
Chapter 6

High Utility Itemsets Mining with
Negative Utility Value and Length
Constraints

In previous chapter, we have developed efficient algorithm named EHIN for mining

HUIs with negative utility. Although EHIN is more efficient than FHN. It incurs the

problem of generating a large number of candidate itemsets and most of the generated

itemsets are very small in size which degrade mining performance and action-ability. In

order to overcome these issues, we propose an algorithm named EHNL (Efficient High

utility itemsets mining algorithm with Negative utility and Length constraints). Although

negative utility and constraint-based mining are commonly seen in real-world

applications. Mining HUIs with negative utility and length constraints have not yet been

proposed in literature. For illustrative example, we utilize datasets presented in TABLE

2.8 and TABLE 2.9 in Chapter 2. The preliminary definitions and properties related to

the proposed algorithm are presented below.

Definition 6.0.1. (Redefined transaction utility) The redefined transaction utility is

denoted by RTU(Tj) for transaction Tj and is computed as RTU(Tj) = ∑
m
i U(xi,Tj) in

which m is the number of items in Tj transaction. If m ≤ max length then there is no

change in m, otherwise, m = max length. To calculate RTU , items must be sorted

according to descending order to their utility values.
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For the running example, min length and max length constraints are 1 and 4 respectively.

RTU of T1 is as RTU(T1)= U(A,T1) + U(D,T1) + U(E,T1) + U(B,T1) = 4+ 4+ 3+

(−6) = 11 because we calculate RTU by only adding the positive items. RTU(X) ≥
TU(X), because TU is the summation of all items in a transaction without any deletion

and summation of negative items where RTU is the summation of remaining items after

applying min length constraints and summation with only positive items. TABLE 6.1

shows the TU and RTU value of each transaction.

TABLE 6.1: Redefined Transaction Utility

TID Transaction TU Redefined TU
T1 A,B,D,E 5 11
T2 B,C,E 3 6
T3 B,C,D,E 9 15
T4 C,D,E 9 9
T5 A 4 4
T6 A,B,C,D,E 14 16
T7 B,C,E -5 4

The number of items in transaction T6 is more than max length threshold. Hence, we

calculate RTU by summation of only utility item equal to max length threshold. Now

RTU of T6 is RTU(T6) = U(A)+ U(B)+ U(C)+ U(D) = 4+ (−3) + 4+ 8 = 16. If

max length threshold is considered as 5 than the RTU is 17 because length of items in T6

meets the max length threshold and no need to drop any item.

Definition 6.0.2. (Redefined transaction weighted utility). The redefined transaction

weighted utility (RTWU) of an itemset X is defined as RTWU(X) =∑X⊆Tj∈D RTU(Tj)

For example, RTWU value of item A is calculated as, RTWU(A) = RTU(A,T1)+

RTU(A,T5)+ RTU(A,T6) = 11+ 4+ 16 =31. RTWU cannot be less than TWU and

actual utility value of itemsets, hence can be used as an upper bound.

Definition 6.0.3. (Ordering of items). The items in the transactions are sorted according

to the � total order as RTWU ascending order. For the running example, the sorted items

are as A� C � D� E � B. For the sample dataset, the ordered set of items are provided

in TABLE 6.2.
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Definition 6.0.4. (Extension of an item). Let the itemset be α and set of items that used

to extend the itemset α is denoted as E(α) and is defined as E(α) = {x |x ∈ I ∧ x � i,

∀i ∈ α}.

Definition 6.0.5. (Extension of an itemset). Let the itemset be α and Y is an extension of

α that appears in a sub-tree of α in the set-enumeration tree. If Y = α ∪ X for an itemset

X ∈ 2E(α). The maximum length of an itemset after extension must not be greater than

max length threshold.

Here, Y is a single-item extension of α that is a child of α in the set-enumeration tree. If

Y = α ∪ {X} for an item X ∈ E(α).

For example α = {C}. The set E(α) is {D,E}. And single-item extensions of α are

{C,D}, {C,E} and {D,E}. The itemsets extensions of α is {C,D,E}.

Definition 6.0.6. (Extension of negative item). Let the itemset be α which can be extended

to itemset X , where Y = α ∪{X} and X is a set of items with negative utility.

Rationale. α ∪ {X} only occurs in less or equal than the number of transactions

containing itemset α . Extensions of itemset α with positive utility item may be less or

equal or greater than the utility of itemsets α . But extensions of itemset X with negative

utility item always decrease the utility of itemsets as proposed by the Property 2.5.1.

Hence, from the above properties, if an itemsets U(α) > min util then the negative

utility itemsets X is added to itemsets α . The number of extended itemset must not be

greater than max length threshold according to length constraints. The utility of

extended itemset is still greater or equal to min util then the itemset is HUIs.

Definition 6.0.7. (High utility itemsets). An itemset X is called a high utility itemsets if

and only if U(X)≥ min util where min util is a user-defined minimum utility threshold.

For the running example, TABLE 6.3 shows HUIs where min length, max length and

min util are 2, 3 and 15 respectively.

Two-phase based algorithms suffer from multiple dataset scans and generate lots of

candidates. In order to overcome these limitations, one-phase algorithms are proposed.

One-phase algorithms are more efficient than two-phase algorithms concerning

execution time and memory space. Most of the one-phase algorithms use utility-list
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based data structure to store the information of items and the remaining utility based

pruning strategy to prune the search space [24, 25, 26, 27, 28]. The proposed algorithm

EHNL do not utilize utility-list and utility-list based pruning strategy. We introduce here

utility-list for comparison with the our proposed strategies to prune the search space.

Definition 6.0.8. (Utility-list structure). The utility-list structure contains three fields,

Tid, iutil, and rutil. The Tid indicates the transactions containing itemset X , iutil indicates

the U(X) and the rutil indicates the remaining utility of itemset, that is RU(X ,Tj)

Definition 6.0.9. (Remaining utility of an itemset in a transaction). The remaining utility

of itemset X in transaction Tj denoted by RU(X ,Tj) is the sum of the utilities of all the

items in Tj/X in Tj where RU(X ,Tj) = ∑i∈(X ,Tj) U(i,T ) [24, 25, 27].

Property 6.0.1. (Pruning search space using remaining utility). For an itemset X , if the

sum of U(X)+RU(X) is less than min util, then itemset X and all it’s supersets are low

utility itemsets. Otherwise, the itemset is HUIs. The detail and proof of the remaining

utility upper bound (REU) based upper bound are given in [24, 30].

Definition 6.0.10. (Largest length in a transaction). For the itemset X and transaction Tj,

if V (Tj,X) = {v1,v2, . . . ,vk} is the set of items occurring in Tj then itemsets X can be

extended, i.e. V (Tj,X) = {v ∈ Tj|v � x,∀x ∈ X}. The max length constraint set has the

maximum length of the itemset X . The max length also describes the length of the item

that can be added to an itemset X as maxExtend(X) = max length− |X | where |X | defines

the number of items in X . maxExtend is used while extending the itemsets. The largest

utility value with X for transaction Tj is denoted as L(Tj,X) [47].

Problem statement. We determine all the itemsets whose utility is not less than

user-defined min util threshold and length of itemsets are not less than min length and

not greater than max length thresholds.

6.1 The Proposed Algorithm

In this section, we give a step-by-step analysis of the proposed algorithm named EHNL.

Section 6.1.1 describes the dataset cost reduction techniques to reduce the dataset

scanning. Section 6.1.2 describes the pruning strategies. Section 6.1.3 introduces



Chapter 6. HUIs Mining with Negative Utility Value and Length Constraints 123

array-based utility counting technique. Finally, Section 6.1.4 gives the pseudo-code and

explanation of the proposed algorithm.

6.1.1 Efficient Dataset Scanning Techniques

The proposed algorithm reduces the dataset scanning costs by reducing the dataset size

using dataset projection and transaction merging techniques. We check min length

constraint before apply dataset scanning techniques.

Definition 6.1.1. (Transaction merging). Let the identical transaction be T1, T2, T3, Tn

replaced by a new transactions TM= T1= T2 = T3 = Tn (Identical transactions may not

contain the same quantity values of each item). And quantity of each item in these

identical transactions is x ∈ TM is defined as IU(x,TM) = ∑i=1,...,n IU(x,Ti).

In the running example, transaction T2 and T7 are identical and after transaction merging

we get a new transaction T2 7. where IU(C,TM) = 7, IU(E,TM) = 3 and IU(B,TM) = 4.

We need to merge the transaction in projected datasets. Projected transactions merging

produces higher dataset reduction than original transaction merging because projected

transactions are smaller than original transactions. Therefore, the projected transactions

could be more likely to be identical.

Definition 6.1.2. (Projected dataset). The projection of a transaction Tj using an itemset

α is denoted as α−T and is defined as α−T = {i |i ∈ T ∧ i ∈ E(α)}. The projection of

a dataset D using an itemset α is denoted as α−D and is defined as the multi-set α−D

= {α−T | T ∈ D∧α−T 6= /0}.

Definition 6.1.3. (Projected transaction merging). Let the identical transactions be T1, T2,

T3, Tn in the projected dataset α −D replaced by a new transaction TM= T1= T2 = T3 =

Tn. And quantity of these identical transactions x ∈ TM is defined as IU(x,TM) = ∑i=1,...,n

IU(x,Ti).

The projected dataset α−D for α = {D} contains the identical projected transactions as

α −T1 = {E,B}, α −T3 = {E,B}, α −T4 = {E} and α −T6 = {E,B} is further merged

by a new projected transaction using offset pointers in the original dataset. Transactions

α −T1, α −T3 and α −T6 can be replaced by a new transaction T1 3 6 = {E,B} where
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IU(E,T1 3 6) = 6 and IU(B,T1 3 6) = 5. The example also shows that when as we mine

long itemsets the α−D become shorter and shorter.

Transaction merging technique is desirable to reduce the size of the dataset. The main

problem to implement this technique is to identify the identical transactions. To achieve

this, we need to compare all transactions with each other. But this technique to compare all

the transactions to each other is not an efficient technique. To overcome this problem, we

follow the same transaction sorted technique �T proposed in [28]. This sorting technique

is not computationally expensive and performs only once.

Definition 6.1.4. (Total order on the transactions). For the dataset D, the total order �T

is defined as lexicographical order when the transactions are being read backward. For

more details and complexity of total order �T on the transactions, we can see in [28].

We sort the original dataset according to a new total order �T on the transactions.

Sorting of transactions has been performed using RTWU before merging. This sorting is

done in linear time and performs only once, so the cost of the sorting is negligible. This

sorted dataset puts up the following property. The identical transactions always appear

consecutively in the projected dataset α −D. This property binds because we read the

transaction from backward. The projection also plays an important role to remove the

smallest items of the transaction to the �T order.

6.1.2 Pruning Strategies

We have so far introduced one novel tighter upper-bound RTWU which considers negative

utility and length constraints for reducing the search space. Now we are going to introduce

two new strategies to prune the search space. These strategies are more efficient and much

tighter upper-bound on the utility of itemsets. These strategies are calculated when the tree

is traversed in dept-first search manner.

6.1.2.1 Prune search space using Redefined Sub-tree Utility

Definition 6.1.5. (Redefined Sub-tree Utility). For an itemset α and an item x ∈ E(α)

that can be extended α to follow the depth-first search into the sub-tree. To get the RSU
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of the item x w.r.t.1 α is RSU(α , x) = ∑Tj∈(α∪{x})[U(α,Tj)+U(x,Tj) + ∑i∈Tj∧i∈E(α∪{x})

U(i,T )].

Moreover in the running example α = {C}, we have RSU(α,D) = (1+ 12+ 2) +(2+

4+3) +(4+8+1) = 37 and RSU(α,E) (5+1+(−3)) = +(1+2+(−6)) +(2+3+0)

+(4+ 1+(−3)) +(2+ 2+(−9)) = 23. We added only positive utility value according

to the Property 2.5.2.

Property 6.1.1. (RSU Overestimation). For an itemset α and an item x ∈ E(α), the utility

value of RSU(α , x) ≥ U(α ∪ {x}) and accordingly. Here RSU(α , x) ≥ U(x) keeps the

extension x of α ∪ {x}. The proof of sub-tree utility is presented in [28].

The relationships between the redefined upper-bounds (RTWU and RSU) and the

state-of-the-art upper bound REU are given as follows.

REU upper-bound is presented in [24, 27] and is calculated with utility-list data structure.

The proposed RSU is a redefined upper-bound of SU . SU is proposed in [28] which works

only for positive utility items. SU calculates the utility of itemset by dept-first search in

tree. Similarly, redefined upper-bound RSU calculates the utility at itemset α by dept-first

search rather than at the child itemset of α . FIGURE 5.2 shows the difference between

the proposed RSU upper-bound and REU . The figure shows that if an itemset α with an

item x have less utility than min util then the itemset with their child is pruned for the

RSU upper-bound. And in REU upper-bound, if the itemset α with an item x has less

utility than min util then the only child nodes are pruned as shown in FIGURE 5.2. The

relationship between the RWTU and TWU is already explained by the Property 2.5.4.

In remaining chapter, we refer to items having RSU and RTWU as Primary and

Secondary respectively.

Definition 6.1.6. (Primary and Secondary items). For an itemset α , the Primary items of

itemset α are the set of items, Primary(α) = {x |x∈ E(α) ∧ RSU(α , x)≥min util}. The

itemset α is the set of items Secondary(α) = {x |x ∈ E(α) ∧ RTWU(α,x) ≥ min util}.
The RTWU(α , x) ≥ RSU(α , x), so Primary(α) ⊆ Secondary(α).

1with respect to
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UA[A] UA[B] UA[C] UA[D] UA[E]
(Step 1) Initialization 0 0 0 0 0
(Step 2) After reading T1 11 11 0 11 11
(Step 3) After reading T2 11 17 6 11 17
(Step 4) After reading T3 11 32 21 26 32
(Step 5) After reading T4 11 32 30 35 41
(Step 6) After reading T5 15 32 30 35 41
(Step 7) After reading T6 32 49 47 52 58
(Step 8) After reading T7 32 53 51 52 62

FIGURE 6.1: Calculate RTWU using utility-array

6.1.2.2 Pruning using Length Constraints

Definition 6.1.7. (Length Constraints) If |Tj|< min length then the transaction Tj is

removed from the dataset D. And if |Tj|≥ max length then the maximum items consider

calculating TU where transaction Tj is equal to max length. To remove very small items,

min length constraint plays an important role.

The proposed technique prunes candidates which do not fulfill the length constraints.

We initially remove the transactions which do not fulfill the minimum length constrains.

We compare the length of candidates HUIs with max length constraint. If the length of

any candidate HUIs is equal to upper-length constraint then recursion of adding extended

itemsets are stopped. Otherwise, new items are added to enhance the length of items using

recursive functions explained in next subsection. The proposed algorithm is inspired by a

similar length-based HUIs mining algorithm FHM+.

6.1.3 Calculate Upper Bounds using Utility Array

Previously, we presented redefined upper-bounds to prune the search space. Now we

present an array-based technique to calculate the upper-bounds in the linear time.

Definition 6.1.8. (Utility Array). For the set of items I appeared in a dataset D, the UA is

an array of length |I| that have an entry denoted as UA[x] for each item x ∈ I. Each entry

is called UA that is used to store a utility value.

Initially, we delete the transactions based on min length. After that, the remaining length

of transactions is |I|. So the UA calculates upper-bounds, as follows.
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Calculating RTWU of all items using UA: UA is initialized to 0. Then, the UA[x] for

each item x ∈ Tj is calculated UA[x] = UA[x] + RTU(Tj) for each transaction Tj in the

dataset D. After the completion of dataset scanning, the UA[x] contains RTWU(x) where

each item x ∈ I.

For example, RTWU of the sample transactional dataset is shown in FIGURE 6.1. The

length of UA is set equal to the number of items in the transactional dataset. The RTWU

calculation process initially sets the UA with the zeros as shown in the Step 1 in FIGURE

6.1. Step 2 reads the transaction T1 and updates the UA with RTU . Transaction T1 has the

items A,B,D and E, hence, the only respective position of UA is updated with RTU value

11. Step 3 reads the transaction T2 and updates the UA with RTU value 6. Transaction

T2 has the items B,C and E and hence the respective positives in UA is updated with the

RTU value 6 as shown the step 3 in FIGURE 6.1. Similarly all the transactions are read

and the UA are updated. Finally we find the RTWU value for each item.

Calculating RSU(α): UA is initialized to 0. Then the UA[x] for each item x ∈ Tj ∩E(α)

is calculated as UA[x] = UA[x] + U(α,T ) + U(x,T ) + ∑i∈T∧i∈E(α∪{x}) U(i,T ) for each

transaction Tj in the dataset D. After the dataset scanning, the UA[x] contains RSU(α,x)

∀x ∈ I where each item x ∈ E(α).

Calculating Length(α): UA is initialized to 0. Then the UA[x] for each item x ∈ Tj

∩E(α) is calculated as UA[x] =UA[x]+1 for each transaction Tj in the dataset D. After

the dataset scanning, the UA[x] contains Length(α,x) ∀x ∈ E(α) where each item x ∈
E(α).

6.1.4 EHNL Algorithm

This section presents a novel algorithm for mining HUIs with negative utility and length

constraints named EHNL. It utilizes several novel ideas explained in the previous

sections. Algorithm 11 takes a transactional dataset D and three user-defined thresholds

as parameters. It outputs the set of HUIs. Line 1 takes the itemset α as an empty set.

Line 2 initializes the η a sets with set of negative utility items. In line 3-13, foreach loop

is used to delete the transactions which do not fulfill the min length threshold and

calculate the RTU for the dataset D. Line 4 initializes ι with the length of transaction Tj.
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Algorithm 11: EHNL algorithm
Input: D: a tranasctional dataset, user-specified threshold: min util, min length and

max length
Output: High utility itemsets (HUIs) in D

1 α ← Ø;
2 η ← set of negative utility items in D;
3 foreach Tj ∈ D do
4 ι ← |Tj| . no. of items in Tj
5 if ι < min length then
6 Remove Tj from D;

7 else if ι > max length then
8 sort items of Tj in decreasing order;
9 β ← 0

10 count← 0
11 for count ≤ max length do
12 β ← β +U(count);

13 U(Tj)← β ; . update RTU(Tj) with β

14 Scan dataset D and compute RTWU(α,x) for item x ∈ I, using UA[x]. . SeeDefinition
6.0.2

15 Secondary(α) = {x | x ∈ I ∧ RTWU(α,x) ≥ min util}.
16 Let � be the total order of RTWU increasing values on Secondary(α)
17 Scan D, remove item x /∈ Secondary(α) from the transactions Tj and delete empty

transactions Tj;
18 Sort all the remaining transactions in D according to �T with positive utility items

followed by negative utility items
19 Assign offsets to negative items in each transaction in D.
20 Scan dataset D and compute the RSU(α,x) of each item x ∈ Secondary(α), using UA[x];
21 Primary(α) = {x| x ∈ Secondary(α) ∧ RSU(α,x) ≥ min util};
22 Search pos(α , D, Primary(α), Secondary(α), min util, max length);
23 return HUIs;

Line 5 checks the length of transaction Tj with min length threshold. If transaction Tj

has less items than min length then the transaction Tj is removed from the dataset D (line

6). Line 7 checks the length of Tj with max length, if the length is higher than

max length threshold then line 8 sorts the items of Tj in decreasing order to find the

RTU . Line 9 and line 10 initialize the variables β and count with zero. Line 11 calls the

for loop and calculates the utility of the transaction Tj (in line 12). Line 13 updates the

utility of transaction with the value of β where β represents the utility value of

transaction Tj where maximum items in Tj are equal to the max length. Line 14 scans
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the dataset D and calculates RTWU for all positive items in D. Line 15 determines the

Secondary items of α using Definition 6.1.6. Line 16 sorts the items of Secondary set by

using Definition 6.0.3. Line 17 scans the dataset D and deletes the items which are not

the member of the Secondary set. After removal of these items some transactions

become empty, so we drop these empty transactions. Line 18 sorts the remaining

transactions according to �T order where positive utility items are followed by negative

utility items. Line 19 connects negative utility items in each transaction with the help of

offset pointer. The offset pointer keeps the address of first negative item. Line 20 scans

the dataset D and calculates the RSU value of each Secondary item with itemset α . Line

21 determines the Primary items of α using Definition 6.1.6. Line 22 calls the recursive

algorithm Search pos (Algorithm 12) to extend the itemset α with positive items by

performing dept-first search.

Algorithm 12: The Search pos procedure
Input: α : an itemset, α−D : a projected dataset, Primary(α) : the primary items of α ,

Secondary(α): the secondary items of α , min util, max length.
Output: The set itemsets which are extensions of α with positive items and satisfies

max length threshold
1 if | α | < max length then
2 foreach item x ∈ Primary(α) do
3 β ← α ∪{x} . See Definition 6.0.5
4 ι ← | β | . no. of items in α

5 Scan α−D, compute U(β ) and create β −D;
6 if U(β )≥ min util then
7 Output β

8 if U(β )> min util and ι < max length then
9 Search neg(η , β , β −D , min util, max length);

10 Scan β −D, compute RSU(β ,x) and RTWU(β ,x) where item x ∈
Secondary(α), using two UAs

11 Primary(β ) = {x ∈ Secondary(α) | RSU(β ,x) ≥ min util}
12 Secondary(β ) = {x ∈ Secondary(α) | RTWU(β ,x) ≥ min util}
13 if ι < max length then
14 Search pos(β , β −D, Primary(β ), Secondary(β ), min util, max length);

Algorithm 12 takes current itemset α to be extended with positive utility items. Line 1

initializes the variable ι with the length of itemset α . Line 2 checks the length of itemset

α , if the length of itemset α is larger than max length threshold, the process returns back
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Algorithm 13: The Search neg procedure
Input: η : set of promising negative items, β : an itemset, β −D: the projected dataset,

min util and max length
Output: The set itemsets which are extensions of β with negative items.

1 ι ← | β | . no. of items in β

2 if ι < max length then
3 foreach each item x ∈ η do
4 γ = β ∪{x}; . Extension of β with negative item.
5 Scan β −D, compute U(γ) and create γ−D.
6 if U(γ)≥ min util then
7 Output γ

8 Calculate RSU(γ,x) for all item x ∈ η by scanning γ−D once, using the UA.
9 Primary(γ) = {x ∈ η | RSU(γ,x) ≥ min util}.

10 Search neg(Primary(γ), γ , γ−D, min util, max length)

to the calling algorithm. Otherwise, itemset α needs to extend more. Line 3-13 extend the

itemset α with the items which are member of the Primary set. Line 4 adds an item x into

itemset α where item x is a member of Primary set. Line 5 scans the projected dataset

α−D and calculates the utility of extended itemset β , Thereafter, projected dataset β −D

is created. Line 6 checks the utility of itemset β with min util threshold. If the utility

of itemset β is not less than min util threshold then the itemset β is HUIs (line 7). Line

8 checks the condition, if the utility of itemset β is greater than min util threshold then

Search neg (Algorithm 13) is called to extend the itemset β with negative utility items

(line 9). Line 10 scans the projected dataset β−D and calculates RTWU and RSU value of

items with the itemset β . Line 11 and line 12 determine the Primary and Secondary items

of β respectively using Definition 6.1.6. Line 13 calls the recursive algorithm Search neg

to again extend the itemset β by performing dept-first search.

Algorithm 13 takes current itemset β to be extended with negative utility items. Line 1

initializes the variable ι with the length of itemset β . Line 2 checks the length of itemset

α , if the length of itemset α is not less than max length threshold, the process returns

back to the calling algorithm. Otherwise, itemset β needs to extend with negative utility

item. Line 3-10 extend the itemset β with the negative utility items which are member of

set η . Line 4 adds an item x into itemset β where item x is a member of set η . Line 5 scans

the projected dataset β −D and calculates the utility of extended itemset γ . Thereafter,

projected dataset γ −D is created. Line 6 checks the utility of itemset γ with min util
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threshold. If the utility of itemset γ is not less than min util threshold then the itemset γ is

HUIs (line 7). Line 8 calculates the RSU of each the member items of set η with itemset

γ . Line 9 determines the Primary set for the itemset γ . Finally, recursive procedure

Search neg is called to further extend itemset with the negative utility items.

6.1.5 An Illustrative Example

In this section, a simple illustrative example is given to explore HUIs mining process. Let

us assume that there are seven transactions in an example dataset as shown in TABLE 2.8

and there are five items which appear with their internal quantity. We further assume that

the external utility or profit value of every single item is predefined as in TABLE 2.9. In

order to understand more about the length constraints and proposed algorithm, here we

assume min util min length and max length threshold as 15, 2 and 3 respectively.

TABLE 6.2: Sorted items according to � total order with their RTWU value

Tid Transaction Utility (U) RTU
T1 A,D,E,B 4, 4, 3, -6 11
T2 C,E,B 5, 1, -3 6
T3 C,D,E,B 1, 12, 2, -6 15
T4 C,D,E 2, 4, 3 9
T6 A,C,D,E,B 4, 4, 8, 1, -3 16
T7 C,E,B 2, 2, -9 4

TABLE 6.3: Final HUIs of the running example

Itemset Utility Itemset Utility
{A,C,D} 16 {C,D,E} 37
{A,D} 20 {C,E} 23
{A,D,E} 24 {D,E} 37
{C,D} 31 {D,E,B} 15
{C,D,B} 16 – – – –

The proposed algorithm uses Definition 6.0.1 to overestimate the transaction utility.

TABLE 6.2 shows RTU values for this example. The transaction T5 is removed because
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TABLE 6.4: Dataset characteristics.

Dataset # of
transactions

# of
distinct
items

Avg.
length

Max.
length

Type

accidents 340183 468 33.8 51 Dense
chess 3196 75 37 37 Dense
mushroom 8124 119 23 23 Dense
T10I4D100K 100000 870 10.1 29 Sparse
T40I10D100K 100000 942 39.6 77 Dense

this transaction has less items than the min length constraint. And the RTU value of the

transaction T6 now is 16 instead of 17 because max length constraint is assumed here 3.

RTU value is calculated by summation by only three items instead to four items for this

example. Then the proposed algorithm calculates RTWU . For this example, RTWU

values are A = 27, B = 45, C = 43, D = 44 and E = 54.

RTWU values of items are not less than min util then the items are considered as

Secondary itemset. The items in Secondary(α) = {A,B,C,D,E}. After this, all items are

sorted according to the � total order. The second column of TABLE 6.2 shows the sorted

items according to � total order. And the third column shows the utility values of the

sorted items. Thereafter, the items are removed which are not the elements of Secondary

set. At the same time, empty transactions are removed from the dataset. After that, the

proposed algorithm scans dataset again and calculates RSU of all itemsets. The items of

RSU which are having utility not less than min util are in Primary set. Only the items of

the Primary set are used to explore by depth-first search. Algorithm 12 finds descendant

nodes in sub-tree using dept-first search. The Search neg algorithm is recursively called

to extend all items with the positive items as well as with the negative items. After

executing all the algorithms, we found the final HUIs of this example. TABLE 6.3 shows

the final HUIs with their utility values while assuming min util min length and

max length threshold as 15, 2 and 3 respectively.
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FIGURE 6.2: Runtime performance on accidents dataset

TABLE 6.5: Number of candidates on accidents dataset

EHNL EHNL(RSUP) EHNL(TM)
min util(k) L(5) L(10) L(15) L(20) L(5) L(10) L(15) L(20) L(5) L(10) L(15) L(20)

8000 594 1689 1827 1827 594 1689 1827 1827 919 4239 5147 5147
10000 243 919 986 1002 243 919 986 1002 341 2483 2995 3110
12000 174 514 580 580 174 514 580 580 218 1240 1720 1720
14000 141 322 338 368 141 322 338 368 209 746 854 1033
16000 47 216 226 226 47 216 226 226 99 528 591 591
18000 6 135 144 144 6 135 144 144 12 318 373 373

TABLE 6.6: Number of candidates on chess dataset

EHNL EHNL(RSUP) EHNL(TM)
min util(k) L(5) L(10) L(15) L(20) L(5) L(10) L(15) L(20) L(5) L(10) L(15) L(20)

60 14409 52489 52584 52584 14409 52489 52584 52584 41142 232595 234229 234229
80 8549 20513 20513 20513 8549 20513 20513 20513 30046 120564 120721 120721

100 5246 9233 9416 9416 5246 9233 9416 9416 23304 65845 68487 68487
120 2549 4727 4727 4727 2549 4727 4727 4727 12213 39832 39832 39832
140 1487 2471 2476 2629 1487 2471 2476 2629 8392 21754 21214 24896
160 912 1132 1441 1595 912 1132 1441 1595 5431 8735 13055 16247
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FIGURE 6.3: Runtime performance on chess dataset

TABLE 6.7: Number of candidates on mushroom dataset

EHNL EHNL(RSUP) EHNL(TM)
min util(k) L(5) L(10) L(15) L(20) L(5) L(10) L(15) L(20) L(5) L(10) L(15) L(20)

250 193 579 599 599 193 579 599 599 914 3277 3933 3828
300 43 237 253 253 43 237 253 253 190 1759 2464 2464
350 17 78 84 84 17 78 84 84 37 1197 1382 1382
400 8 28 34 34 8 28 34 34 23 229 878 878
450 3 19 23 23 3 19 23 23 7 150 315 315
500 3 9 14 14 3 9 14 14 6 68 113 103

6.2 Experimental Results

In this section, we check the performance of our proposed algorithm (EHNL), We

implemented the proposed algorithm by extending the open-source java library [77].

Experiments were performed on a PC with an Intel Core-i7-6700 machine, 3.40 GHz

CPU with 8 GB of memory, running on a Windows 10 Pro (64-bit Operating System).
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FIGURE 6.4: Runtime performance on mushroom dataset

TABLE 6.8: Number of candidates on T10I4D100K dataset

EHNL EHNL(RSUP) EHNL(TM)
min util(k) L(5) L(10) L(15) L(20) L(5) L(10) L(15) L(20) L(5) L(10) L(15) L(20)

20 864 885 887 888 864 885 887 888 2108 2196 2219 2225
25 593 616 621 621 593 616 621 621 1430 1596 1624 1641
30 428 450 462 465 428 450 462 465 1035 1149 1191 1212
35 338 355 361 363 338 355 361 363 774 857 884 900
40 266 284 292 296 266 284 292 296 572 664 714 728
45 223 237 242 244 223 237 242 244 471 552 588 606

For the performance test, the following benchmark databases in SPMF [77] were chosen:

accidents, chess, mushroom, T10I4D100K and T40I10D100K. The accidents, chess and

mushroom are real and dense datasets. The others are synthetic datasets. TABLE 6.4

shows the detailed characteristics of all the datasets. To ensure robustness of the results,

we ran all our experiments ten times to report the average results.
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FIGURE 6.5: Runtime performance on T10I4D100K dataset

TABLE 6.9: Number of candidates on T40I10D100K dataset

EHNL EHNL(RSUP) EHNL(TM)
min util(k) L(5) L(10) L(15) L(20) L(5) L(10) L(15) L(20) L(5) L(10) L(15) L(20)

100 7813 8816 8915 8947 7813 8816 8915 8947 52326 72114 73430 73884
120 5305 5930 5995 6029 5305 5930 5995 6029 34608 45518 47106 47601
140 3626 4292 4366 4398 3626 4292 4366 4398 23047 32765 33979 34405
160 2596 3222 3277 3302 2596 3222 3277 3302 17302 25191 26987 27209
180 1873 2458 2549 2569 1873 2458 2549 2569 11719 19103 20617 21160
200 1364 1900 2008 2035 1364 1900 2008 2035 8293 14205 15523 16003

In order to evaluate the influence of the design techniques in EHNL, we check the

performance of two versions of EHNL named EHNL(RSUP) and EHNL(TM). EHNL

utilizes both the dataset reduction techniques T M and pruning strategy RSU .

EHNL(RSUP) utilizes only pruning strategy RSU where T M is disabled for this version.

Similarly, EHNL(TM) utilizes only one dataset reduction techniques T M where pruning

strategy RSU is disabled for this version.
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FIGURE 6.6: Runtime performance on T40I10D100K dataset

TABLE 6.10: Number of HUIs mined on accidents and chess dataset

accidents chess
min util(k) L(5) L(10) L(15) L(20) min util(k) L(5) L(10) L(15) L(20)

8000 2230 13211 13280 13280 60 20091 561713 675765 675765
10000 928 3929 3929 3929 80 5429 67976 70922 70922
12000 448 1311 1311 1311 100 1252 7896 7917 7917
14000 211 470 470 470 120 236 825 825 825
16000 63 167 167 167 140 28 57 57 57
18000 5 60 60 60 160 2 2 2 2

To evaluate the performance, we executed all the version on all the benchmark datasets

by decreasing min util threshold. For the experiment, we set the four different

max length threshold as 5, 10, 15 and 20, where the min length is set 2. We decrease

min util threshold until all the versions take too much time or out of memory. The

experimental results on all the datasets with all the versions of the proposed algorithm
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FIGURE 6.7: Memory consumption on accidents dataset

TABLE 6.11: Number of HUIs mined on mushroom dataset

accidents
min util(k) L(5) L(10) L(15) L(20)

250 107 791 868 868
300 42 139 151 151
350 14 22 23 23
400 6 7 7 7
450 3 3 3 3
500 1 1 1 1

are shown in the following.

On the dataset accidents, EHNL and EHNL(TM) give similar performance for all

max length thresholds. When max length threshold is 20, all versions of EHNL take

almost same amount of runtime as shown in FIGURE 6.2. For chess and mushroom

datasets, runtime of EHNL and EHNL(RSUP) almost same as shown in FIGURE 6.3
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FIGURE 6.8: Memory consumption on chess dataset

TABLE 6.12: Number of HUIs mined on T10I4D100K and T40I10D100K dataset

T10I4D100K T40I10D100K
min util(k) L(5) L(10) L(15) L(20) min util(k) L(5) L(10) L(15) L(20)

20 279 291 291 291 100 679 10908 13773 13775
25 136 141 141 141 120 233 4116 5125 5125
30 56 58 58 58 140 69 1161 1406 1406
35 27 28 28 28 160 24 196 219 219
40 11 12 12 12 180 10 14 14 14
45 3 4 4 4 200 6 6 6 6

and FIGURE 6.4 which means T M technique not give much effect on these type of

dataset with length constraints.

For T10I4D100K and T40I10D100K datasets, EHNL(RSUP) outperforms EHNL and

EHNL(TM) for all max length thresholds because the number of distinct items in these

datasets are higher. Hence, EHNL and EHNL(TM) take more time while merging and
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FIGURE 6.9: Memory consumption on mushroom dataset

merge less number of items. The runtime comparison of all the versions on T10I4D100K

and T40I10D100K are shown in FIGURE 6.5 and FIGURE 6.6 respectively.

6.2.1 Effect of Techniques

The proposed algorithm uses transaction merging technique to reduce the dataset

scanning cost. The proposed algorithm also uses sub-tree based pruning technique to

prune the search space. In order to assess the effectiveness of these techniques, we

present two versions of the proposed algorithm named EHNL(RSUP) and EHNL(TM)

which utilize only sub-tree and transaction merging techniques respectively. EHNL(TM)

take more runtime on almost all the dataset, because it does not utilize RSUP pruning

strategy. EHNL(TM) uses only transaction merging and RTWU pruning technique.
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FIGURE 6.10: Memory consumption on T10I4D100K dataset

RTWU based technique prune only limited number of non-HUIs itemset compared to

sub-tree based technique. The comparison and relationship between RSUP and RTWU

show that RSU is far better than basic TWU . However, transaction merging technique

merges lot of identical transactions. EHNL(TM) uses transaction merging technique and

shows the effectiveness of this merging technique. For sparse datasets which have many

distinct items, the transaction merging technique is not much effective. Hence,

EHNL(RSUP) consumes less runtime for T10I4D100K and T40I10D100K datasets.

Therefore, for the space and a large number of distinct items datasets, we can use

EHNL(RSUP) instead of EHNL and EHNL(TM) algorithms.

The number of candidate itemsets reductions for each version on all the datasets are

depicted. TABLE 6.5 shows the candidate itemsets generated on accidents dataset.

TABLE 6.6 shows the candidate itemsets generated on chess dataset. TABLE 6.7 shows

the candidate itemsets generated on mushroom dataset. TABLE 6.8 shows the candidate
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FIGURE 6.11: Memory consumption on T40I10D100K dataset

itemsets generated on T10I4D100K dataset. TABLE 6.9 shows the candidate itemsets

generated on T40I10D100K dataset. The generated candidate itemsets results show as

max length increases the number of candidate itemsets is also increases. When min util

threshold increases the candidate itemsets decreases. As the candidate itemsets decrease

the memory usages and runtime are also decreases. The candidate itemsets results show

the effects and effectiveness of proposed techniques.

The effects of proposed techniques on the number of HUIs are shown on all the datasets.

TABLE 6.10 shows the number of HUIs mined on accidents and chess dataset. TABLE

6.11 shows the number of HUIs mined on mushroom dataset. TABLE 6.12 shows the

number of HUIs mined on T10I4D100K and T40I10D100K dataset. The HUIs mined

results shows as max length increases the number of HUIs is also increases. As well as

min util threshold increases HUIs decreases.
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FIGURE 6.12: Runtime scalability on mushroom dataset

6.2.2 Memory Usage

In this section, we report the memory usage of the all the versions of the proposed

algorithm on all the benchmark datasets. For the accident dataset, when max length

threshold increases, EHNL consumes less memory than EHNL(RSUP) and EHNL(TM).

As shown in FIGURE 6.7, when max length is set higher (20), EHNL consumes less

memory than other two versions.

For chess and mushroom datasets, EHNL consumes less memory than other two versions

for all the max length and all min util thresholds. It means transaction merging technique

highly merges the transactions for chess and mushroom datasets.

For T10I4D100K dataset, EHNL(RSUP) always consumes less memory than EHNL and

EHNL(TM). T10I4D100K is sparse dataset and has very less average length of items in a
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FIGURE 6.13: Runtime scalability on T10I4D100K dataset

transaction. Hence, transaction merging technique does not perform well and take much

time to check identical transactions. Therefore, EHNL and EHNL(TM) consume more

memory because these versions use transaction merging technique. For T40I10D100K

dataset, EHNL and EHNL(RSUP) almost consume same amount of memory.

EHNL(TM) consumes high memory because it utilized transaction merging technique

only with RTWU based pruning. RTWU pruning technique is not as efficient as sub-tree

pruning. EHNL performs well because it takes advantage of both the transaction merging

and sup-tree pruning techniques. EHNL(RSUP) seldom outperforms where the number of

distinct items are high and datasets are spaces. This shows that mining without transaction

merging technique or EHNL(RSUP) is good for the datasets which have a large number

of distinct items or sparse datasets.
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FIGURE 6.14: Memory scalability on mushroom dataset

6.2.3 Scalability Experiments

In this section, we test the scalability of the all the versions of the proposed algorithm.

We fix min util threshold to the lowest minimum threshold that is used in each dataset

for runtime and memory evolution. The length constraints are set same as set for runtime

and memory evolution. In order to evaluate the scalability of proposed algorithm, the

size of datasets is varied from 20% to 100%. To check the scalability, we choose one real

(mushroom) and one synthetic (T10I4D100K) dataset. FIGURE 6.12 shows the runtime

of the algorithms on mushroom. FIGURE 6.13 shows the runtime of the algorithms on

T10I4D100K. We also observe that the memory usage of EHNL increases linearly when

the number of transactions increases as shown in FIGURE 6.14 and FIGURE 6.15 for

the mushroom and T10I4D100K dataset respectively. As shown in FIGURE 6.12 and
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FIGURE 6.15: Memory scalability on T10I4D100K dataset

FIGURE 6.13, the proposed algorithms have good scalability under different length

constraint.

TABLE 6.13: Runtime improvements of EHNL over EHNL(RSUP) and EHNL(TM)

EHNL(RSUP) EHNL(TM)
Dataset L(5) L(10) L(15) L(20) L(5) L(10) L(15) L(20)
accidents 0.770 0.715 0.634 0.641 1.034 1.033 1.093 1.103
chess 1.038 1.034 1.024 1.028 1.190 1.083 1.056 1.057
mushroom 0.850 0.937 0.919 0.928 1.243 1.518 1.474 1.528
T10I4D100K 0.602 0.616 0.602 0.605 1.030 1.072 1.045 1.085
T40I10D100K 0.848 0.845 0.834 0.831 1.455 1.446 1.411 1.408
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TABLE 6.14: Memory improvements of EHNL over EHNL(RSUP) and EHNL(TM)

EHNL(RSUP) EHNL(TM)
Dataset L(5) L(10) L(15) L(20) L(5) L(10) L(15) L(20)
accidents 1.021 1.008 1.028 1.027 1.027 0.974 1.003 1.015
chess 1.411 1.000 1.000 1.021 1.491 1.000 1.001 0.969
mushroom 0.995 0.998 0.982 0.977 1.934 1.952 1.952 1.945
T10I4D100K 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.976
T40I10D100K 1.000 1.021 1.006 1.000 1.170 1.192 1.176 1.168

6.2.4 Discussion

This chapter presents a new negative utility based HUIs mining algorithm. This chapter

also presents a sub-tree based strategy to prune the search space. The presented pruning

strategy calculates the utility of itemsets using array-based technique. The proposed

algorithm uses length based constraints to discard very small itemsets. In order to

overcome the dataset scanning cost, this chapter utilizes dataset projection and

transaction merging techniques. The presented ideas are evaluated on five benchmark

datasets. The presented results are quite useful and more actionable.

The runtime improvement performance of EHNL over EHNL(RSUP) and EHNL(TM)

at the lowest min util are shown in TABLE 6.13. The results reveal that EHNL is not

runtime faster than EHNL(RSUP) on accidents, T10I4D100K and T40I10D100K datasets

but there is modest improvement on chess and mushroom datasets. EHNL is always

runtime faster than EHNL(TM). However, memory improvement performance of EHNL

is always quite significant all the datasets as shown in TABLE 6.14. Moreover, EHNL

consumes comparatively less memory than EHNL(RSUP) for sparse dataset also.

6.3 Summary

In this chapter, we addressed the problem of mining HUIs with negative utility value and

length constraints. Most of the traditional HUIs mining algorithms mine the rules from

the datasets that have only positive utility. But in real life negative utility is very

important. In literature, only HUINIV-Mine [29] and FHN [30] algorithms are proposed

to solve the negative utility itemsets mining. But the rules mined by both of these
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algorithms include very large number of very small itemsets. We overcome this problem

by incorporating the concept of length-based constraints in negative HUIs mining. Only

one algorithm named FHM+ [47] is proposed in literature with length constraints but this

algorithm not mined the rules with negative utility value. Furthermore, the

state-of-the-art algorithms are consumed lots of memory and running time to solve the

negative utility mining. In order to achieve the efficiency, we utilize sub-tree pruning

strategy to reduce the search space. But the main problems we faced are how to

incorporate the sub-tree pruning strategy and length constraints with negative utility

itemsets mining. In order to solve these problems, we sort the items in the transactions

non-increasing order according to their utility values and keep the negative items at the

end of sorted items with the help of offset pointers. Furthermore, in order to achieve

efficiency, we utilize dataset projection and transaction merging techniques as

preprocessing techniques to reduce the dataset scanning cost. Another problem we faced

is how to calculate the utility of itemsets efficiently. To solve this problem, we use

array-based utility counting technique to calculate utility value in linear time and

negligible memory space. We explain the working of the proposed algorithm with detail

example. The experimental results show that the proposed algorithms mine HUIs from

the negative utility values with length constraints. The experimental results show that the

proposed algorithms mine HUIs efficiently. Moreover, in order to show the effect of

sub-tree based pruning strategy and transaction mering technique, we propose two

versions of the proposed algorithm. The experimental results show how much the

strategies used to achieve the efficiency are effective with real life or benchmark datasets.

Moreover, the proposed algorithm mines HUIs efficiently for real datasets with low

memory consumption.
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