
Chapter 5

High Utility Itemsets Mining with
Negative Utility Value

In Chapter 3 and Chapter 4, we have developed efficient pattern-growth methods to mine

HUIs. These algorithms work only for itemsets with positive utility values. However, in

the real-world, items are found with both the positive and the negative utility values. To

address this issue, we propose an algorithm named EHIN (Efficient High utility Itemsets

mining with Negative utility) to find all HUIs with negative utility.

Several HUIs mining algorithms [11, 12, 21, 22, 33, 78] use TWU based upper bound

to prune the search space and discover HUIs. TWU is interesting because it supports

overestimation for HUIs mining and it is also used to prune search space. TWU is widely

used in positive utility based utility mining, such as in [11, 12, 21, 33, 78, 79]. TWU

measure cannot be directly applied on HUIs with negative utility because it assumes that

there is no any item with negative utility value. To handle this type of problem, Chu et

al. proposed HUINIV-Mine algorithm to discover HUIs for both positive and negative

utility items [29]. And for overestimation, the utility is counted by summation of positive

utilities value only. For understanding the concepts of HUIs with negative utility we

utilize transactional datasets presented in TABLE 2.8 and TABLE 2.9 in Chapter 2. The

preliminarily definitions are presented in Section 2.5.

Chu et al. discussed that it is very expensive to consider both the positive and negative

utility in terms of time and memory [29]. Fournier-Viger et al. also used RTU to find
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HUIs with negative utility [30]. In recent years, single-phase algorithms such as d2HUP

[26], HUI-Miner [24], FHM [27], HUP-Miner [25] and EFIM [28] are also used with

ordinary TU because of their positive utility nature. The proposed algorithm is variation

of the EFIM algorithm. Now we present the utility-list to calculate the remaining utility

of negative utility itemsets.

Definition 5.0.1. (Utility-list). Let � be a total order on items from I, for an itemset X in

a dataset D, The utility-list [24, 25, 27, 28, 61, 80] contains three fields as tid, iutil and

rutil for each transaction Tj where Tj contains itemset X . Where iutil indicates the utility

and rutil indicate the remaining utility (RU) of an itemset X in Tj (see [24, 25] for details

of utility-list and remaining utility).

The � order is defined as the order of TWU ascending because it reduced the search

space. In running example, the order of items as a, c, d, b and e, in increasing TWU

order.

Property 5.0.1. (Pruning search space using utility-list). For an itemset X , if the sum of

U(X)+RU(X) is less than min util, then itemset X and it’s all supersets are low utility

itemsets. Otherwise, the itemset is HUIs. The detail and proof of remaining utility upper

bound (REU) based upper bound are given in [24].

For example, let us consider the running example. The utility-list of item {a} is {(T1,4,7),

(T5,4,0), (T6,4,13)} and hence the utility is 11+4+17 = 32. The utility-list of itemset

{a,d} is {(T1,8,3), (T6,12,1)} and hence the utility is 24.

To deal with negative utility values, FHN introduced the modified structure of utility-list.

FHN contains four fields as tid, putil, nutil and rputil for each transaction where putil

indicates the positive utility nutil indicates the negative utility and rputil indicates the

remaining positive utility of an itemset. The � indicates the total order of sorted items

which is also in RTWU ascending order for positive utility items and negative items come

after the positive utility items. We use sub-tree based strategy instead of utility-list based

pruning strategy.

Most of the one-phase algorithms use utility-list structure to mine HUIs. First time, Liu et

al. introduced the utility-list structure and remaining utility upper-bound. The remaining

utility upper-bound is tighter than TWU . Hence, utility-list based upper bound is widely

used in HUIs mining. The utility-list structure is utilized by HUI-Miner, HUP-Miner
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and FHM algorithms to discover the complete set of HUIs for positive utility. Utility-list

structure cannot be directly applied for items with negative utility. FHN modifies the basic

structure of utility-list and finds complete set of HUIs. However, utility-list structure and

FHN are very expensive in terms of execution time and memory consumption. FHN

suffers from high memory and execution time to process the each itemset in search space.

The utility-list gives O(n) in worst case when it contains an entry for each transaction (n

is the number of transactions). Hence, it consumes huge memory space to maintain the

utility-list. Moreover, building utility-list is expensive in terms of time complexity. FHN

needs four utility-list to join small itemsets which need O(n4) time in worst-case [30]. To

join the utility-list is the main bottleneck in terms of execution time and memory usage.

The utility-list may considers the itemsets that do not appear in the dataset. To address

the above limitations, we attempt to design an pattern-growth approach based efficient

algorithm to mine HUIs with positive and negative utility values.

5.1 EHIN Algorithm

In this section, we propose an efficient algorithm for mining HUIs with negative utility

items, namely EHIN. EHIN utilizes dataset projection and transaction merging

techniques to reduce the dataset scanning. EHIN utilizes the proposed upper-bounds,

redefined sub-tree utility and redefined local utility to prune unpromising itemsets. EHIN

also utilizes array-based utility counting technique to efficiently calculate the

upper-bounds. The proposed algorithm utilizes various properties and pruning strategies

to mine HUIs with negative utility.

5.1.1 The Search Space

The search space of HUIs mining problem has been represented as a set-enumeration

tree [24, 27, 28]. The items are represented by � total order of sorted items. During

implementation ordering of itemsets is done according to increasing RTWU as this

reduces the search space for HUIs. But for the sake of simplicity in the running example,

a lexicographical ordering has been assumed instead of � order. The set-enumeration

tree of items a,b,c,d and e for the lexicographical order is shown in FIGURE 5.1. All 2m
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itemsets can be represented by a set-enumeration tree, where m is the number of items in

a dataset. This representation of itemsets has been shown in set-enumeration tree in

FIGURE 5.1 and this would become search space for proposed algorithm. The proposed

algorithm explore the search space using a depth-first search. The proposed algorithm

recursively appends one item at a time to itemset α according to the � order using

dept-first search and generates larger itemsets as shown in FIGURE 5.1. Given a

set-enumeration tree, an itemset represented by a node is called an extension of an

itemset represented by an ancestor node of the node. Now we present some definitions

that are related to explorations of itemsets in a dept-first search.

Ø

{a} {b} {c} {d} {e}

{a,b} {a,c} {a,d} {a,e} {b,c} {b,d} {b,e} {c,d} {c,e} {d,e}

{a,b,c} {a,b,d} {a,b,e} {a,c,d} {a,c,e} {a,d,e} {b,c,d} {b,c,e} {b,d,e} {c,d,e}

{a,b,c,d} {a,b,c,e} {a,b,d,e} {a,c,d,e} {b,c,d,e}

{a,b,c,d,e} 

FIGURE 5.1: Set-enumeration tree for I = {a,b,c,d,e}

5.1.2 Efficient Dataset Scanning Techniques

As we discussed earlier, EHIN calculates the utility and upper bounds through dataset

scans. So we need dataset reduction operation to reduce the dataset scanning time. Hence,

EHIN utilizes dataset projection and transaction merging techniques.

5.1.2.1 Dataset Scanning using Projection

Dataset projection techniques are utilized in this work to reduce the memory requirement

and speed up the execution of mining processing. Dataset projection technique relies on
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the observation that when an itemset α is taken into account with the depth-first search.

The items which do not belong to the extended itemset E(α) are ignored while scanning

the dataset to calculate the utility of itemsets within the sub-tree of itemset α . A dataset

without these items is called a projected dataset [28, 61, 80].

Definition 5.1.1. (Projected transaction). For the itemset α , the projected transaction T is

denoted as α−T and is defined as α−T = {i | i∈T∧i∈E(α)} [28].

Definition 5.1.2. (Projected dataset). For the itemset α , the projected dataset D is denoted

as α−D and is defined as α−D = {α−T | T∈D∧α−T 6= /0} [28].

In the running example, consider dataset D and α = {c}. The projected dataset α −D

contains transactions α−T2 = {e},α−T3 = {d,e},α−T4 = {d,e},α−T6 = {d,e} and

α−T7 = {e}.

The projection technique reduces the dataset scanning cost and hence, larger transactions

become smaller. To implement projection technique efficiently, each original transaction

is sorted according to the � total order. How to efficiently implement � is an important

issue regarding the dataset projection. The basic or ordinary technique is to copy the

transactions for each projection. Some dataset projection techniques are performed earlier

in IHUP [11], UP-Growth [12], UP-Growth+ [21] and MU-Growth [56]. But these are

not efficient techniques for dataset projection. Our dataset projection approach is inspired

by EFIM algorithm’s projection technique. But before applying projection technique,

we need to perform sorting among items in each transaction according to the �T total

order. After that, pseudo-projection is performed in each projected transaction. This

pseudo-projection is pointed by offset pointer on the corresponding original transaction.

EHIN performs dataset projection in linear time and space complexity. Even so, as the

longest itemsets are explored, the size of the projected dataset is decreased.

5.1.2.2 Dataset Scanning using Transaction Merging

To further reduce the dataset scanning cost, a transaction merging technique is used. This

is relayed on the observation as the dataset contain the identical transactions. Identical

transactions contain the exactly same items but may not have same quantity values

(internal utility). The merging technique identify these identical transactions and replace

them with a single transaction.
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Definition 5.1.3. (Identical transactions). A transaction Ta is identical to a transaction Tb

if they contain the same items. The identical transactions may not have the same quantity

values.

Definition 5.1.4. (Transaction merging). For the dataset D and the identical transactions

as Ta1,Ta2,Ta3,Tan replaced by a new transaction TM = Ta1 = Ta2 = Ta3 = Tan (Identical

transactions may not contain the same quantity values of each item). And the quantity of

these identical transactions is k∈TM and therefore is defined as

IU(k,TM) = ∑i=1...n IU(k,Tai). To achieve more dataset reduction, we need to merge the

transaction in projected datasets. The projected transactions merging produces higher

dataset reduction than original transaction merging because projected transactions are

smaller than original transactions. The reason behind this is that the projected

transactions could be more likely identical.

In the running example, transaction T2 and T7 are identical and after transaction merging

we get a new transaction T2 7. where IU(b,TM) = 4, IU(c,TM) = 7 and IU(e,TM) = 3.

Definition 5.1.5. (Projected transaction merging). Let the identical transaction as

Ta1,Ta2,Ta3,Tan in the dataset α − D is replaced by a new transaction

TM = Ta1 = Ta2 = Ta3 = Tan . And quantity of these identical transactions is k∈TM and is

defined as IU(k,TM) = ∑i=1...n IU(k,Tai) [28].

For example, consider dataset D of our running example and α = {c}. The projected

dataset α −D contains transactions α −T2 = {e},α −T3 = {d,e},α −T4 = {d,e},α −
T6 = {d,e} and α−T7 = {e}. Transactions α−T3, α−T4 and α−T6 can be replaced by

a new transaction T3 4 6 = {d,e,} where IU(d,T3 4 6) = 6 and IU(e,T3 4 6) = 6.

Transaction merging technique is desirable for reducing the size of the dataset. But

identifying the identical transactions is the main problem to implement transaction

merging technique. To achieve this, we need to compare all the transactions with each

other. But this technique to compare all the transactions among one another is not an

efficient technique. We present following approach to overcome this problem.

Definition 5.1.6. (Total order on the transactions). For the dataset D, the total order �T is

defined as the lexicographical order when the transactions are read backwards. For more

details of total order �T on the transactions follow [28, 61].
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We sort the original dataset by following a new total order �T on the transactions. For

example, let us suppose the transactions be Tx = {a,b,c},Ty = {b,c} and Tz = {a,b,e}.
We have that Tz �T Tx �T Ty. The dataset sorted according to the �T order provides

following property.

Property 5.1.1. (Transaction order in �T sorted dataset). Let us sort the dataset D

according to �T , where �T is defined as lexicographical order when the transactions are

read backwards. Identical transactions appear consecutively in the projected dataset

α−D. More details and proof see [28].

The projected dataset follows the above property where we get all the identical

transactions by comparing each transaction with the next transaction. Therefore, by

using the above property, the transaction merging technique can be performed easily by

scanning the dataset efficiently. Accordingly, we find the identical transactions in the

projected dataset. This sorting is done in linear time and performs only once, so the cost

of the sorting is negligible. This sorted dataset puts up the following property. For a

projected dataset α −D, the identical transactions always appear consecutively. We find

this when we read the transaction from backward. All the one-phase HUIs mining

algorithms do not perform transaction merging technique except the EFIM and

EFIM-Closed. The utility-list based algorithms like FHM [27], HUP-Miner [25] and

hyper-link based algorithms, d2HUP [26] do not use transaction merging because they

use a vertical dataset representation.

5.1.3 Pruning Strategies

In this subsection, we present two new upper bound named redefined sub-tree utility and

redefined local utility. As we discussed earlier, these upper bounds are more tighter.

These upper bounds are mathematically equivalent to remaining utility (RU) and TWU

based upper bounds. The key difference is that utilized upper bounds are computed while

traversing the sub-tree in enumeration-tree.
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5.1.3.1 Prune search space using redefined Local Utility

Definition 5.1.7. (Redefined local utility). The local utility of item z, with respect to

itemset α is defined as below, where item z∈E(α). RLU(α,z) =

∑T∈(α∪{z}) [U(α,T )+RE(α,T )] [28].

For example, if itemset α = {a}, we calculate RLU as RLU(α,b) = (11 + 17) = 28,

RLU(α,c) = 17, RLU(α,d) = 28 and RLU(α,e) = 28.

Property 5.1.2. (Redefined local utility based overestimation). Let an itemset α and an

item z, where z∈E(α). Let z can be an extension of α , such that z ∈ Z. Therefore,

RLU(α,z)≥U(Z) always holds. The proof is shown in [28].

Pruning using redefined local utility Let an itemset α and an item z, where z∈E(α). If

RLU(α,z)< min util, then the single item z and all extensions of α containing item z are

low-utility in a sub-tree. Furthermore, item z is ignored for exploring all sub-trees of α .

5.1.3.2 Prune search space using redefined sub-tree Utility

Definition 5.1.8. (Redefined sub-tree utility). Let the itemset α and the item z, where

z∈E(α), that can be extended α to follow the depth-first search to the sub-tree. The

Sub-tree utility of the item z, if α is RSU(α,z) = ∑T∈(α∪{z}) [U(α,T ) + U(z,T )+

∑i∈T∧i∈E(α∪{z}) U(i,T )].

Moreover in the example, α = {a}. We have that RSU(α,c) = (5+ 1+ 2)+ (10+ 6+

11)+(5+1+20) = 61, RSU(α,d) = 25 and RSU(α,e) = 34.

Property 5.1.3. (Redefined sub-tree utility based overestimation). Let the itemset α and

the item z, where z∈E(α). The utility value of RSU(α,z)U(α∪{z}) such as RSU(α,z)≥
U(Z) keeps the extension Z of α∪{z}. The proof is shown in [28].

Pruning using the redefined sub-tree utility Let the itemset α and the item z, where

z∈E(α). If RSU(α,z) < min util, then the single item extension (α∪{z}) and its

extensions are low-utility in sub-tree. Furthermore, the sub-tree of α∪{z} is pruned in

the set-enumeration tree. Some sub-tree can be pruned of an itemset α . Therefore, the

number of sub-trees is reduced. Hence, the search space is reduced.
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FIGURE 5.2: Comparison of RSU (left) and REU (right) upper bounds

The relationship between the proposed upper-bounds and the main ones used in the

previous work and the relationship between the proposed upper-bounds (TWU , REU ,

RLU and RSU) and the upper-bound used in the work (TWU , REU) are given as follows.

Property 5.1.4. For the itemset α , the item z and an itemset Y = α∪{z}. The relationship

TWU(Y ) ≥ RLU(α,z) ≥ REU(Y ) = RSU(α,z) holds [28].

Above property shows the relationship between the utilized upper bounds and traditionally

used upper bounds (TWU and REU). The redefined local utility upper bounds are more

tighter than TWU which is widely used in two-phase based algorithms to prune the search

space. Hence, utilized local utility upper bound can be more efficient. As shown in the

above relationship of upper bounds, the RSU and REU are mathematical equivalents [28].

The major difference is that redefined sub-tree utility upper bound is calculated during

the dept-first search in search space at the itemset α and REU is calculated at the child

itemsets of α using join the utility-lists. Hence, the redefined sub-tree utility can prune the

whole sub-tree of α including node z and REU prune only the child nodes of α against

min util threshold as shown in FIGURE 5.2. Therefore, we utilize redefined sub-tree

utility upper bounds than REU upper bound for prune the search space. Later in this

chapter, for an itemset α , we categorize the itemsets as primary and Secondary.

Definition 5.1.9. (Primary and Secondary items). For an itemset α , the Primary items of

itemset α are denoted as Primary(α) = {z | z∈E(α)∧RSU(α,z)≥min util}. The itemset

α is the set of items, Secondary(α) = {z | z∈E(α)∧RLU(α,z)≥min util}. The

RLU(α,z)≥RSU(α,z), so Primary(α)⊆Secondary(α) [28].

The itemsets whose redefined sub-tree utility are not less than min util are denoted as

Primary items and itemsets whose local utility is not less than min util are denoted as

Secondary items.
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5.1.4 Calculate Upper Bounds using Utility Array

Previously, we presented new upper-bounds for pruning. Now we discuss an array-based

approach to calculate upper-bounds, it is an array-based structure named as utility-array

(UA) [28, 61, 80].

Definition 5.1.10. (Utility Array). For the set of items I that are appeared in a dataset D.

The UA has the length | I |. The entry for an item z in the array is denoted as UA[z]. Each

entry is used to store a utility value.

Calculate RLU(α) using UA.

Initially, UA is initialized to 0. Then the UA[z] for all item z ∈ Tj ∩E(α) is calculated as

UA[z] = UA[z] + U(α,T ) + RE(α,T ) for each transaction Tj of the dataset D. After the

dataset scanning, the UA[k] contains utility of RLU(α,k)∀k ∈ E(α). After processing the

last transaction we have the local utility of all positive itemset.

Calculate RSU(α) using UA.

Initially, UA is initialized to 0. Then the UA[z] for all item z ∈ Tj ∩E(α) is calculated as

UA[z] =UA[z]+U(α,T )+U(z,T )+∑i∈T∧i∈E(α∪z)U(i,T ) for each transaction Tj in the

dataset D. After the dataset scanning, the UA[k] contains RSU(α,k)∀k ∈ E(α).

All the above techniques for calculating upper-bound are highly efficient. They can

calculate all the upper-bounds by performing only one scan of projected dataset. They

take linear time to calculate all upper-bound, whereas HUI-Miner, HUP-Miner and FHM

calculate upper-bounds by performing join the utility-list that take up-to O(3N) time. We

also observe that UAs are very compact and efficient data structure. Moreover, to utilize

UAs efficiently, we utilize three optimizations. Firstly, all items in the database are

renamed as consecutive integers. Then, UA[i] for an item x is stored in the ith position of

the array. Using this optimization, every item is accessed in O(1) time. Secondly, the

same created arrays are reused after reinitializing. For example, the same UA is reused to

calculate the redefined local utility for any itemset that was used earlier to calculate the

local utility for another itemset. Hence, memory requirement is greatly reduced. In this

work, only two utility-arrays are used to calculate of redefined sub-tree utility and the

redefined local utility. Hence, the proposed algorithm uses very low memory compared

to FHN and HUINIV-Mine algorithm. Memory comparison is shown in experimental

result in memory uses Section 5.2.3. Lastly, for faster re-initialization of the utility-array
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where single item extension of an itemset is α , we only reinitialize the corresponding

utility-array to calculate the upper-bound.

The characteristics of the existing algorithms and our proposed algorithm are depicted

in TABLE 5.1. Table shows the pruning strategies used, the state-of-the-art algorithms

for proposed algorithm and existing algorithms. Table also shows that an algorithm is

extension of which algorithm. It also shows the runtime and memory comparison with

the state-of-the-art algorithm.

TABLE 5.1: Comparison of the characteristics of the existing algorithms with our
proposed algorithm EHIN

Algorithm Phase Pruning
strategies

the
state-of-art
algorithm

Extension
of

Search Dataset Runtime
comparison
with the
state-of-
art
algorithm

Memory
comparison
with the
state-of-the
-art
algorithm

HUINIV-
Mine,
2009

Two-phase TWU – Two-phase
algorithm

Breadth-first
search

Transactional – –

FHN,
2016

One-phase EUCS,
LA-Prune

HUINIV-
Mine

FHM
algorithm

Depth-first
search

Transactional Two to
three
Times
faster

Upto 200
times less
memory

EHIN
(proposed)

One-phase RLU ,
RSU

FHN EFIM
algorithm

Depth-first
search

Transactional Three
to four
Times
faster

Up-to 10
times less
memory

The proposed algorithm EHIN utilizes several novel ideas explained in the previous

sections. The main Algorithm 8 takes a transactional dataset and threshold min util as

input. Lines 1-2 in the algorithm initially considers the empty itemset as α , a set of

positive utility as ρ and a set of negative utility items as η . Line 3 calculates the local

utility of each item using the UA. After that in line 4, the Secondary items for itemset α

are obtained by comparing the local utility of each item with the threshold min util.

These Secondary items are then considered in the extension of itemset α . Thereafter,

line 5 sorts Secondary items by ascending order of RTWU . The algorithm considers the

positive utility items followed by negative utility items while sorting in � order. Line 6

scans the dataset D to remove all the items which are not the member of the Secondary

itemset for α . These removed items cannot be the member items of any HUIs (Pruning

using the redefined local utility). Thereafter, line 7 scans the dataset backward to sort
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Algorithm 8: EHIN algorithm
Input: D: a tranasctional dataset, user-specified threshold: min util
Output: High utility itemsets (HUIs)

1 α ← Ø;
2 η ← set of negative utility items in D;
3 Scan dataset D and compute RLU(α,z) for item z ∈ ρ , using UA[x].
4 Secondary(α) = {z | z ∈ ρ ∧ RLU(α,z) ≥ min util}.
5 Let � be the total order of RTWU increasing values on Secondary(α)
6 Scan D, remove item x /∈ Secondary(α) from the transactions Tj and delete empty

transactions;
7 Sort all the remaining transactions in D according to �T with positive utility items

followed by negative utility items
8 Assign offset to each transaction in D.
9 Scan D, compute the RSU(α,z) of each item z ∈ Secondary(α), using UA[z];

10 Primary(α) = {z | z ∈ Secondary(α)∧RSU(α,z)≥ min util};
11 search P(η ,α,D,Primary(α),Secondary(α),min util);
12 return HUIs;

Algorithm 9: The search P procedure
Input: η : set of negative items, α: an itemset, α−D: the projected dataset,

Primary(α): the Primary items of α , Secondary(α): the Secondary items of α

and min util: thresholds.
Output: The set of HUIs that are extensions of α with positive items

1 foreach each item z ∈ Primary(α) do
2 β = α ∪{z};
3 Scan α−D, compute U(β ) and create β −D;
4 if U(β )≥ min util then
5 Output β ;

6 if U(β )> min util then
7 search N(η , β , β −D , min util);

8 Scan β −D, Compute RSU(β ,z) and RLU(β ,z) where item z ∈ Secondary(α),
using two UAs

9 Primary(β ) = {z ∈ Secondary(α) | RSU(β ,z) ≥ min util}
10 Secondary(β ) = {z ∈ Secondary(α) | RLU(β ,z) ≥ min util}
11 search P(η , β , β −D, Primary(β ), Secondary(β ), min util;

transaction by the �T using lexicographical order. Thus transaction merging technique is

performed here as suggested in [28]. Line 9 scans the dataset again to calculate the

redefined sub-tree utility of each Secondary item for the itemset α using the UA. Line 10

finds primary itemset for the itemset α . Lastly, line 11 performs the dept-first search by
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calling the recursive procedure starting with the itemset α .

Algorithm 10: The search N procedure
Input: η : set of promising negative items, α: an itemset, α−D: the projected dataset

and min util: thresholds
Output: The set of HUIs that are extensions of α with negative items.

1 foreach each item z ∈ η do
2 β = α ∪{z};
3 Scan α−D, compute U(β ) and create β −D.
4 if U(β )≥ min util then
5 Output β

6 Calculate RSU(β ,z) for all item z ∈ η by scanning β −D once, using the negative
utility-array.

7 Primary(β ) = {z ∈ η | RSU(β ,z) ≥ min util}.
8 search N(Primary(β ), β , β −D, min util)

The Algorithm 9 has six parameters; η denotes a set of negative items, α denotes the

current itemsets to be extended, α−D represents the projected dataset, Primary denotes

primary items for α , Secondary denotes secondary items for α and lastly min util

represents minimum utility threshold. This algorithm finds the extensions of α with only

positive items. The algorithm search P recursively calls itself every time to extend each

item of α in the form of β as β = α ∪ {z}, where z is an item of Primary item of itemset

α . A single item extension technique follows to extend itemset α . A dataset scanning is

required to calculate the utility of each extension β and then the projected dataset β −D

is constructed. Moreover, the transaction merging is performed with the projected dataset

β −D construction process. The itemsets β whose utility is greater or equal to min util

becomes HUIs (Line 5). To extend the itemset with negative itemset, Algorithm 10 is

called when the utility of itemset is greater than min util (Line no. 7). Otherwise, the

projected dataset β −D is scanned again to calculate the redefined sub-tree utility and

redefined local-tree utility for β of each item z so that β can be extended using UAs

(Line 8). Thereafter, we can get the Primary and Secondary items of β . Algorithm 10 is

repeatedly executed with extension of β using dept-first search. Furthermore, the

algorithm is called until it satisfies the threshold.

Algorithm 10 is called when the utility of items is more than min util. It extends the

itemset with the negative utility only (Line no. 2). It uses the Property 2.5.5 to prune the
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search space area for negative extensions of the desired itemsets. If utility of itemset β

is not less than min util then the itemset becomes HUIs (Line 4). This algorithm again

calculates the RSU for all negative items by scanning the dataset using negative utility by

calculating UA. Thereafter, the algorithm is recursively calls itself until all the extended

items with a negative utility that fulfill min util threshold are not found.

TABLE 5.2: Transaction Utility (TU)

Tid Transaction
Purchase

quantity (IU) Utility (U) TU
T1 a,b,d,e 2, 2, 1, 3 4, -6, 4, 3 5
T2 b,c,e 1, 5, 1 -3, 5, 1 3
T3 b,c,d,e, 2, 1, 3, 2 -6, 1, 12, 2 9
T4 c,d,e 2, 1, 3 2, 4, 3 9
T5 a 2 4 4
T6 a,b,c,d,e 2, 1, 4, 2, 1 4, -3, 4, 8, 1 14
T7 b,c,e 3, 2, 2 -9, 2, 2 -5

TABLE 5.3: Redefined Transaction Utility

Tid Transaction TU TU (redefined)
T1 a,b,d,e 5 11
T2 b,c,e 3 6
T3 b,c,d,e 9 15
T4 c,d,e 9 9
T5 a 4 4
T6 a,b,c,d,e 14 17
T7 b,c,e -5 4

TABLE 5.4: RTWU values of items based on redefined TU

Item a b c d e
RTWU 32 53 51 52 62
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TABLE 5.5: Final HUIs of the running example

Itemset Utility Itemset Utility
{a} 12 {c} 14
{a,c,d} 16 {c,d} 31
{a,c,d,b} 13 {c,d,b} 16
{a,c,d,e} 17 {c,d,e} 37
{a,c,d,e,b} 14 {c,d,e,b} 19
{a,d} 20 {c,e} 23
{a,d,b} 11 {d} 28
{a,d,e} 24 {d,e} 37
{a,d,e,b} 15 {d,e,b} 15
{a,e} 12 {e} 12

5.1.5 An Illustrative Example

In this section, a simple illustrative example is given to show how the proposed algorithm

can find HUIs from a transactional dataset. Let us assume that there are seven transactions

in the dataset as shown in TABLE 2.8 and there are five items that appear with their

internal quantity. Also, we assume that the external utility or profit value of each single

item is predefined in TABLE 2.9. Moreover, min util is set as 10. The proposed algorithm

proceeds as follows to find HUIs from the transactional dataset.

The algorithm calculates the utility of each item in a transaction and finds the TU of that

transaction. There are three items, b,c and e, in T2 and their quantities are 1,5 and 1. And

the external utility of {b},{c} and {e} in TABLE 2.9 are −3,5 and 1 respectively. The

utility values of items b,c and e, in T2 can be calculated as 1 × (-3) = -3, 5 × 1 = 5 and 1

× 1 = 1 respectively. After the above process, the TU of T2 can be calculated as -3 + 5 +

1, which is 3. The results for the TU values of all the transactions are shown in TABLE

5.2.

To overestimate the utility, the proposed algorithm uses RTU according to Definition

6.0.1. To find the RTU , proposed algorithm calculates only positive utility values as 5 +

1, which is 6 in T2. Similarly, all RTU can be calculated. The RTU for all transactions

is shown in TABLE 5.3. The RLU is calculated using depth-first search which is equal to

RTWU as explained in Section 5.1.3. RTWU values of an item {a} in running example

that appear in three transactions T1, T5 and T6 and their RTU values are 11, 4 and 17
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respectively. RTWU of the item {a} can thus be calculated as 11 + 4 + 17 which is 32.

RTWU of each 1-item is as shown in TABLE 5.4.

TABLE 5.6: Statistical information about datasets

Dataset # of transactions # of distinct items Avg. length Max. Length Type
accidents 340183 468 33.8 51 Dense
chess 3196 75 37 37 Dense
mushroom 8124 119 23 23 Dense
pumsb 49046 2113 74 74 Dense
T40I10D100K 100000 942 39.6 77 Dense
BMSPOS 515366 1656 6.51 164 Sparse
retail 88162 16470 10.3 76 Sparse
T10I4D100K 100000 870 10.1 29 Sparse
kosarak 990002 41270 8.09 2498 Sparse (Large)

The RLU of items is not less than min util is then we find Secondary itemset. The items

in Secondary(α) = {a,b,c,d,e}. After this, all items are sorted according to the order �
of ascending RTWU (see line 5 in Algorithm 8). Negative items always come after

positive itemset. Thereafter, the items which are not member of Secondary set are

removed. Hence, no item is removed from the example dataset (no change in dataset). At

the same time, if all the items are removed from the transactions, we remove those empty

transactions. And then the remaining transactions according to total order �T are sorted

(see line 7 in Algorithm 8). After that, the proposed algorithm scans the dataset again

and calculates RSU of all itemsets. The items whose RSU is not less than min util is in

Primary items. Hence, the Primary = {a,c,d,e}. Only the items of the Primary set is

used to explore with depth-first search. All the items of the Secondary {a,c,d,e,b} set

are used as descendant nodes in each sub-tree. For this, dept-first search is used to find

descent nodes in sub-tree. And nodes are mined using Algorithm 9 and Algorithm 10.

Algorithm 9 is then recursively called to extend all items with positive utility.

Thereafter, Algorithm 10 is called to extend the items with negative utility items. The

final HUIs of the running example are shown in TABLE 5.5

5.2 Performance Evaluation

In this section, we compare the performance of our proposed algorithm (EHIN) with the

state-of-the-art algorithm (FHN) [73]. To the best of our knowledge, FHN algorithm is
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FIGURE 5.3: Execution time on dense datasets

the best algorithm for mining HUIs with negative utility. We implemented the proposed

algorithm by extending the open-source java library [77]. We conducted all the

experiments on an Intel Core-i7-6700 machine, 3.40 GHz CPU with 8 GB of memory

running on a Windows 10 Pro (64-bit Operating System). To ensure robustness of the



Chapter 5. High Utility Itemsets Mining with Negative Utility Value 110

results, we ran all our experiments ten times to report the average results.
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FIGURE 5.4: Execution time on sparse datasets

To analyze the performance of our algorithm with compared algorithm in different

situations, we tested the algorithms with nine different datasets available from spmf [77].

Among these nine datasets, seven are real and two are synthetic. The detailed

characteristics of these datasets are shown in TABLE 5.6. The experimental results on all

these datasets are separately shown and are discussed in Section 5.2.1 and Section 5.2.2.

The report of memory consumptions and scalability are shown respectively in Section

5.2.3 and 5.2.5.

To compare the proposed algorithm EHIN with FHN algorithm, we executed both of the

algorithms on all datasets by decreasing min util. min util was decreased until both the

algorithms took too much time or out of memory or a clear winner was observed. The

experimental results on all these datasets are separately shown in the next sections.
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We analyze the performance improvement by measuring the total execution runtime and

total memory consumed by EHIN and FHN algorithms. For this experiment, we took the

total execution runtime by EHIN algorithm as the baseline (100%). The relative runtime

is calculated as the ratio of the total execution runtime of FHN algorithm to the total

execution runtime of EHIN.

5.2.1 Experiments on Dense Datasets

The performances of both the algorithms on the dense datasets are shown in FIGURE

5.3. It is evident that EHIN algorithm outperforms FHN algorithm for all dense datasets.

As we observe from FIGURE 5.3, EHIN is less sensitive to runtime for all given min util

for accident, chess, pumsb and T40I10D100K datasets. Whereas FHN algorithm

decrements in min util which causes exponential increase in runtime. However, for the

mushroom dataset, the runtime of EHIN and FHN algorithms remains close to each other

for min util with 300k to 500k. Although they are very close to each other, EHIN

outperforms FHN algorithm for min util with 100k and 200k. The efficiency of EHIN

algorithm compared to FHN algorithm is computed for all the cases of dense datasets.

EHIN algorithm performs better for all dense datasets because of transaction merging

and dataset projection techniques to compact the dataset. Another reason for better

performance is array-based utility counting technique.

5.2.2 Experiments on Sparse Datasets

The performance of both the algorithms on the sparse datasets is shown in FIGURE 5.4.

It is evident that EHIN algorithm outperforms FHN algorithm for all the sparse datasets

except retail. As we observe from FIGURE 5.4 EHIN algorithm outperforms FHN

algorithm in runtime for BMSPOS, T10I4D100K and kosarak datasets. The efficiency of

EHIN is hampered while performing transaction merging and dataset projection where

the dataset has a large number of distinct items. This is the reason for less efficiency of

EHIN in case of retail dataset for 10k to 30k min util threshold.
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5.2.3 Memory Usage
accidents

M
em

or
y 

(M
B)

600

700

800

900

1,000

1,100

1,200

1,300

1,400

1,500

1,600

M
em

or
y 

(M
B)

600

700

800

900

1,000

1,100

1,200

1,300

1,400

1,500

1,600

Minimum Utility Threshold (k)
14,000 16,000 18,000 20,000 22,000 24,000

 EHIN
 FHN

chess

M
em

or
y 

(M
B)

0

50

100

150

200

250

300

350

400

450

M
em

or
y 

(M
B)

0

50

100

150

200

250

300

350

400

450

Minimum Utility Threshold (k)
120 130 140 150 160

 EHIN
 FHN

mushroom

M
em

or
y 

(M
B)

0

50

100

150

200

250

300

350

400

450

500

550

M
em

or
y 

(M
B)

0

50

100

150

200

250

300

350

400

450

500

550

Minimum Utility Threshold (k)
100 200 300 400 500

 EHIN
 FHN

pumsb

M
em

or
y 

(M
B)

600

800

1,000

1,200

1,400

1,600

1,800

2,000

M
em

or
y 

(M
B)

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Minimum Utility Threshold (k)
4,800 5,000 5,200 5,400 5,600 5,800 6,000

 EHIN
 FHN

T40I10D100K

M
em

or
y 

(M
B)

300

350

400

450

500

550

600

650

700

750

800

M
em

or
y 

(M
B)

300

350

400

450

500

550

600

650

700

750

800

Minimum Utility Threshold (k)
60 80 100 120 140 160

 EHIN
 FHN

FIGURE 5.5: Memory usage on dense datasets

FIGURE 5.5 and FIGURE 5.6 show the memory consumption of the algorithms on

dense and sparse datasets respectively. EHIN algorithm uses almost stable memory for

accidents, kosarak and pumsb datasets with different min util thresholds. For chess,

mushroom and retail datasets, memory consumption increases as minimum utility
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FIGURE 5.6: Memory usage on sparse datasets

threshold decreases. For all datasets except chess, EHIN algorithm uses half amount of

memory. For chess dataset, EHIN algorithm uses almost six times less memory than

FHN algorithm. For accidents, chess, kosarak, mushroom, retail and pumsb, EHIN

algorithm uses 2.20, 9.96, 1.61, 3.23, 2.76 and 2.87 times less memory, respectively. We

can see that EHIN algorithm always consumes less memory than FHN algorithm. We

observe that the memory usage of EHIN algorithm increases almost linearly when the

number of distinct items increases. EHIN algorithm increases slowly when the number

of transactions increases.

Our proposed algorithm performs always better in memory usage for all dataset either

they are sparse or dense. Although our algorithm takes long runtime in case of sparse

dataset like retail, it takes less memory. For sparse datasets like retail, the trade-off which

our algorithm provides is useful for the applications where memory is limited.
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TABLE 5.7: Relative runtime improvement analysis on dense datasets

accidents chess mushroom pumsb T40I10D100K
min util(k) (×Times) min util(k) ×Times min util(k) ×Times min util(k) ×Times min util(k) ×Times

14000 4.00 120 28.32 80 5.37 4900 5.50 60 4.06
16000 3.66 130 12.95 100 5.92 5100 4.20 80 3.67
18000 2.98 140 5.35 200 4.92 5300 2.97 100 3.36
20000 2.47 150 2.96 300 2.01 5500 1.96 120 3.16
22000 1.95 160 2.29 400 1.35 5700 1.93 140 3.2
24000 1.55 165 2.09 500 1.35 5900 1.01 160 2.96

5.2.4 Relative Runtime and Memory Comparison Analysis

In this section, we analyze the relative runtime and memory usage of both the algorithms.

Here we present how many times the proposed algorithm is faster than the state-of-the-art

algorithm FHN. For this analysis, we take the total execution runtime of EHIN algorithm

as the baseline (100%). The relative runtime is calculated as the ratio of the runtime

of FHN algorithm to that of EHIN algorithm. Same phenomena are applied for relative

memory usage comparison.
TABLE 5.8: Relative runtime improvement analysis on sparse datasets

BMSPOS retail T10I4D100K kosarak
min util(k) ×Times min util(k) ×Times min util ×Times min util(k) ×Times

50 1.33 10 0.52 500 6.00 500 1.13
100 1.20 20 0.79 1000 4.00 600 1.09
150 1.21 30 0.92 1500 3.33 700 1.18
200 1.21 40 1.03 2000 3.00 800 1.27
250 1.16 50 1.05 2500 2.8 900 1.40
300 1.13 60 1.10 3000 2.67 1000 1.38

5.2.4.1 Relative runtime analysis

The relative runtime comparison is shown for dense and sparse datasets in TABLE 5.7

and TABLE 5.8 respectively. In the running example, for min util at 14000k EHIN

algorithm is four times faster than FHN algorithm. TABLE 5.7 shows the relative

runtime comparison of dense datasets. Here, it can be observed that when min util

decreases, EHIN algorithm becomes more faster than FHN algorithm. Hence, EHIN

algorithm provides faster relative runtime which is the best on lowest min util. For

sparse datasets also, EHIN algorithm is many times faster except retail dataset as shown

in TABLE 5.8.
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TABLE 5.9: Relative memory usage analysis on dense datasets

accidents chess mushroom pumsb T40I10D100K
min util(k) ×Times(less) min util(k) ×Times(less) min util(k) ×Times(less) min util(k) ×Times(less) min util(k) ×Times(less)

14000 2.20 120 7.29 80 1.10 4900 2.87 60 1.18
16000 2.14 130 9.96 100 1.10 5100 1.66 80 1.13
18000 1.96 140 7.36 200 3.23 5300 1.51 100 1.33
20000 1.74 150 4.06 300 2.20 5500 1.37 120 1.32
22000 1.21 160 3.26 400 1.82 5700 1.27 140 1.61
24000 1.26 165 2.26 500 1.65 5900 1.29 160 2.05

TABLE 5.10: Relative memory usage analysis on sparse datasets

BMSPOS retail T10I4D100K kosarak
min util(k) ×Times(less) min util(k) ×Times(less) min util(k) ×Times(less) min util(k) ×Times(less)

50 1.22 10 1.98 500 4.04 500 1.61
100 1.24 20 2.76 1000 2.99 600 1.33
150 1.46 30 2.12 1500 3.06 700 1.16
200 1.77 40 1.35 2000 2.62 800 1.16
250 1.97 50 1.38 2500 2.1 900 1.11
300 2.19 60 1.06 3000 2.1 1000 1.02

5.2.4.2 Relative memory usage analysis

In this section, we analyze the relative memory usage of both the algorithms. Here, we

present how much less memory is consumed by EHIN algorithm. TABLE 5.9 and TABLE

5.10 show the memory usage comparison of dense and sparse datasets respectively. It

can be observed that EHIN algorithm consumes less memory for both dense and sparse

datasets.
TABLE 5.11: Relative runtime analysis on best, average and minimum case

Dataset Best Average Minimum
accidents 4 3.34 1.55

chess 28.32 12.22 2.09
mushroom 5.92 5.38 1.35

pumsb 5.5 3.54 1.01
T40I10D100K 4.06 3.54 2.96

BMSPOS 1.33 1.24 1.13
retail 1.1 0.74 0.52

T10I4D100K 2.66 1.74 1.02
kosarak 1.4 1.19 1.09

5.2.4.3 Relative runtime analysis on best, average and minimum case

We also analyze the best, average and minimum relative runtime comparison. TABLE

5.11 shows the relative runtime comparison of EHIN algorithm. This experiment presents

that EHIN algorithm is upto 28 times faster in the best case. In the worst case, EHIN
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algorithm is two times slower only (for retail dataset). EHIN algorithm is good in best,

average and minimum relative runtime comparison except for the retail dataset.
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FIGURE 5.7: Scalability Runtime Comparison on various datasets

TABLE 5.12: Relative memory analysis on best, average and minimum case

Dataset Best Average Minimum
accidents 2.2 1.76 1.21

chess 9.96 6.11 2.26
mushroom 3.23 1.41 1.1

pumsb 2.87 1.66 1.27
T40I10D100K 2.05 1.38 1.13

BMSPOS 2.19 1.56 1.22
retail 2.76 1.84 1.06

T10I4D100K 4.04 2.86 2.1
kosarak 1.61 1.23 1.02
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FIGURE 5.8: Scalability Memory Comparison on various datasets

5.2.4.4 Relative memory usage analysis on best, average and minimum case

Here we analyze the best, average and minimum less memory usage comparison. TABLE

5.12 shows how much less memory EHIN algorithm consumes. This experiment shows

that EHIN algorithm consumes up to 10 times less memory compared to FHN algorithm.

EHIN algorithm consumes less memory always for dense and sparse datasets.

5.2.5 Scalability

In this section, we evaluate the scalability of the proposed algorithm. For the scalability

comparison, min util threshold is fixed to the lowest minimum threshold that is used in

each dataset for runtime and memory evolution. As shown in FIGURE 5.7, the proposed
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algorithm has a good scalability with the varied size of the datasets. The size of datasets

is varied from 20% to 100% to evaluate the scalability results.

The runtime of both algorithms linearly increases as the dataset size increases. The

difference between the runtime of both algorithms grows wider when the dataset size

increases as shown in FIGURE 5.7. The memory usage of EHIN algorithm is steadily

increased with the increased size of dataset. In FHN algorithm, memory usage increases

rapidly as shown in FIGURE 5.8.

5.3 Summary

In this chapter, the issue of HUIs mining with negative utility has been addressed.

Previous algorithms like HUINIV-Mine and FHN algorithms attempt this issue. Our

proposed algorithm EHIN utilized and redefined two new upper bounds named redefined

sub-tree and redefined local utility. We also redefine TU and TWU according to the

negative utility. A new array-based utility counting is utilized to calculate upper bounds

quickly. To reduce the dataset scanning cost in term of time and memory usage, dataset

projection and transaction merging techniques are utilized. The extensive experimental

evaluation on nine datasets shows that proposed algorithm greatly reduces the execution

and memory requirements. We observe that EHIN algorithm outperforms the

state-of-the-art algorithm FHN for both in runtime and memory aspect in all our

observations. We have seen that the decrease in minimum utility threshold increases both

the time and memory requirements for both algorithms. We presents an illustrative

example of the proposed algorithm with the example dummy transactional dataset. The

experimental results show that EHIN algorithm is 28 times faster in execution time and

consumes up to 10 times less memory than FHN algorithm. Moreover, a key advantage

is that EHIN algorithm always performs better for dense datasets.
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