

more details of total order �T on the transactions, we can see in [28].

We sort the original dataset according to a new total order�T on the transactions. Sorting

of transactions has been performed in lexicographical order before merging. This sorting

is done in linear time and performs only once, so the cost of the sorting is negligible. This

sorted dataset puts up the following property. The identical transactions always appear

consecutively in the projected dataset α −D. This property binds because we read the

transaction from backward. The projection also plays an important role to remove the

smallest items of the transaction to the �T order.

7.1.2 Pruning Non-HUIs

We have so far introduced one novel tighter upper-bound RTWU which considers negative

utility for reducing the search space. Now we are going to introduce a new strategies to

prune non-HUIs. This strategy are more efficient and much tighter upper-bound on the

utility of itemsets. This strategy are calculated the utility value when the tree is traversed

in dept-first search manner.

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 152

7.1.2.1 Prune search space using Redefined Sub-tree Utility

Definition 7.1.5. (Redefined Sub-tree Utility). For an itemset α and an item x ∈ E(α),

that can be extended α to follow the depth-first search into the sub-tree. The RSU of the

item x, if α is RSU(α , x) = ∑Tj∈(α∪{x})[U(α,Tj)+U(x,Tj) + ∑i∈Tj∧i∈E(α∪{x}) U(i,T)].

Moreover in the running example α = {C}. We have that RSU(α,D) = (1+12+2) +(2+

4+3) +(4+8+1) = 37 and RSU(α,E) = (5+1+(−3)) +(1+2+(−6)) +(2+3+0)

+(4+1+(−3)) +(2+2+(−9)) = 23. we added only positive utility value according to

the Property 2.5.2.

Property 7.1.1. (RSU Overestimation). For an itemset α and an item x ∈ E(α). The

utility value of RSU(α , x) ≥ U(α ∪ {x}) and accordingly, RSU(α , x) ≥ U(x) keeps the

extension x of α ∪ {x}. The proof of sub-tree utility is presented in [28].

The relationships between the redefined upper-bounds (RTWU and RSU) and the

state-of-the-art upper bound REU are following.

REU upper-bound is presented in [24, 27] and works with utility-list data structure. The

proposed RSU is an redefined upper-bound of SU . SU is basically proposed in [28] which

works only for positive utility items. SU calculates the utility of itemset by dept-first

search in tree. Similarly the redefined upper-bound RSU calculates the utility at itemset α

by dept-first search rather than at the child itemset of α . FIGURE 5.2 in Chapter 5 shows

the difference between the proposed RSU upper-bound and REU . The figure shows that

if an itemset α with an item x has less utility than min util then the itemset with their

child is pruned for the RSU upper-bound. And in REU upper-bound, if the itemset α with

an item x has less utility than min util then the only child nodes are pruned as shown in

FIGURE 5.2. The relationship between the RWTU and TWU is already explained by the

Property 2.5.4.

In remaining chapter, we refer to items having RSU and RTWU as Primary and

Secondary respectively.

Definition 7.1.6. (Primary and Secondary items). For an itemset α . The Primary items of

itemset α is the set of items, Primary(α) = {x |x ∈ E(α) ∧ RSU(α , x) ≥ min util}. The

itemset α is the set of items Secondary(α) = {x |x ∈ E(α) ∧ RTWU(α,x) ≥ min util}.
RTWU(α , x) ≥ RSU(α , x), so Primary(α) ⊆ Secondary(α).

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 153

UA[A] UA[B] UA[C] UA[D] UA[E]
(Step 1) Initialization 0 0 0 0 0
(Step 2) After reading T1 11 11 0 11 11
(Step 3) After reading T2 11 17 6 11 17
(Step 4) After reading T3 11 32 21 26 32
(Step 5) After reading T4 11 32 30 35 41
(Step 6) After reading T5 15 32 30 35 41
(Step 7) After reading T6 32 49 47 52 58
(Step 8) After reading T7 32 53 51 52 62

FIGURE 7.1: Calculate RTWU using utility-array

7.1.3 Calculate Upper Bounds using Utility Array

Previously, we presented redefined upper-bounds to prune the search space. Now we

present an array-based technique to calculate the upper-bounds in the linear time.

Definition 7.1.7. (Utility Array) For the set of items I appear in a dataset D. The UA is an

array of length |I| that have an entry denoted as UA[x] for each item x ∈ I. Each entry is

called UA that is used to store a utility value.

7.1.3.1 Calculating RTWU of all items using UA

UA is initialized to 0. Then, the UA[x] for each item x ∈ Tj is calculated UA[x] = UA[x]

+ RTU(Tj) for each transaction Tj in the dataset D. After the dataset scanning the UA[x]

contains RTWU(x) where each item k ∈ I.

For example, RTWU of the sample transactional dataset is shown in FIGURE 7.1. The

length of UA is set equal to the number of items in the transactional dataset. RTWU

calculation process initially sets the UA with the zeros as shown in the Step 1 in FIGURE

7.1. Step 2 reads the transaction T1 and updates the UA with RTU . Transaction T1 has the

items A,B,D and E, hence, the only respective position of UA is updated with RTU value

11. Step 3 reads the transaction T2 and updates the UA with RTU value 6. Transaction

T2 has the items B,C and E and hence the respective positives in UA are updated with the

RTU value 6 as shown the step 3 in FIGURE 7.1. Similarly all the transactions read and

update the UA and finally we find RTWU value for each item.

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 154

7.1.3.2 Calculating RSU(α)

UA is initialized to 0. Then the UA[x] for each item x ∈ Tj ∩E(α) is calculated UA[x]

= UA[x] + U(α,T) + U(x,T) + ∑i∈T∧i∈E(α∪{x}) U(i,T) for each transaction Tj in the

dataset D. After the dataset scanning, the UA[x] contains RSU(α,x) ∀x ∈ I where each

item x ∈ E(α).

7.1.3.3 Calculating the support(α):

UA is initialized to 0. Then, the UA[x] for each item x ∈ Tj is calculated UA[x] = UA[x]

+ 1, if item x ∈ Tj∩ E(α). The support an itemset α is the number of transactions Tj

containing X in the dataset D.

7.1.4 Closed HUIs Mining Strategies

The main problem in CHUIs mining is how to check if an itemset is closed or not. To

solve this problem, we utilize bi-direction extension techniques presented in BIDE

algorithm [81] and incorporate these techniques into HUIs mining. BIDE is an algorithm

for mining closed itemset for frequent sequence mining. The utilized and modified

bi-direction extension techniques are based on forward and backward-extension

checking.

Forward and backward-extension checking is used to extend an itemset if it is non-closed.

An itemset X is non-closed if there must exist at least one item x in X that can be used to

extend itemset X to get a new itemset X ′ having the same support.

Definition 7.1.8. (Forward-extensions). For an itemset β = α ∪{i}. The itemset β has a

forward-extension if there exists an item y � i where y ∈ E(β) and support(β) =

support(β ∪ y).

In this extension checking, item y occurs after an item i, we call item y a forward-extension

for an itemset β . Therefore itemset β is non-closed. For example, item x′ occurs after

item x, we call x′ a forward-extension item.

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 155

Definition 7.1.9. (Backward-extensions). For an itemset β = α ∪ {i}. The itemset β

has a backward-extension if there exists an item y ≺ i where y /∈ β and support(β) =

support(β ∪ y).

In this extension checking, item y occurs before item i, we call item y a

backward-extension for an itemset β . Therefore itemset β is non-closed itemset. For

example, item x′ occurs before item x, we call x′ a backward-extension item.

Property 7.1.2. (Bi-directional extension closure checking). An itemset β = α ∪{i} is

closed HUIs if it is HUIs and if there exists neither forward-extension item nor

backward-extension item for itemset β . Otherwise, β must be non-closed itemset.

Rationale. An itemset is non-closed if it has either forward-extension or

backward-extension item as given in Definition 7.1.8 and 7.1.9.

Definition 7.1.8, 7.1.9 and Property 7.1.2 help us to prune the search space also.

Property 7.1.3. (Forward-extension pruning). For an itemset β = α ∪{i}, if an itemset β

has an forward-extension then whole subtree of an itemset β is pruned during dept-first

search.

Property 7.1.4. (Backward-extension pruning). For an itemset β = α∪{i}, if an itemset β

has an backward-extension then whole subtree of an itemset β is pruned during dept-first

search.

Forward and backward-extension techniques are very powerful and allow us to go directly

from an itemset β to its closure and prune the rest of its sub-tree during dept-fist search.

Forward and backward-extension techniques have two important properties.

Property 7.1.5. (Forward-extension, effect on utility) If an item Y is added to the left side

of an itemset, the utility of the extended itemset can only be lower or equal to the utility.

Proof: The items in the transactions are sorted according to the total order� as explained

in Definition 6.0.3. Hence the items on the left side always have less or equal RTWU

value. Therefore, the extended itemset has less or equal utility value.

Property 7.1.6. (Backward-extension, effect on utility) If an item Y is added to the right

side of an itemset, the utility of the extended itemset can only be higher or equal to the

utility.

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 156

Proof: The items in the transactions are sorted according to the total order �. Hence,

items on the right side always have higher or equal RTWU value. Therefore, the extended

itemset has higher or equal utility value.

Algorithm 14: CHN algorithm
Input: D: a tranasctional dataset, min util : minimum utility threshold specified by user.
Output: Closed High utility itemsets (CHUIs)

1 α ← /0.
2 ρ ← set of positive utility items in D.
3 η ← set of negative utility items in D.
4 Scan dataset D and calculate RTWU(x) for all items x ∈ I using UA[x].
5 Secondary(α) = {x|x ∈ I∧ RTWU(α,x) ≥ min util}.
6 Sort Secondary(α) according to the total order � where positive utility items followed

by negative utility items.
7 Remove items /∈ Secondary(α) from transactions and sort items in each transaction.
8 Remove all the empty transactions from the dataset D.
9 Sort all the remaining transactions in the dataset D according to �T .

10 Scan D, compute RSU(α,x) of each item x ∈ Secondary(α) using UA
11 Primary(α) = {x |x ∈ Secondary(α) | RSU(α,x) ≥ min util}.
12 Assign offsets to negative items in each transaction in D.
13 search pos(α , D, Primary(α), Secondary(α), min util).
14 return CHUIs.

7.1.5 CHN Algorithm

This section presents a novel algorithm for mining CHUIs with negative utility named

CHN. It utilizes several novel ideas explained in the previous sections. Algorithm 14
takes a transactional dataset D and user-defined threshold as parameters. It outputs the set

of CHUIs. Line 1 takes the itemset α as an empty set. Line 2 and line 3 initialize the ρ and

η with positive and negative items respectively. Line 4 scans the dataset and calculates

RTWU for all the items using utility array as shown in FIGURE 7.1. Line 5 generates the

Secondary items using Definition 7.1.6. Line 6 sorts the items of Secondary according to

the total order � as defined in Definition 6.0.3. Line 7 removes the items which are not

the member of the set Secondary because these deleted items cannot be member of HUIs

as described in Property 2.5.3. Line 8 removes all the empty transactions. Line 9 sorts

all the remaining transactions according to the �T as defined in Definition 7.1.4. Line

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 157

Algorithm 15: The search pos procedure
Input: α: an itemset, α−D: projected dataset, Primary(α): Primary items of α ,

Secondary(α): Secondary items of α and min util: thresholds
Output: The set of HUIs that are extensions of α with positive items.

1 foreach item i ∈ Primary(α) do
2 β = α ∪{i}; . Single-item extension of α .
3 Scan α−D, create β −D and compute U(β),
4 if β has no backward extension then
5 Calculate support(β ,y), RSU(β ,y) and RTWU(β ,y) ∀ item y ∈ Secondary(α)

by scanning β −D.
6 if support(β) == support(β ∪ y) ∀y � x ∧ y ∈ E(α) and RSU(β) > min util

then
7 prom neg(β , β −D, support(β), min util).
8 else
9 Primary(β) = {y ∈ Secondary(α) | RSU(β ,y) ≥ min util}.

10 Secondary(β) = {y|y ∈ Secondary(α) |RTWU(β ,y) ≥ min util}.
11 search pos(β , β −D, Primary(β), Secondary(β), min util).
12 if β has no forward extension and RSU(β ,y) > min util then
13 prom neg(β , β −D, support(β), min util).

Algorithm 16: The prom neg procedure
Input: η : set of promising negative items, β : an itemset, β −D: projected dataset and

min util: thresholds
Output: The set of HUIs that are extensions of β with negative items.

1 prom neg = {i |i ∈ η ∧ RSU(β ∪ i) ≥ min util }.
2 if RSU(β ,y) > min util and support(β) == support(β ∪y) ∀y � i ∧ x ∈ prom neg then
3 Output(β ∪ y).
4 else
5 search neg(β , β −D, Secondary(β));
6 if β has no forward extension and RSU(β ,y) > min util then
7 Output(β).

10 scans the dataset again and finds the RSU for each member items of Secondary set

using Definition 7.1.5. Line 11 finds the Primary items using Definition 7.1.6. Line 12

assigns the offset pointers to the first negative item in each transaction. The offset pointer

uses as the link from the positive items to the negative items. Line 13 calls the recursive

procedure Algorithm 15 (search pos) to extend the itemset α with the positive items by

performing dept-first search. The algorithm terminates and finds all the CHUIs (line 14).

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 158

Algorithm 17: The search neg procedure
Input: prom neg: set of promising negative items, β : an itemset, β −D: projected

dataset and min util: thresholds
Output: The set of HUIs that are extensions of β with negative items.

1 foreach item i ∈ prom neg do
2 γ = β ∪{i}; . Single-item extension of β .
3 Scan β −D, create γ−D and compute U(γ).
4 Calculate support(γ,x), RSU(γ,x) ∀ item x ∈ prom neg by scanning γ−D.
5 new prom neg = {i |i ∈ prom neg ∧ RSU(γ ∪ i) ≥ min util }.
6 if support(γ) == support(γ ∪ x) ∀x � i ∧ x ∈ new prom neg then
7 Output(γ ∪ x);
8 else
9 search neg(γ , γ−D, Secondary(γ));

10 if γ has no forward extension and RSU(γ,y) > min util then
11 Output(γ);

Algorithm 15 performs single positive item extension for the itemset α by calling itself

recursively. It calls a foreach loop to perform single-item extension (line 1). Line 2

performs the single-item extensions of α as β = α ∪{i}. Line 3 scans the dataset α−D

and creates the projected dataset β −D at the same time and thus utility of itemset β

is calculated. Line 4 checks for the backward extension of itemset β . If a backward

extension is not found, algorithm returns to Algorithm 16, otherwise algorithm proceeds

further. Line 5 calculates the support, RSU and RTWU of each member item of set

Secondary with the itemset β . If all the items that can extend β have the same support

as β , therefore optimization is performed to directly send β ∪ Secondary(α) items to

Algorithm 16 (lines 6–7). Otherwise, else is executed (line 8). Line 9 and 10 calculate

the Primary and Secondary items respectively. Line 11 calls the procedure Algorithm
15 recursively with the itemset β . After returning from this recursive procedure, forward

extension of β is checked and if no such extension is found, the procedure Algorithm 16
is called (lines 12–13).

Algorithm 16 takes inputs as the current itemset β , the projected dataset β −D and

min util. This algorithm first calculates list of promising negative items prom neg by

comparing utility of β ∪ {i} with min util threshold (line 1). If forward-extension

property is followed, the current itemset along with all prom neg items is output as HUI

and the algorithm returns to calling procedure (line 2–3). Otherwise, recursive procedure

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 159

Algorithm 17 is called (line 5). Line 6 checks the forward extension of the itemset β , if

forward extension is not possible then only β is output as HUI (line 7).

Algorithm 17 performs single negative item extension for the input itemset. It takes input

as the prom neg (set of promising negative items), itemset β , projected dataset β −D and

min util. It calls foreach loop and performs single negative item extension (line 1). Line

2 initializes the itemset γ with the itemset β and single negative item. The negative item is

a member of prom neg set. Line 3 scans the input projected dataset β −D and creates the

projected dataset for γ −D and thus calculates the utility of itemset γ . Line 4 calculates

the support and RSU of itemsets (γ ∪ x). Line 5 finds a new set of promising negative

items (new prom neg). Line 6 checks the support of itemset γ with support of (γ ∪ x). If

the support of these sets is equal, then the itemset (γ ∪ x) is an output set. Otherwise, line

8 executes the else block. Line 9 calls Algorithm 17 (search neg) recursively. Line 10

checks the forward extension of the itemset β , if forward extension is not possible then

only γ is output as HUI (line 11).

7.1.6 An Illustrative example

In this section, an example is given to process the proposed closed HUIs mining

algorithm. The example dataset and external utility are shown in TABLE 2.8 and TABLE

2.9 respectively. Assume min util threshold is 15. The procedure firstly calculates RTU

for the example dataset using Definition 6.0.1. TABLE 2.10 shows TU and RTU of each

item. RTU is always greater than equal to TU . Then RTWU of each item is calculated

using Definition 6.0.2. TABLE 2.11 shows RTWU values of the running example.

RTWU is also always greater than equal to TWU . Hence, RTWU is used as upper

bound. The procedure then utilizes RTWU based Property 2.5.3 to prune the

unpromising candidate itemsets. The procedure also performs dataset scanning

techniques which are discussed in Section 7.1.1.

After removing the unpromising candidate items, the procedure sorts the items of the

transaction using Definition 6.0.3 and also sorts the transaction of the dataset using

Definition 7.1.4. TABLE 2.12 shows the sorting items according to the total order �.

Then the procedure finds Primary and Secondary items using Definition 7.1.6. Primary

and Secondary items for the running example dataset are {A,C,D} and {A,C,D,E,B}

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 160

TABLE 7.1: HUIs of the running example

Itemset Utility Itemset Utility
{A, C, D} 16 {C, D, E} 37
{A, C, D, E} 17 {C, D, E, B} 19
{A, D} 20 {C, E} 23
{A, D, E} 24 {D} 28
{A, D, E, B} 15 {D, E} 37
{C, D} 31 {D, E, B} 15
{C, D, B} 16 – –

TABLE 7.2: CHUIs of the running example

Itemset Utility Itemset Utility
{A, C, D, E} 17 {C, D, E} 37
{A, D, E, B} 15 {C, E} 23
{C, D, E, B} 19 {D, E } 37

respectively. Then offset to the negative items are assigned eg., item B. Then, Algorithm
15, 16 and 17 are called to extend itemsets α with positive and negative items. Finally,

procedure finds CHUIs. Final HUIs and CHUIs of the running example are shown in

TABLE 7.1 and TABLE 7.2 respectively. Number of rules of CHUIs is always less than

HUIs as depicted in TABLE 7.1 and TABLE 7.2. HUIs have superset with same support

are not CHUIs. Hence, CHUIs can have only non-redundant HUIs.

TABLE 7.3: Statistical information about datasets

Dataset # of transactions # of distinct items Avg. length Max. Length Type
accidents 340183 468 33.8 51 Dense
chess 3196 75 37 37 Dense
mushroom 8124 119 23 23 Dense
pumsb 49046 2113 74 74 Dense
T40I10D100K 100000 942 39.6 77 Dense
BMSPOS 515366 1656 6.51 164 Sparse
retail 88162 16470 10.3 76 Sparse
T10I4D100K 100000 870 10.1 29 Sparse
kosarak 990002 41270 8.09 2498 Sparse (Large)

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 161

7.2 Experimental Results

In this section, we check the performance of our proposed algorithm (CHN). We

implemented the proposed algorithm by extending the open-source java library [77].

Experiments were performed on a PC with an Intel Core-i7-6700 machine, 3.40 GHz

CPU with 8 GB of memory, running on Windows 10 Pro (64-bit Operating System). The

experimental datasets used for the experimentation were downloaded from [77]. Some

statistical information regarding these data sets is given in TABLE 7.3. To ensure the

robustness of the results, we ran all our experiments ten times and reported the average

results.

In order to evaluate the influence of the design techniques in CHN, we check the

performance of two versions of CHN named CHN(RSU-Prune) and CHN(TM). CHN

utilizes both the dataset reduction technique T M and pruning strategy RSU .

CHN(RSU-Prune) utilizes only pruning strategy RSU where T M is disabled for this

version. Similarly, CHN(TM) utilizes only dataset reduction technique T M where

pruning strategy RSU is disabled for this version. All versions utilize RTWU based

pruning strategy.

We compare the performance of CHN and its versions with FHN [30], which is to our

best knowledge, the state-of-the-art method for HUIs mining with negative utility value.

In literature, no algorithm is present that mine closed HUIs with negative utility.

Although CHN and FHN produce different results, they mine HUIs from the datasets

having negative utility items. HUINIV-Mine is also an algorithm that produces HUIs

mining with negative utility value. However, the execution time of HUINIV-Mine cannot

be drawn in figures since it needs too much more execution time and memory.

To evaluate the performance, we executed all the version on all the datasets by

decreasing min util threshold. For the experiment, we decrease min util threshold until

all the versions take too much time or out of memory. The experimental results on dense

and sparse datasets with all the versions of the proposed algorithm are shown in the next

section.

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 162

accidents

Ru
nt

im
e

(s
ec

.)

0

20

40

60

80

100

120

140

160

180

Ru
nt

im
e

(s
ec

.)

0

20

40

60

80

100

120

140

160

180

Minimum Utility Threshold (K)
14,000 16,000 18,000 20,000 22,000 24,000

14,000 16,000 18,000 20,000 22,000 24,000

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

chess

Ru
nt

im
e

(s
ec

.)

0

1

2

3

4

5

6

7

8

9

Ru
nt

im
e

(s
ec

.)

0

1

2

3

4

5

6

7

8

9

Minimum Utility Threshold (K)
130 135 140 145 150

130 135 140 145 150

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

mushroom

Ru
nt

im
e

(s
ec

.)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ru
nt

im
e

(s
ec

.)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Minimum Utility Threshold (K)
200 250 300 350 400 450

200 250 300 350 400 450

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

pumsb
Ru

nt
im

e
(s

ec
.)

0

50

100

150

200

250

Ru
nt

im
e

(s
ec

.)

0

50

100

150

200

250

Minimum Utility Threshold (K)
5,300 5,400 5,500 5,600 5,700 5,800

5,300 5,400 5,500 5,600 5,700 5,800

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

T40I10D100K

Ru
nt

im
e

(s
ec

.)

5

10

15

20

25

30

35

40

45

Ru
nt

im
e

(s
ec

.)

5

10

15

20

25

30

35

40

45

Minimum Utility Threshold (K)
100 120 140 160 180 200

100 120 140 160 180 200

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

FIGURE 7.2: Execution time on dense datasets

7.2.1 Runtime Performance on Dense Datasets

We evaluate the runtime performance of all the versions of CHN and FHN on dense

datasets. Five dense datasets are used for runtime comparison. The performance of the

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 163

BMSPOS

Ru
nt

im
e

(s
ec

.)

0

5

10

15

20

25

30

Ru
nt

im
e

(s
ec

.)

0

5

10

15

20

25

30

Minimum Utility Threshold (K)
50 100 150 200 250 300

50 100 150 200 250 300

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

retail

Ru
nt

im
e

(s
ec

.)

0

2

4

6

8

10

12

14

16

Ru
nt

im
e

(s
ec

.)

0

2

4

6

8

10

12

14

16

Minimum Utility Threshold (K)
10 20 30 40 50 60

10 20 30 40 50 60

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

T10I4D100K

Ru
nt

im
e

(s
ec

.)

0

5

10

15

20
Ru

nt
im

e
(s

ec
.)

0

5

10

15

20

Minimum Utility Threshold
500 1,000 1,500 2,000 2,500 3,000

500 1,000 1,500 2,000 2,500 3,000

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

kosarak

Ru
nt

im
e

(s
ec

.)

0

20

40

60

80

100

120

140

Ru
nt

im
e

(s
ec

.)

0

20

40

60

80

100

120

140

Minimum Utility Threshold (K)
800 850 900 950 1,000 1,050

800 850 900 950 1,000 1,050

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

FIGURE 7.3: Execution time on sparse datasets

algorithms on all dense dataset is shown in FIGURE 7.2. For accidents and

T40I10D100K datasets, CHN(RSU-Prune) algorithm outperforms all other versions and

FHN which indicates that CHN and CHN(TM) requires more computations (for

transaction merging) than CHN(RSU-Prune). CHN(RSU-Prune) consistently requires

less runtime than all other algorithms. CHN(TM) always takes more runtime than CHN

and CHN(RSU-Prune) because of lack of pruning strategy (RSU). However, CHN(TM)

performs better than FHN. The runtime performance shows that proposed pruning

strategy (RSU-Prune) plays an important role in closed HUIs mining with negative

utility. The runtime of CHN and CHN(RSU-Prune) is almost similar for chess,

mushroom and pumsb dataset. For pumsb dataset, the execution time of CHN(TM)

cannot be drawn in FIGURE 7.2 since it needs more execution time. Transaction

merging does not perform well for datasets having large number of distinct items and

large average length of items such as pumsb dataset. FHN always take more runtime

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 164

compare to the proposed algorithm except CHN(TM) for pumsb dataset. When min util

is set lower, the gap between the proposed algorithms and FHN become larger which

indicates that proposed algorithms can run for lower min util threshold than FHN. FHN

not performs well because it join utility-lists of smaller itemsets for generating larger

itemsets. FHN considers itemsets which do not appear in the dataset, as they explore the

search space of itemsets by combining smaller itemsets, without scanning the dataset.

The proposed algorithms performs better because dense datasets contain lots of long

items and transactions. Transaction merging perform well in dense datasets.

7.2.2 Runtime Performance on Sparse Datasets

In this section, we evaluate the runtime performance of all the versions of CHN and FHN

on sparse datasets. Here, four sparse datasets are used for runtime comparison. The

performance of the algorithms on all sparse dataset is shown in FIGURE 7.3.

CHN(RSU-Prune) always performs well for all the dataset except retail. FHN performs

well than CHN and CHN(TM) for BMSPOS dataset. However, when min util threshold

decreases the runtime of FHN increases rapidly and performs bad than proposed

algorithms. Contradictorily, for retail dataset CHN(RSU-Prune) performs well than

FHN, but when min util threshold decreases the runtime of CHN(RSU-Prune) increases

rapidly as shown in FIGURE 7.3. The proposed algorithms not performs well for retail

dataset because retail has large number of distinct items. The proposed techniques such

as transaction merging not perform well for highly sparse datasets have large number of

distinct items because transaction merging takes much time to merge the transactions.

These type of datasets do not have identical transactions such as retail and kosarak. For

T10I4D100K dataset, all the versions of CHN performs well than FHN for all min util

thresholds. For kosarak dataset, CHN and CHN(RSU-Prune) performs well than FHN.

CHN(TM) does not performs well for the datasets having large number of distinct such

as retail and kosarak. Transaction merging based algorithms do not performs well for

sparse datasets which contain lots of short items.

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 165

accidents

M
em

or
y

(M
B)

600

800

1,000

1,200

1,400

1,600

M
em

or
y

(M
B)

600

800

1,000

1,200

1,400

1,600

Minimum Utility Threshold (K)
14,000 16,000 18,000 20,000 22,000 24,000

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

chess

M
em

or
y

(M
B)

0

100

200

300

400

500

M
em

or
y

(M
B)

0

100

200

300

400

500

Minimum Utility Threshold (K)
130 135 140 145 150 155

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

mushroom

M
em

or
y

(M
B)

0

100

200

300

400

500

M
em

or
y

(M
B)

0

100

200

300

400

500

Minimum Utility Threshold (K)
200 250 300 350 400 450

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

pumsb

M
em

or
y

(M
B)

200

300

400

500

600

700

800

900

1,000

M
em

or
y

(M
B)

200

300

400

500

600

700

800

900

1,000

Minimum Utility Threshold (K)
5,300 5,400 5,500 5,600 5,700 5,800

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

T40I10D100K

M
em

or
y

(M
B)

200

300

400

500

600

700

800

M
em

or
y

(M
B)

200

300

400

500

600

700

800

Minimum Utility Threshold (K)
100 120 140 160 180 200

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

FIGURE 7.4: Memory usage on dense datasets

7.2.3 Memory Usages on Dense Datasets

FIGURE 7.4 shows the memory usage of the algorithms on the dense datasets. For

accidents dataset, the proposed algorithms generally consume similar memory which is

always less than the state-of-the-art algorithm FHN. Besides, the memory consumption

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 166

of CHN(TM) is always higher than other two algorithms (CHN(RSU-Prune) and CHN)

except min util is 18000K. For chess, mushroom and T40I10D100K datasets,

CHN(RSU-Prune) and CHN consume same amount of memory. CHN(RSU-Prune) and

CHN are more stable when min util threshold is decreased compared to CHN(TM) for

chess dataset. And here also FHN consumes higher memory than all the proposed

algorithms. As min util threshold decreases, the memory consumption of FHN increase

rapidly. When min util is least (200K) CHN and CHN(RSU-Prune) perform better.

For the pumsb dataset, CHN always consumes less memory than other two variance

algorithms and FHN as shown in FIGURE 7.4. For this dataset transaction merging and

RSU techniques perform better together. Hence CHN uses less memory than other

algorithms.

FHN uses higher memory most of the time because all the utility-lists as presented in

memory while joining them. CHN(TM) not performs as well because it does not have an

efficient pruning strategy RSU .

7.2.4 Memory Usages on Sparse Datasets

FIGURE 7.5 shows the memory usage of the algorithms on sparse datasets. For

BMSPOS, retail and kosarak datasets, CHN and CHN(RSU-Prune) consumes less

memory than CHN(TM) and FHN. While min util decreases CHN uses relatively less

memory than other proposed algorithms. CHN(RSU-Prune) and CHN are more stable

when min util threshold is decreased compared to CHN(TM) and FHN. All the proposed

algorithm consume similar amount of memory for T10I4D100K dataset but FHN

consumes much high memory. For large dataset kosarak, CHN and CHN(RSU-Prune)

use less memory than FHN. For all the sparse datasets also FHN usage more memory

than proposed algorithms as shown in FIGURE 7.5.

From the above performance study, we conclude that the proposed algorithms have good

overall performance for both dense and sparse datasets. We can see that as min util

decreases CHN outperforms CHN(RSU-Prune) and CHN(TM) for most of the datasets.

CHN performs better as min util decreases and transaction merging strategy performs

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 167

BMSPOS

M
em

or
y

(M
B)

350

400

450

500

550

600

650

700

750

M
em

or
y

(M
B)

350

400

450

500

550

600

650

700

750

Minimum Utility Threshold (K)
50 100 150 200 250 300

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

retail

M
em

or
y

(M
B)

50

100

150

200

250

M
em

or
y

(M
B)

50

100

150

200

250

Minimum Utility Threshold (K)
10 20 30 40 50 60

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

T10I4D100K

M
em

or
y

(M
B)

100

200

300

400

500

600

700

M
em

or
y

(M
B)

100

200

300

400

500

600

700

Minimum Utility Threshold
500 1,000 1,500 2,000 2,500 3,000

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

kosarak

M
em

or
y

(M
B)

600

650

700

750

800

M
em

or
y

(M
B)

600

650

700

750

800

Minimum Utility Threshold (K)
800 850 900 950 1,000 1,050

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

FIGURE 7.5: Memory usage on sparse datasets

well, while datasets need more processing time. The state-of-the-art algorithm FHN

always fall behind the proposed algorithms.

7.2.5 Discussion

This chapter presents a new negative utility based closed HUIs mining algorithm. This

chapter also presents a sub-tree based strategy to prune the search space. The presented

pruning strategy calculates the utility of itemsets using array-based technique. The

proposed algorithm uses forward and backward extension techniques to efficiently mine

CHUIs. In order to overcome the dataset scanning cost, this chapter utilizes dataset

projection and transaction merging techniques. The presented ideas are evaluated on nine

benchmark datasets. The presented results are quite useful and more actionable.

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 168

The runtime improvement performance of CHN over CHN(RSU-Prune), CHN(TM) and

FHN at the lowest min util are shown in TABLE 7.4. For example, CHN is more than

2.097 and 4.071 times faster than CHN(TM) and FHN respectively as shown in TABLE

7.4. CHN is 0.589 relatively times faster (1.696 times slower) than CHN(RSU-Prune). For

memory usage comparison, CHN uses 1.075 and 2.303 times less memory than CHN(TM)

and FHN respectively. The results reveal that CHN is not faster with respect to runtime

than CHN(RSU-Prune) for most of the datasets. But CHN is always faster with respect to

runtime than CHN(TM). However, memory improvement performance of CHN is always

quite significant on all the datasets than CHN(RSU-Prune), CHN(TM) and FHN as shown

in TABLE 7.4. CHN and its variants show poorer results on runtime performance for the

retail dataset because retail is highly sparse. All the experimental evaluations show that

the proposed algorithms significantly outperform than the state-of-the-art algorithm FHN

with respect to both runtime and memory usage.

TABLE 7.4: Runtime and memory improvements of CHN over CHN(RSU-Prune),
CHN(TM) and FHN

Runtime Memory

Dataset
CHN(RSU

-Prune) CHN(TM) FHN
CHN(RSU

-Prune) CHN(TM) FHN
accidents 0.589 2.097 4.071 0.990 1.075 2.303
BMSPOS 0.588 1.041 1.138 1.003 1.067 1.253
chess 0.976 5.536 21.408 1.000 4.935 13.510
kosarak 0.634 4.553 0.978 0.985 1.089 1.223
mushroom 0.898 1.382 9.845 1.035 1.042 6.553
pumsb 0.800 648.829 44.791 1.000 1.185 1.808
retail 0.529 1.220 0.214 1.002 1.115 1.786
T10I4D100K 0.699 1.307 2.694 1.084 1.276 3.685
T40I10D100K 0.820 1.321 3.483 0.981 1.165 1.319

7.2.6 Effect of Techniques

In another performance comparison, we evaluate the influence of various techniques and

ideas utilized by the proposed algorithm. We utilize transaction merging and RSU

techniques to check the performance of the closed negative utility based mining

algorithm. In order to assess the effectiveness of these techniques, we present two

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 169

accidents

Ru
nt

im
e

(s
ec

.)

0

20

40

60

80

100

120

140

160

180

Ru
nt

im
e

(s
ec

.)

0

20

40

60

80

100

120

140

160

180

Dataset size (%)
20 40 60 80 100

20 40 60 80 100

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

T40I10D100K

Ru
nt

im
e

(s
ec

.)

0

5

10

15

20

25

30

35

40

45

Ru
nt

im
e

(s
ec

.)

0

5

10

15

20

25

30

35

40

45

Dataset size (%)
20 40 60 80 100

20 40 60 80 100

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

FIGURE 7.6: Scalability Runtime Comparison on accidents and T40I10D100K datasets

accidents

M
em

or
y

(M
B)

0

200

400

600

800

1,000

1,200

1,400

1,600

M
em

or
y

(M
B)

0

200

400

600

800

1,000

1,200

1,400

1,600

Dataset size (%)
20 40 60 80 100

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

T40I10D100K
M

em
or

y
(M

B)

0

100

200

300

400

500

600

700

800

M
em

or
y

(M
B)

0

100

200

300

400

500

600

700

800

Dataset size (%)
20 40 60 80 100

 FHN
 CHN(TM)
 CHN(RSU-Prune)
 CHN

FIGURE 7.7: Scalability Memory Comparison on accidents and T40I10D100K datasets

versions of the proposed algorithms named CHN(RSU-Prune) and CHN(TM) which

utilize only redefined sub-tree and transaction merging techniques respectively.

CHN(TM) takes more runtime on almost all the dataset because it does not utilize RSU

pruning strategy. CHN(TM) uses only transaction merging and RTWU pruning

techniques. RTWU based strategy prune limited and less number of non-HUIs itemset

compared to RSU based technique.

7.2.7 Scalability

In order to test the scalability of proposed algorithms, we use one real (accidents) and

one synthetic (T40I10D100K) datasets. We fix min util threshold to the lowest minimum

Chapter 7. Closed High Utility Itemsets Mining with Negative Utility Value 170

threshold that is used in each dataset for runtime and memory evolution. In order to

evaluate the scalability of proposed algorithms, the size of datasets is varied from 20% to

100%. FIGURE 7.6 and FIGURE 7.7 show the runtime and memory usage scalability

respectively of the proposed algorithms with FHN. These figures show that the runtime

and memory usage of proposed algorithms increase linearly with increased dataset size.

The proposed algorithms increase linearly for runtime and memory usages where FHN

increases exponentially as shown in FIGURE 7.6 and FIGURE 7.7. Therefore, the

proposed algorithms have good scalability under different dataset sizes and parameters

compare to FHN.

7.3 Summary

In this chapter, we proposed a novel closed HUIs mining algorithm named CHN was

introduced. The proposed algorithm considers negative utility. Negative utility exists in

many real-life applications. In literature, only HUINIV-Mine [29] and FHN [30]

algorithms are proposed to solve the negative utility itemsets mining. To the best of our

knowledge, this is the first piece of work to mine closed HUIs with negative utility. The

proposed CHN algorithm uses tree based data structure to store and maintain the

information of the items. Two pruning strategies have been developed to remove

non-HUIs and decrease execution time. Bi-directional extension closure checking

technique is proposed to speed up the mining process. It also proposed bi-directional

extension based two pruning strategies to prune the non-closed HUIs. CHN utilized

transaction merging and dataset projection techniques to reduce the dataset scanning

cost. CHN presented redefined TWU and redefined sub-tree strategies to prune the

search space. Furthermore, CHN utilized utility-array based utility counting techniques

to improve the performance. We presented an illustrative example of the proposed

algorithm to understand the mining process. The experimental results on dense and

sparse datasets show that the proposed algorithms are efficiently mine the closed HUIs.

CHN is up to 44 times faster in execution time than FHN. CHN consume up to 13 times

less memory than FHN. The comparison evaluation shows that the proposed algorithms

significantly performs better than the current state-of-the-art algorithm FHN.

	7 Closed High Utility Itemsets Mining with Negative Utility Value
	7.1 The Proposed Algorithm
	7.1.1 Efficient Dataset Scanning Techniques
	7.1.2 Pruning Non-HUIs
	7.1.2.1 Prune search space using Redefined Sub-tree Utility

	7.1.3 Calculate Upper Bounds using Utility Array
	7.1.3.1 Calculating RTWU of all items using UA
	7.1.3.2 Calculating RSU()
	7.1.3.3 Calculating the support():

	7.1.4 Closed HUIs Mining Strategies
	7.1.5 CHN Algorithm
	7.1.6 An Illustrative example

	7.2 Experimental Results
	7.2.1 Runtime Performance on Dense Datasets
	7.2.2 Runtime Performance on Sparse Datasets
	7.2.3 Memory Usages on Dense Datasets
	7.2.4 Memory Usages on Sparse Datasets
	7.2.5 Discussion
	7.2.6 Effect of Techniques
	7.2.7 Scalability

	7.3 Summary

