
Chapter 4

Top-k High Utility Itemsets Mining

In Chapter 3, we developed EHIL, a length-based HUIs algorithm. Although EHIL is

more efficient than FHM+ in many cases, it can discover all the itemsets satisfying a

given minimum utility and length constraints, it is often difficult for users to set a proper

minimum utility, minimum length and maximum length thresholds. A smaller minimum

utility threshold value may produce a huge number of itemsets, whereas a higher one

may produce a few itemsets. Specification of minimum utility threshold is difficult and

time-consuming. To address these issues, top-k HUIs mining has been presented where

k is the number of HUIs to be found. In this chapter, we present an efficient algorithm

(named TKEH) for finding top-k HUIs.

4.1 Preliminaries and Problem Definition

Definition 4.1.1. (Transaction dataset). Let I = {I1, I2, . . . , Im} be a set of distinct items.

A set X ⊆ I is called an itemset. D = {T1,T2, ...,Tn} be a transaction dataset where each

transaction is represented by Tj ∈ D where n is the total number of transactions in the

dataset D.

Let us consider the sample transactional dataset D which is given in TABLE 4.1. This

dataset contains seven transactions (T1,T2, . . . ,T7) where each transaction contains items

71

Chapter 4. Top-k High Utility Itemsets Mining 72

TABLE 4.1: A transaction dataset

Tid Transaction
T1 A(2), B(2), D(1), E(3)
T2 B(1), C(5), E(1), F(2)
T3 B(2), C(1), D(3), E(2)
T4 C(2), D(1), E(3)
T5 A(2), F(1)
T6 A(2), B(1), C(4), D(2), E(1)
T7 B(3), C(2), E(2), F(3)

for example transaction T1 indicates that items A,B,D and E appear with quantity

respectively 2,2,1 and 3. TABLE 4.2 indicates the external utility of each item.

TABLE 4.2: External utility value

Item A B C D E F
External Utility 2 3 1 4 1 3

Definition 4.1.2. (Internal Utility (IU(x,Tj))). Let x be an item. Internal utility of item x

in a transaction Tj ∈ D is defined as quantity of x in Tj. for example, IU(B,T1) = 2.

Definition 4.1.3. (External Utility (EU(x)). Let x be an item. The external utility of item

x is defined as EU(x). For example, EU(B) = 3.

TABLE 4.2 shows the external utility value of all the items.

Definition 4.1.4. (Utility of an item in a transaction). Utility of item x is defined as U(x,Tj)

= IU(x,Tj) × EU(x). For example,U(A,T1) = IU(A,T1) × EU(A) = 2×2 = 4.

Definition 4.1.5. (Utility of an itemset in a transaction). Let X be an itemset. Utility

of an Itemset X is defined as U(X ,Tj)= ∑x∈X∧X⊆Tj U(x,Tj). For example, U(AE,T1)

= IU(A,T1) ×EU(A)+IU(E,T1) × EU(E) = 7.

Definition 4.1.6. (Utility of an itemset in a database D). Utility of an itemset X is defined

as U(X) = ∑X⊆Tj∈DU(X ,Tj). For example, U(AE) =U(AE,T1) +U(AE,T6) = 7+5 =

12.

Definition 4.1.7. (Transaction utility). Transaction utility Tj is defined as TU(Tj) =

∑x∈Tj U(x,Tj). For example, U(T1) = U(A,T1) +U(B,T1)+ U(D,T1)+ U(E,T1) = 17.

TU value of each transaction is shown in TABLE 4.3

Definition 4.1.8. (Transaction weighted utility of an itemset X in the dataset D).

Transaction weighted utility of an itemset X in the dataset D is defined as TWU(X) =

Chapter 4. Top-k High Utility Itemsets Mining 73

TABLE 4.3: Transaction Utility

Tid T1 T2 T3 T4 T5 T6 T7
TU 17 15 21 9 7 20 22

TABLE 4.4: Transaction Weighted Utility

Item A B C D E F
TWU 44 95 87 67 104 44

TABLE 4.5: Top-k HUIs for k = 10

Itemsets Utility Itemsets Utility
{D E} 37 {F E C B} 37
{D B} 39 {D C B E} 37
{D B E} 45 {D C B} 34
{D C E} 37 {B E} 36
{C B E} 39 {F C B} 34

∑X∈Tj∧Tj∈D TU(Tj). For example, TWU(AE) =TU(T1)+TU(T6) = 37. TWU value of

each item is shown in TABLE 4.4

Property 4.1.1. (TWU based overestimation). If TWU value of itemset X is greater than

utility value of itemset X , that is TWU(X) > U(X), then the itemset is assumed as

overestimated.

Property 4.1.2. (TWU based pruning). If TWU value of the itemset X is less than

user-defined threshold (min util), that is TWU(X)< min util, then the itemset cannot be

included for further processing.

Definition 4.1.9. (High utility itemset). An itemset X is called high utility itemset if the

U(X) ≥ min util threshold. Otherwise, itemset X is low high utility itemsets. The HUIs

for the running example is {ACDE : 33,CD : 35, CDE : 35,BC : 33,BCE : 37,C : 36,

CE : 39} where the number beside each itemset indicates its utility value and min util is

30.

Two-phase based algorithms suffer from multiple dataset scans and generate lots of

candidates. To overcome these limitations, one-phase algorithms are proposed.

One-phase algorithms are more efficient than two-phase algorithms concerning execution

time and memory space. Most of the one-phase algorithms use utility-list based structure

and remaining utility pruning strategy to prune the search space [24, 27, 25, 26, 28].

Chapter 4. Top-k High Utility Itemsets Mining 74

Definition 4.1.10. (Remaining utility of an itemset in a transaction). The remaining utility

of itemset X in transaction Tj denoted by RU(X ,Tj) is the sum of the utilities of all the

items in Tj/X in Tj where RU(X ,Tj) = ∑i∈(X ,Tj) U(i,T) [24, 27, 25].

Definition 4.1.11. (Utility-list structure). The utility-list structure contains three fields,

Tid, iutil, and rutil. The Tid indicates the transactions containing itemset X , iutil indicates

the U(X) and the rutil indicates the remaining utility of itemset RU(X ,Tj)

Property 4.1.3. (Pruning search space using remaining utility). For an itemset X , if the

sum of U(X)+RU(X) is less than min util, then itemset X and all its supersets are low

utility itemsets. Otherwise, the itemset is HUIs. The detail and proof of remaining utility

upper bound (REU) based upper bound is given in [24].

Definition 4.1.12. (Top-k high utility itemset). An itemset X is top-k HUIs if there are

less than k items which have the utility larger than the utility of itemset X . In the running

example, TABLE 4.5 shows HUIs with the k value is 10.

4.2 TKEH Algorithm

In this section, we give a step-by-step analysis of the proposed algorithm named TKEH.

Section 4.2.1 describes the search space and shows the techniques to find larger itemsets

from items. Section 4.2.2 describes the EUCS structure that raise min util threshold.

Section 4.2.3 describes the dataset cost reduction techniques to reduce the dataset

scanning. Section 4.2.4 describes the threshold raising techniques. Section 4.2.5

describes the pruning strategies. Section 4.2.6 introduces array-based utility counting

technique. Finally, Section 4.2.7 gives the pseudo-code of the proposed algorithm.

4.2.1 The Search Space

The search space of the top-k HUIs mining problem can be represented as a

set-enumeration tree as in [24]. The items can be explored using depth-first-search in the

set-enumeration tree starting from the root which is the empty set. We sort the items in

increasing order of TWU values that reduce the search space [24, 27]. Some definitions

related to exploration of itemsets in the set-enumeration tree are given below.

Chapter 4. Top-k High Utility Itemsets Mining 75

TABLE 4.6: TWU values of items as � order.

Item A F D C B E
TWU 44 44 67 87 95 104

Definition 4.2.1. (Extension of an item). Let α be an itemset. The set of items that are

used to extend the itemset α is denoted by E(α) and is defined as E(α) = {z |z∈ I∧z� x,

∀x ∈ α}.

Definition 4.2.2. (Extension of an itemset). For the itemset α , Z is an extension of α

that appears in a sub-tree of α in the set-enumeration tree. If Z = α ∪W for an itemset

W ∈ 2E(α). Z is a single-item extension of α that is a child of α in the set-enumeration

tree. If Z = α ∪ {z} for an item z ∈ E(α).

For example α = {C}. The set E(α) is {D,E}. And single-item extensions of α are

{C,D}, {C,E} and {D,E}. The itemsets extensions of α is {C,D,E}.

4.2.2 Concept of Co-occurrence Structure

In top-k-HUIs mining, a key challenge is to design efficient techniques to raise min util.

These techniques should be efficient regarding time and memory usage. We employ

EUCST (Estimated Utility Co-occurrence Pruning Strategy with Threshold) strategy to

raise min util and prune the search space. This strategy is proposed by FHM algorithm

[27] and after that is improved by kHMC algorithm [51]. The following paragraph first

describes the EUCS structure and then EUCST strategy.

TABLE 4.7: EUCS map for transaction
T1.

Item A F D C B
F
D 17
C
B 17 17
E 17 17 17

TABLE 4.8: EUCS map up-to
transaction T2.

Item A F D C B
F
D 17
C 15
B 17 15 17 15
E 17 15 17 15 32

Chapter 4. Top-k High Utility Itemsets Mining 76

Definition 4.2.3. (EUCS structure). EUCS structure is a set of triples of the form (x,y,z)

∈ I∗× I∗× R+. A triple (x,y,z) indicates that TWU({x,y}) = z.
TABLE 4.9: EUCS Map with all TWU .

Item A F D C B
F 7
D 37 0
C 20 37 50
B 37 37 58 78
E 37 37 67 87 95

TABLE 4.10: Final EUCS Map.

Item A F D C B
F
D 37
C 37 50
B 37 37 58 78
E 37 37 67 87 95

Property 4.2.1. Let X be an itemset. If TWU(X) < min util then for any extension y of

X , U(Y,X)< min util.

The EUCS can be implemented by a triangular matrix as in [27]. We implemented the

EUCS using hashmap instead of triangular matrix. The hashmap based implementation

is more efficient. The EUCS only stores the values that TWU 6= 0. Hence, fewer items

are in EUCS. The proposed algorithm scans the dataset twice as the other efficient HUIs

mining algorithm. The first scan calculates the TWU of each 1-item(s). Then the items

are sorted according to the TWU values in non-decreasing order as suggested in [24].

This sorting order can be denoted by � order. TABLE 4.6 shows the TWU value for

the running example as � order. The second scan constructs EUCS. Each cell in table

represents TWU values for the itemsets. TABLE 4.10 represents EUCS implementation

of the running example. The creation of EUCS structure for transaction T1 is shown in

TABLE 4.7 where T1 is {(A,4), (D,4), (B,6), (E,3)}. For this transaction, tuples are

(A,D,17), (A,B,17), (A,E,17), (D,B,17), (D,E,17), (B,E,17) as shown in TABLE 4.7.

Since none of these values are present in the EUCS map, the values are inserted in it

directly. Using the same phenomena, we can create the EUCS for all the transactions.

If TWU is already for the item then we simply add TWU values and update the EUCS.

As T2 is {(F,6), (C,5), (B,3), (E,1)}. For transaction T2 tuples are (F,C,15), (F,B,15),

(F,E,15), (C,B,15), (C,E,15), (B,E,15). Since tuple (B,E,15) is already available in

EUCS map its values are updated as shown in TABLE 4.8. The same process is repeated

for the next transactions. TABLE 4.9 shows all the item without pruning. The itemsets

having less TWU value than min util (colored in brown in TABLE 4.9) are removed from

EUCS. TABLE 4.10 shows the final EUCS for the running example after eliminate the

items using Property 4.2.1 where min util is 30. EUCS structure based pruning is called

EUCP that is proposed in [27].

Chapter 4. Top-k High Utility Itemsets Mining 77

4.2.3 Dataset Scanning Techniques

To reduce the dataset scanning cost, TKEH employs dataset projection and transaction

merging techniques.

4.2.3.1 Dataset Scanning using Projection

The proposed algorithm calculates the utility and upper-bounds of itemsets by scanning

the dataset. At the same time, TKEH creates EUCST and CUDM structure and also

calculates RIU. As the dataset can be very large, there is a need to reduce the cost of

dataset scanning. Hence, dataset projection is required. We simply observe during the

depth-first search for any itemset α , all items that do not belong to E(α) can be ignored

while scanning the dataset. Hence, we do not calculate the utility and upper bound of

these items. A dataset without these items is known as projected dataset.

Definition 4.2.4. (Projected dataset). The projection of a transaction Tj using an itemset

α is denoted by α −T and defined as α −T = {i |i ∈ T ∧ i ∈ E(α)}. The projection of

a dataset D using an itemset α is denoted by α−D and defined as the multi-set α−D =

{α−T | T ∈ D∧α−T 6= /0}.

The cost of dataset scans is greatly reduced using dataset projection techniques. The size

of transactions gets smaller and smaller as the algorithm explores larger itemsets.

Implementing dataset projection in the algorithm is quite a tough task and various

inefficient approaches are present in literature to perform it. EFIM algorithm presents an

efficient technique to perform dataset projection [28]. We utilize efficient dataset

projection technique presented by EFIM algorithm.

4.2.3.2 Dataset Scanning using Transaction Merging

The cost of performing dataset scans can be further reduced using an efficient transaction

merging technique. After performing dataset projection, there exist a lot of identical

transactions. Hence, transaction merging technique is performed after dataset projection

technique.

Chapter 4. Top-k High Utility Itemsets Mining 78

Definition 4.2.5. (Transaction merging). Transaction merging technique identifies

identical transactions and replaces them with a single transaction. Transactions

Ta1,Ta2, . . . ,Tam in a dataset D are merged by a single new transaction TM =

Ta1 = Ta2 = . . . = Tam where the quantity of each item x ∈ TM is defined as IU(x,TM)

=∑ j=1...m IU(x,Ta j).

Applying transaction merging technique on projected datasets achieves a much higher

reduction in the size of the dataset.

Definition 4.2.6. (Projected transaction merging). Let the identical transaction as Ta1,

Ta2, Ta3, Tan in the a dataset α −D is replaced by a new transaction TM= Ta1= Ta2 =

Ta3 = Tan and quantity of these identical transactions x ∈ TM is defined as IU(x,TM) =

∑i=1,...,n IU(x,Tai).

For example, Let us consider dataset D and the projected dataset α −D where α = C

contains transactions α−T2 = {E,F}, α−T3 = {D,E}, α−T4 = {D,E}, α−T6 = {D,E}
and α −T7 = {E,F}. Hence, transactions α −T3, α −T4 and α −T6 can be merged and

replaced by a new transaction Tm = {D,E} where IU(D,Tm) = 6 and IU(E,Tm) = 6. Also

transactions α−T2 and α−T7 can be replaced by a new transaction Tm1 = {E,F} where

IU(E,Tm) = 3 and IU(F,Tm) = 5

Transaction merging technique is desirable to reduce the size of the dataset. The main

problem to implement this technique is to identify the identical transactions. To achieve

this, we need to compare all transactions with one another. But this technique to compare

all the transactions to each is not an efficient technique. To efficiently implements this

techniques, we follow the technique proposed in EFIM [28].

4.2.4 Threshold Raising Strategies

Algorithm 3: RIU strategy
Input: set of RIU values for all items, k: desired number of HUIs.
Output: Raised min util.

1 Sort RIU values.
2 Set min util to the kth largest RIU value.
3 return min util;

Chapter 4. Top-k High Utility Itemsets Mining 79

4.2.4.1 RIU strategy

RIU (Real item utilities) strategy is proposed by REPT algorithm [49]. We utilize this

strategy to raise the internal min util threshold. In first dataset scan, RIU or utility value

of all the items are calculated as ∑Tj∈DU(x,Tj) and denoted by RIU(x). For example,

item A occurs in transactions T1,T5 and T6. The utility of item A in these transactions are

U(A,T1) = 4, U(A,T5) = 4 and U(A,T6) = 4. Hence, RIU(A) is U(A,T1) + U(A,T5) +

U(A,T6) = 4 + 4 + 4 = 12. Similarly, the utility of all the items are calculated.

Let RIU = {RIU1,RIU2, . . . ,RIUn} be the list of utilities of items in I. We first sort the list

of RIU values using an efficient sorting algorithm. Then the RIU strategy raises min util

value to kth largest value in the sorted RIU list. This new value now is used as min util

threshold by the algorithm until the threshold is increased again using another threshold

raising strategy. For example, If k = 2 then the dataset is scanned, the utility of items is

calculated. The second largest value in the list RIU is 27. Therefore, the value of min util

is increased to 27. This new min util value is then used by the algorithm until it is again

increased by another raising strategy.

Algorithm 4: CUD strategy
Input: CUDM:matrix, k: desired number of HUIs.
Output: Raised min util.

1 Extract k largest value from the CUDM matrix using any efficient data structure such as
priority queue.

2 Set min util to the extracted value iff it is greater than the previous min util.
3 return min util;

4.2.4.2 CUD strategy

We utilize CUD (Co-occurrence with Utility Descending order) strategy to increase the

internal min util threshold using the utilities of 2-itemsets stored in the EUCS structure.

CUD strategy is utilized from kHMC algorithm [51]. CUD strategy utilizes the same

structure as used by EUCSP pruning strategy. The EUCS structure contains a pair of

items having a TWU no less than min util which may thus be a HUIs. Hence, values on

EUCS can be considered for raising the threshold. The structure for storing the utilities

Chapter 4. Top-k High Utility Itemsets Mining 80

of pairs of items is called the CUD utility Matrix (CUDM). CUD strategy is applied after

the RIU strategy.

Algorithm 5: COV strategy
Input: EUCST: matrix, k: desired number of HUIs.
Output: Raised min util.

1 foreach item x ∈ I do
2 I(x).COV ← /0;
3 foreach each item y ∈ I and y� x do
4 if EUCST (x,y) = TWU(x) then
5 I(x).COV ← I(x).COV ∪ y;

6 Extract kth largest value from the COVL using priority queue.
7 Set min util to the extracted value.
8 return min util;

4.2.4.3 COV strategy

We utilize COV (Coverage) strategy to raise the internal min util threshold. COV strategy

stores the utilities of pairs of items in structure named coverage list (COVL). To construct

the COVL, we need to store all the values of CUDM into COVL. Then, COV strategy

inserts the combinations of item i with all subsets of its coverage C(i) in the COVL where

item i ∈ I. After all items are processed, the construction of COVL is completed. The

Algorithm 5 shows the COVL construction and min util threshold raising process.

4.2.5 Pruning Strategies

In HUIs mining, a key problem is to design effective pruning strategies. For this purpose,

we utilize sup pruning strategy proposed by EFIM algorithm [28]. This strategy is based

on sub-tree utility which was also introduced in EFIM algorithm. We also utilize EUCS

based pruning strategy name EUCP.

Chapter 4. Top-k High Utility Itemsets Mining 81

4.2.5.1 Prune search space using EUCP

We find TWU value for each itemset using EUCS. Hence, EUCS is also utilized to prune

the search space.

Definition 4.2.7. (Pruning using EUC (EUCP)). Let X be an itemset, If TWU(X) <

min util, then for any extension Y of X ,U(XY)< min util.

4.2.5.2 Prune search space using Sub-tree Utility

Definition 4.2.8. (Sub-tree Utility). For an itemset α and an item x ∈ E(α) that can be

extended α to follow the depth-first search to the sub-tree. The su of the item x, if α is

su(α , x) = ∑T∈(α∪{x})[U(α,T)+U(x,T) + ∑i∈T∧i∈E(α∪{x}) U(i,T)].

Moreover in the running example α = {A}. We have that su(α,B) = (4+ 6+ 5) = 15,

su(α,C)=(4+4+9) = 17.

Property 4.2.2. (Pruning using su (sup)). For an itemset α and an item x ∈ E(α), the

utility value of su(α , x) ≥ U(α ∪ {x}) and accordingly, su(α , x) ≥ U(x) keeps the

extension x of α ∪ {x}.

Assume an itemset z = x∪y, then the relationship between the proposed upper-bounds are

as TWU(z) = EUCP(x,y) ≥ REU(z) = su(x,y) holds [27, 28].

In rest of the chapter, we refer to items having su and TWU as Primary and Secondary

respectively.

Primary and Secondary items: Assume an itemset X . The Primary items of α is a set

defined as Primary(α) = {x |x ∈ E(α) ∧su(α,x) ≥ min util}. The Secondary items of

α is a set defined as Secondary(α) = {x |x ∈ E(α) ∧TWU(α,x) ≥ min util}. Since

TWU(α,x)≥ su(α,x), Primary(α)⊆ Secondary(α).

4.2.6 Calculate Upper Bounds using Utility Array

We utilize an efficient array-based utility counting technique, that is UA. This technique

is used to calculate the utility for sup in linear time and space.

Chapter 4. Top-k High Utility Itemsets Mining 82

Definition 4.2.9. (Utility Array). For the set of items I appear in a dataset D, UA is an

array of length |I| that have an entry denoted by UA[x] for each item x ∈ I. Each entry is

called UA that is used to store a utility value.

Calculating TWU of all items using UA: UA is initialized to 0. Then the UA[x] for each

item x ∈ Tj is calculated UA[x] = UA[x] + TU(x,Tj) for each transaction Tj in the dataset

D. After the dataset is scanned, the UA[x] contains TWU(x) where each item x ∈ I.

Calculating su(α): UA is initialized to 0. Then the UA[x] for each item x ∈ Tj ∩E(α)

is calculated UA[x] = UA[x] + U(α,T) + U(x,T) + ∑i∈T∧i∈E(α∪{x}) U(x,T) for each

transaction Tj in the dataset D. After the dataset is scanned, the UA[x] contains su(α,x)

∀x ∈ I where each item x ∈ E(α).

Algorithm 6: TKEH algorithm
Input: D: a transaction dataset, k: desired number of HUIs.
Output: Top-k high utility itemsets.

1 α ← Ø;
2 min util ← 1.
3 Create a priority queue kPatterns of size k. Scan D, compute TWU(α) for all items

using UA[x].
4 Compute RIU(α) for all items k ∈ I and store these RIU values them in a hashMap.
5 RIU strategy(hashmap RIU, k). . See Algorithm 3
6 Calculate Secondary(α) = {x | x ∈ E(α) ∧ TWU(α,x) ≥ min util}.
7 Let � be the total order of TWU increasing values on Secondary(α)
8 Scan D, remove item x /∈ Secondary(α) from the transactions Tj and delete empty

transactions Tj;
9 Sort all the remaining transactions in D according to �T ;

10 Build CUDM structure and COVL structure.
11 CUD strategy(hashmap CUDM, k). . See Algorithm 4
12 COV strategy(hashmap EUCST,k). . See Algorithm 5
13 Scan D, compute su(α,x) of each item x ∈ Secondary(α), using UA[x];
14 Primary(α) = {x | x ∈ Secondary(α) ∧ su(α,x) ≥ min util};
15 search(α,D, Primary(α), Secondary(α), min util, kpatterns);
16 return Top-k HUIs; . all itemset stored in priority queue, kPatterns

Chapter 4. Top-k High Utility Itemsets Mining 83

Algorithm 7: The Search procedure
Input: α : an itemset, α−D : a projected dataset, Primary(α) : the primary items of α ,

Secondary(α): secondary items of α , min util and kPatterns: priority queue of k
items

Output: The set of top-k HUIs that are extension of α

1 foreach item x ∈ Primary(α) do
2 β ← α ∪{x}
3 Scan α−D, compute U(β) and create β −D; . using transaction merging
4 if U(β)≥min util then
5 add β in kPatterns. And raise the min util to the top of priority queue element’s

utility.
6 Scan β −D, compute su(β ,x) and TWU(β) where item x ∈ Secondary(α), using

two UAs
7 Primary(β) = {x ∈ Secondary(α) | su(β ,x) ≥ min util};
8 Secondary(β) = {x ∈ Secondary(α) | TWU(β) ≥ min util};
9 search(β ,β −D,Primary(β), Secondary(β),min util, kPatterns);

4.2.7 Main Procedure of TKEH

In this subsection, we demonstrate the proposed algorithm TKEH which mines the top-k

HUIs. We utilize several novel ideas that are explained previously. TKEH includes several

strategies to raise the threshold. We also utilize array-based technique to calculate the

utility values of items and upper-bounds.

The main procedure of TKEH is shown in Algorithm 6. This procedure takes

transactional dataset D and user-defined parameter k as an input. Algorithm 6 returns

the top-k HUIs of the dataset D. Line 1 sets itemset α as empty. Line 2 initially

initializes min util by 1. Line 3 scans the dataset D, calculate TWU for all the items and

creates a priority queue (named kPatterns) of k size. Line 4 calculates the RIU values for

all the items and store these values into hashMap as describe in Section 4.2.4.1.

RIU strategy (Algorithm 3) is executed in line 5 that raise min util threshold. Line 6

finds the Secondary items for the itemset α . Line 7 sorts the items of Secondary set in

nondecreasing order of TWU on Secondary items. Line 8 removes the items that are not

in Secondary and also remove the empty transactions from the dataset D. Line 9 sorts all

the transactions to �T . Line 10 builds CUDM and COV L structure. Line 11 and line 12

call CUD strategy (Algorithm 4) and COV strategy (Algorithm 5) respectively to raise

the internal min util threshold. Line 13 calculates sub-tree utility for each item of

Chapter 4. Top-k High Utility Itemsets Mining 84

Secondary set. Line 14 finds the Primary items. Line 15 calls Algorithm 7 to extend the

itemset α by performing the depth-first search.

Algorithm 7 takes as input the current itemset α , projected dataset, Primary, Secondary

items, internal min util threshold and priority queue kPatterns. This procedure extends α

with single items during each call. Line 1 finds the extension of α with items of Primary

set. Line 2 initializes β as α ∪{x}. Line 3 calculates the utility of itemset β and create

the projected dataset for β −D. Line 4 checks the itemset β is HUIs or not, if β fulfill

min util threshold then add in priority queue kPatterns (line 5). Line 6 calculates su and

TWU for itemset β . Line 7 and line 8 find the Primary and Secondary set for itemset

β respectively. Lastly, line 9 calls Algorithm 7 recursively to extend β using depth-first

search.

TABLE 4.11: Statistical information about datasets

Dataset # of
transactions

of
items

Avg.
length

Max.
Length

Type

accidents 340183 468 33.8 51 Dense
chess 3196 75 37 37 Dense
mushroom 8124 119 23 23 Dense
foodmart 4141 1559 4.42 14 Sparse
retail 88162 16470 10.3 76 Sparse

1 5 1 0 5 0 1 0 0 5 0 0 1 0 0 0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

Ru
nti

me
(Se

c.)

a c c i d e n t s

Ru
nti

me
(Se

c.)

K

 k H M C
 T K E H
 T K E H (C U D)
 T K E H (R I U)
 T K E H (s u p)
 T K E H (t m)

FIGURE 4.1: Runtime evaluation on
accident dataset

1 5 1 0 5 0 1 0 0 5 0 0 1 0 0 0
0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8
Ru

nti
me

(Se
c.)

c h e s s

Ru
nti

me
(Se

c.)

K

 k H M C
 T K E H
 T K E H (C U D)
 T K E H (R I U)
 T K E H (s u p)
 T K E H (t m)

FIGURE 4.2: Runtime evaluation on
chess dataset

Chapter 4. Top-k High Utility Itemsets Mining 85

4.3 Performance Evaluations

All the experiments were conducted on an Intel Core-i7-6700 machine, 3.40 GHz CPU

with 8 GB of memory, running Windows 10 Pro (64-bit OS). We compare the performance

of TKEH with the state-of-the-art algorithm kHMC on the five real datasets available

from spmf [77]. Moreover, to evaluate the influence of the design strategies in TKEH,

we check the performance of four versions of TKEH named TKEH(CUD), TKEH(RIU),

TKEH(sup) and TKEH(tm). TKEH utilizes all the threshold raising strategies (RIU, CUD

and COV) and dataset reduction techniques (tm and sup). TKEH(CUD) utilizes only one

threshold raising strategies named CUD and both dataset reduction techniques (tm and

sup). Similarly, TKEH(RIU) utilizes only one threshold raising strategies named RIU

and both dataset reduction techniques (tm and sup). TKEH(sup) and TKEH(tm) utilize

sup and tm technique respectively with all threshold raising strategies (CUD, RIU and

COV).

1 5 1 0 5 0 1 0 0 5 0 0 1 0 0 0
0

1 0

2 0

3 0

4 0

5 0

0

1 0

2 0

3 0

4 0

5 0
Ru

nti
me

(Se
c.)

m u s h r o o m

Ru
nti

me
(Se

c.)

K

 k H M C
 T K E H
 T K E H (C U D)
 T K E H (R I U)
 T K E H (s u p)
 T K E H (t m)

FIGURE 4.3: Runtime evaluation on mushroom dataset

The detailed characteristics of all the datasets are shown in TABLE 4.11 where Avg.length

and Max.length denote the average transaction length and maximum transaction length

respectively. The real size of accidents, chess, mushroom, foodmart and retail datasets

are 63.1 MB, 641 KB, 1.03 MB, 175 KB and 6.42 MB respectively. The experimental

results on all these datasets are separately shown and are discussed in Section 4.3.1 and

Section 4.3.2. The report of memory consumptions and scalability are shown respectively

Chapter 4. Top-k High Utility Itemsets Mining 86

in Section 4.3.3 and Section 4.3.4. To ensure robustness of the results, we ran all our

experiments ten times to report the average results.

To compare the proposed algorithms with the state-of-the-art algorithm, we executed both

of the algorithms on all datasets by increasing k. Here the value of k increases until all

the algorithms take too much time or out of memory or a clear winner is observed. The

experimental results on all the datasets are separately shown in the next sections.

4.3.1 Dense Datasets

For the dense datasets, all versions of TKEH performs consistently better than kHMC.

FIGURE 4.1 shows the running time of the all the algorithms on the accident dataset. We

can see that both the sup and tm techniques are required to reduce the runtime. Hence,

all the version of TKEH except TKEH(sup) and TKEH(tm) outperform kHMC algorithm

for the very large values of k. For the chess and mushroom dataset, the tm technique

merges the transactions widely. For the chess dataset, only TKEH(sup) does not give

good performance than kHMC algorithm, rest all the other versions of TKEH give better

performance as shown in FIGURE 4.2. For the mushroom dataset, all the versions of

TKEH outperform kHMC. TKEH, TKEH(CUD), TKEH(RIU) and TKEH(tm) give

almost stable performance as shown in FIGURE 4.3. TKEH(sup) and kHMC have their

comparable runtime for mushroom dataset. TKEH, TKEH(CUD) and TKEH(RIU)

outperform for dense datasets because tm technique merges the transactions widely.

4.3.2 Sparse Datasets

For sparse datasets, the gap between the runtime of the algorithms is smaller because the

items do not appear in every transaction; thus tm technique is less effective and execution

cost increases. For the foodmart dataset, kHMC performs well than TKEH and TKEH(tm)

up to the k = 100. When the value of k increases, kHMC gives worst performance. Except

TKEH and TKEH(tm), all other algorithms continuously outperform kHMC as shown in

FIGURE 4.4. In retail dataset, only TKEH(sup) outperforms kHMC algorithm as shown

Chapter 4. Top-k High Utility Itemsets Mining 87

1 5 1 0 5 0 1 0 0 5 0 0 1 0 0 0
0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

Ru
nti

me
(Se

c.)

f o o d m a r t
Ru

nti
me

(Se
c.)

K

 k H M C
 T K E H
 T K E H (C U D)
 T K E H (R I U)
 T K E H (s u p)
 T K E H (t m)

FIGURE 4.4: Runtime evaluation on
foodmart dataset

1 5 1 0 5 0 1 0 0 5 0 0 1 0 0 0
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
1 0 0

Ru
nti

me
(Se

c.)

r e t a i l

Ru
nti

me
(Se

c.)

K

 k H M C
 T K E H
 T K E H (C U D)
 T K E H (R I U)
 T K E H (s u p)
 T K E H (t m)

FIGURE 4.5: Runtime evaluation on
retail dataset

in FIGURE 4.5. The results show that retail dataset does not support tm technique. The

retail dataset has a large number of distinct items and has wider maximum transaction

length than all the other datasets. Hence, it does not support tm technique.

We can observe by the experimental results that when the datasets are highly sparse, we

can drop the tm technique and can mine top-k HUIs efficiently.

1 5 1 0 5 0 1 0 0 5 0 0 1 0 0 0
6 5 0
7 0 0
7 5 0
8 0 0
8 5 0
9 0 0
9 5 0

1 0 0 0
1 0 5 0
1 1 0 0
1 1 5 0

6 5 0
7 0 0
7 5 0
8 0 0
8 5 0
9 0 0
9 5 0
1 0 0 0
1 0 5 0
1 1 0 0
1 1 5 0

Me
mo

ry
(M

B)

a c c i d e n t s

Me
mo

ry
(M

B)

K

 k H M C
 T K E H
 T K E H (C U D)
 T K E H (R I U)
 T K E H (s u p)
 T K E H (t m)

FIGURE 4.6: Memory consumption on
accident dataset

1 5 1 0 5 0 1 0 0 5 0 0 1 0 0 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

Me
mo

ry
(M

B)

c h e s s

Me
mo

ry
(M

B)

K

 k H M C
 T K E H
 T K E H (C U D)
 T K E H (R I U)
 T K E H (s u p)
 T K E H (t m)

FIGURE 4.7: Memory consumption on
chess dataset

Chapter 4. Top-k High Utility Itemsets Mining 88

1 5 1 0 5 0 1 0 0 5 0 0 1 0 0 0
0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0

0
5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0

Me
mo

ry
(M

B)

m u s h r o o m

Me
mo

ry
(M

B)

K

 k H M C
 T K E H
 T K E H (C U D)
 T K E H (R I U)
 T K E H (s u p)
 T K E H (t m)

FIGURE 4.8: Memory consumption on
mushroom dataset

1 5 1 0 5 0 1 0 0 5 0 0 1 0 0 0
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5

0
5
1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5

Me
mo

ry
(M

B)

f o o d m a r t

Me
mo

ry
(M

B)
K

 k H M C
 T K E H
 T K E H (C U D)
 T K E H (R I U)
 T K E H (s u p)
 T K E H (t m)

FIGURE 4.9: Memory consumption on
foodmart dataset

1 5 1 0 5 0 1 0 0 5 0 0 1 0 0 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

Me
mo

ry
(M

B)

r e t a i l

Me
mo

ry
(M

B)

K

 k H M C
 T K E H
 T K E H (C U D)
 T K E H (R I U)
 T K E H (s u p)
 T K E H (t m)

FIGURE 4.10: Memory consumption on retail dataset

4.3.3 Memory Usage

In this section, we report the memory usage of the proposed algorithms and the

state-of-the-art algorithms on three dense datasets (accidents, chess and mushroom) and

two sparse datasets (foodmart and retail). For all the dense datasets, all the versions of

TKEH consume less memory than kHMC as shown in Figures 4.6 to 4.9. In retail

dataset, kHMC performs better than TKEH(CUD) and rest all the versions outperforms

kHMC as seen in FIGURE 4.10. kHMC consumes huge memory due to the construction

of the utility-list during the mining process. TKEH reuses some of it’s data structures

and reuses same UAs to calculate utility of items and upper-bounds. Hence, all the

proposed versions of the proposed algorithm consume less memory than kHMC except

Chapter 4. Top-k High Utility Itemsets Mining 89

TABLE 4.12: Improvements of TKEH over kHMC at the highest value of k (k = 1000)

Runtime Memory

Dataset TKEH TKEH (CUD) TKEH (RIU) TKEH (sup) TKEH (tm) TKEH TKEH (CUD) TKEH (RIU) TKEH (sup) TKEH (tm)
accident 2.657 2.668 2.191 0.114 0.560 1.671 1.676 1.702 1.452 1.471

chess 4.797 2.946 1.849 0.495 0.056 4.914 2.559 1.004 1.153 1.129
foodmart 1.243 2.028 2.350 1.911 1.125 2.002 1.682 2.402 2.002 1.682

mushroom 1.046 153.556 96.861 1.042 1.036 1.633 7.523 3.877 1.531 1.666
retail 0.574 0.561 0.361 1.720 0.430 1.520 0.706 4.081 1.483 1.313

for the retail dataset. The retail dataset is highly sparse and proposed algorithms are not

efficient for highly sparse datasets. The transaction merging and dataset projection

techniques utilized by TKEH are not suitable for highly sparse datasets as retail.

2 0 4 0 6 0 8 0 1 0 0
0

3 0

6 0

9 0

1 2 0

1 5 0

1 8 0

2 1 0

0

3 0

6 0

9 0

1 2 0

1 5 0

1 8 0

2 1 0
Ru

nti
me

(Se
c.)

a c c i d e n t s

Ru
nti

me
(Se

c.)

D a t a s e t s i z e (%)

 k H M C
 T K E H
 T K E H (C U D)
 T K E H (R I U)
 T K E H (s u p)
 T K E H (t m)

FIGURE 4.11: Runtime scalability of
the algorithms on accidents dataset

2 0 4 0 6 0 8 0 1 0 0
0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

0 . 3 5

0 . 4 0

0 . 4 5

0 . 5 0

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

0 . 3 5

0 . 4 0

0 . 4 5

0 . 5 0

Ru
nti

me
(Se

c.)

f o o d m a r t

Ru
nti

me
(Se

c.)

D a t a s e t s i z e (%)

 k H M C
 T K E H
 T K E H (C U D)
 T K E H (R I U)
 T K E H (s u p)
 T K E H (t m)

FIGURE 4.12: Runtime scalability of
the algorithms on foodmart dataset

2 0 4 0 6 0 8 0 1 0 0
6 0 0
6 5 0
7 0 0
7 5 0
8 0 0
8 5 0
9 0 0
9 5 0

1 0 0 0
1 0 5 0
1 1 0 0
1 1 5 0

6 0 0
6 5 0
7 0 0
7 5 0
8 0 0
8 5 0
9 0 0
9 5 0
1 0 0 0
1 0 5 0
1 1 0 0
1 1 5 0

Me
mo

ry
(M

B)

a c c i d e n t s

Me
mo

ry
(M

B)

D a t a s e t s i z e (%)

 k H M C
 T K E H
 T K E H (C U D)
 T K E H (R I U)
 T K E H (s u p)
 T K E H (t m)

FIGURE 4.13: Memory scalability of
the algorithms on accidents dataset

2 0 4 0 6 0 8 0 1 0 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5
Me

mo
ry

(M
B)

f o o d m a r t

Me
mo

ry
(M

B)

D a t a s e t s i z e (%)

 k H M C
 T K E H
 T K E H (C U D)
 T K E H (R I U)
 T K E H (s u p)
 T K E H (t m)

FIGURE 4.14: Memory scalability of
the algorithms on foodmart dataset

Chapter 4. Top-k High Utility Itemsets Mining 90

4.3.4 Scalability

In order to test the scalability of all the algorithms, we varied the size of the dataset from

25% to 100% and studied the execution and memory consumption performance. We fix

the value of k by 500 to check the scalability comparison of all the algorithm. In order to

check the scalability, one dense (accidents) and one sparse (foodmart) dataset are used. All

the versions of TKEH consume less runtime and less memory than kHMC. FIGURE 4.11

and 4.12 show that the running time of TKEH increases linearly with increased dataset

size. We also observe that the memory usages of TKEH increases linearly when the

number of transactions increases as shown in FIGURE 4.13 and 4.14. This indicates that

TKEH scales well with the size of dataset.

4.4 Discussion

This chapter utilizes three threshold raising strategies such as RIU, CUD and COV.

Transaction merging and utility counting techniques are utilized to reduce the memory

requirement and speed up the execution process. The chapter also employs sup and

EUCP technique to prune the search space. A summary of the performance

improvements of all the versions of TKEH over kHMC at the highest k values is shown

in TABLE 4.12. TABLE 4.12 shows that the proposed algorithm up to 153.556 times

faster in execution time and consume up to 4.914 times less memory than kHMC. The

results show that TKEH significant improvement in runtime for accident, chess,

foodmart and mushroom datasets. kHMC algorithm performs better on retail dataset in

runtime. However, the memory improvements of TKEH on all datasets are quite

significant. The runtime performance improvements of TKEH, TKEH(CUD),

TKEH(RIU) were quite significant compared to kHMC on all the datasets except retail.

TKEH(sup) and TKEH(tm) do not give as good results as the other versions of TKEH

algorithm. It shows that both the sup and tm techniques do not perform good

individually but they performs better together.

Chapter 4. Top-k High Utility Itemsets Mining 91

4.5 Summary

In this chapter, we addressed the mining top-k HUIs by utilizing three threshold raising

strategies named RIU, CUD and COV. Transaction merging and array-based utility

counting techniques are utilized to reduce the memory requirement and speed up the

execution process. The proposed algorithm also utilized sup and EUCP technique to

prune the search space. A summary of the performance improvements of all the versions

of TKEH over kHMC at the highest k values is shown in TABLE 4.12. In order to

understand the working of proposed algorithm, we presented a detail example with

dummy transactional dataset. The results show that TKEH significant improvement in

runtime for accident, chess, foodmart and mushroom datasets. TKEH algorithm not

performs even better than kHMC on retail dataset in runtime. However, the memory

improvements of TKEH on all datasets are quite significant. The runtime performance

improvements of TKEH, TKEH(CUD), TKEH(RIU) were quite significant compared to

kHMC on all the datasets except retail. TKEH(sup) and TKEH(tm) do not give as good

results as the other versions of TKEH algorithm. It shows that both the sup and tm

techniques do not perform good individually but they performs better together.

	4 Top-k High Utility Itemsets Mining
	4.1 Preliminaries and Problem Definition
	4.2 TKEH Algorithm
	4.2.1 The Search Space
	4.2.2 Concept of Co-occurrence Structure
	4.2.3 Dataset Scanning Techniques
	4.2.3.1 Dataset Scanning using Projection
	4.2.3.2 Dataset Scanning using Transaction Merging

	4.2.4 Threshold Raising Strategies
	4.2.4.1 RIU strategy
	4.2.4.2 CUD strategy
	4.2.4.3 COV strategy

	4.2.5 Pruning Strategies
	4.2.5.1 Prune search space using EUCP
	4.2.5.2 Prune search space using Sub-tree Utility

	4.2.6 Calculate Upper Bounds using Utility Array
	4.2.7 Main Procedure of TKEH

	4.3 Performance Evaluations
	4.3.1 Dense Datasets
	4.3.2 Sparse Datasets
	4.3.3 Memory Usage
	4.3.4 Scalability

	4.4 Discussion
	4.5 Summary

