
Chapter 3

High Utility Itemsets Mining
Considering Length Constraints

Traditional HUIs mining algorithms discover large amount of HUIs with various very

small itemsets. A large number of HUIs are not good because it consumes large memory

and not actionable. Very few items in HUIs are also less useful to take decisions.

Traditional algorithms take a lot of time to generate candidate itemsets and find HUIs.

Hence concise HUIs mining plays an important role. Therefore length constraints based

approach to discover HUIs is a good way to reduce search space and remove irrelevant

items (very small itemsets) and discover more relevant HUIs. The problem of mining

HUIs with length constraints is to find all itemsets having a utility no less than min util

and containing at least min length items and at most max length items. To enforce the

length constraints, it is needed to check min length and max length threshold as early as

possible. To reduce the search space, we introduce dataset projection and transaction

merging. The proposed algorithm essentially consists a set of techniques for reducing

upper-bounds with length constraints. These length constraints introduce tighter and

revised upper-bounds such as revised TWU (RTWU) to prune the search space. We take

the example transactional dataset from TABLE 2.1 and external utility from TABLE 2.2.

The revised utilities are as follows.

Definition 3.0.1. (Revised transaction utility). The revised transaction utility denoted by

RTU(Tj) for transaction Tj is computed as: RTU(Tj) = ∑
m
i U(Xi,Tj) in which, m is the

number of items in Tj transaction.
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TABLE 3.1: Revised TU values in the example

Tid TU RTU
T1 17 14
T2 9 9
T3 21 20
T4 9 9
T5 4 4
T6 20 16
T7 13 13

For example, RTU of T1 can be as RTU(T1)= U(A,T1) + U(B,T1) + U(D,T1) = 4 + 6 +

4 = 14. RTU(X) ≤ TU(X), because TU is the summation of all items in a transaction

without any deletion. TABLE 3.1 shows TU values of the running dataset. RTU is

the summation of remaining items after deletion by apply min length and max length

constraints. TABLE 3.1 shows RTU value of each transaction.

TABLE 3.2: TWU values of items

Item A B C D E
TWU 41 80 72 67 89

TABLE 3.3: RTWU values of items

Item A B C D E
RTWU 34 72 67 59 81

Definition 3.0.2. (Revised transaction weighted utility). The revised transaction-weighted

utility (RTWU) of an itemset X is defined as RTWU(X) =∑X⊆Tj∈D RTU(Tj)

For example, the RTU of transactions T1, T2, T3, T4, T5, T6 and T7 is 14, 9, 20, 9, 4, 16 and

13 respectively. Hence, RTWU(A)= RTU(T1) + RTU(T5) + RTU(T6) = 14 + 4 + 16 =

34, which is a tighter upper-bound on the utility of {A} and its supersets than the original

TWU which is calculated as 41. TABLE 3.2 shows the TWU and TABLE 3.3 shows

the RTWU value of each item. The proposed RTWU has the two following important

properties.

Property 3.0.1. The revised TWU is a more tighter upper-bound than the original TWU .

For an itemset X , The relationship between these upper-bounds is RTWU(X)≤ TWU(X).

Proof: For the itemset X , we can observe that RTU(X) ≤ TU(X). Hence, RTWU(X) ≤
TWU(X) where RTWU(X) = ∑X⊆Tj∈D RTU(Tj) and TWU(X) =∑X⊆Tj∈D TU(Tj).
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Property 3.0.2. (Pruning using RTWU). For the itemset X , if RTWU(X)< min util, then

X and its supersets are not HUIs.

Proof: The RTU(Tj) shows the utility for a transaction Tj and an itemset observing the

length constraints (min length and max length). Hence, RTWU(X) can be considered

as an upper-bound. It is also observed that the utility of supersets for itemset X cannot

appear in more transactions than itemset X .

All the two-phase algorithms (Two-Phase, BAHUI, UP-Growth and UP-Growth+) in the

literature use the ordinary TWU utility to prune the search space. UP-Growth+ is one of

the fastest among these two-phase algorithms. In recent years, one-phase algorithms

such as d2HUP and HUI-Miner were proposed to avoid a huge number of candidate

itemsets generation. These algorithms are faster than UP-Growth+. The improved

versions of HUI-Miner algorithm (FHM, HUP-Miner and EFIM) are proposed to reduce

the execution time and also reduce the number of join operation. One-phase algorithms

used the concept of remaining utility and utility-list. The proposed algorithm is a

variation of the EFIM algorithm. Now we present the revised utility-list (RUL) which is

proposed in FHM+ algorithm [47]. We presents RUL to compare with proposed revised

sub-tree and local utility upper bounds.

Definition 3.0.3. (Largest length in a transaction). For the itemset X and transaction Tj, if

V (Tj,X) = {v1,v2, . . . ,vk} is the set of items occurring in Tj then itemsets X can be extend,

i.e. V (Tj,X) = {v ∈ Tj|v � x,∀x ∈ X}. The max length constraint sets the maximum

length of the itemset X . The max length also describes the length of the item that can

be added to an itemset X as maxExtend(X) = max length− | X |, where | X | defines the

number of items in X . The largest utility value with X for transaction Tj is denoted as

L(Tj,X).

Definition 3.0.4. (Revised remaining utility). For the itemset X and transaction Tj the

RRU is defined as RRU(X ,Tj) =∑L(Tj,X). The RRU of the X in the dataset is defined as

RRU(X) = ∑X⊆Tj∈D RRU(X ,Tj).

In the running example, the RRU of itemset {A} is 22, while the RU of {A} is 29. Thus

the RRU can be a much tighter upper-bound than the original RU upper-bound. The RRU

has the two following important properties.
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Property 3.0.3. (The RRU is a tighter upper-bound than the RU). For the itemset X , the

relationship between RRU and the original RU is RRU(X) ≤ RU(X). This shows that

RRU upper-bound is much tighter [47].

Proof: For an itemset X , transaction Tj and RRU(X) ≤ RU(X) shows that RRU(X)

=∑X⊆Tj∈D RRU(X ,Tj) ≤ RU(X) = ∑X⊆Tj∈D RU(X ,Tj).

Property 3.0.4. (Pruning using RRU). For the itemset X , if the sum of U(X) + RRU(X)<

min util then itemset X and its supersets are not HUIs observing with length constraints.

Proof: Since U(X) denotes the utility of X and RREU(X) denotes the highest utilities of

items that could be appended to X respect to the max length constraint.

Definition 3.0.5. (Revised utility-list ). For the itemset X in a dataset D, RUL(X) is a set

of tuples. The tuple consists of the fields (tid, iutil, llist) for itemset X in each transaction

Tj. The utility-lists used in the previous utility-based algorithms is different from revised

utility-list which is proposed in FHM+. The RUL replaces rutil with llist element, llist

stores the set L(Tj, X).

Let us consider the running example with max length = 3. The RUL of {A} is {(T1,4,

{6,4}), (T5,4,{0}), (T6,4,{8,4})}. The proposed RUL stores the necessary information

for pruning an itemset X and its extensions using Property 3.0.4.

Property 3.0.5. (Pruning search space using the revised utility-list). For the itemset X , if

the summation value of the iutil and llist in RUL(X) is less than min util then itemset X

and its extensions are not HUIs concerning the length constraints.

RUL based pruning property is very useful as used in FHM+ algorithm. But we cannot

utilize this property because proposed algorithm is horizontal (tree-based) algorithm.

The proposed algorithm uses tree based pruning strategies (instead of utility-list based

strategy) as proposed in Section 3.1.3.

3.1 EHIL Algorithm

The proposed algorithm introduces several new ideas to reduce the execution time and

memory requirement for discovering HUIs. We utilize array-based utility counting
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technique to calculate upper-bounds efficiently. The proposed algorithm uses a strict

designed constraint for each itemset in the search space.

Ø

{A} {B} {C} {D} {E}

{A,B} {A,C} {A,D} {A,E} {B,C} {B,D} {B,E} {C,D} {C,E} {D,E}

{A,B,C} {A,B,D} {A,B,E} {A,C,D} {A,C,E} {A,D,E} {B,C,D} {B,C,E} {B,D,E} {C,D,E}

{A,B,C,D} {A,B,C,E} {A,B,D,E} {A,C,D,E} {B,C,D,E}

{A,B,C,D,E} 

FIGURE 3.1: Set-enumeration tree for I = {A,B,C,D,E}

3.1.1 The Search Space

The search space of HUIs mining problem has been represented as a set-enumeration tree.

The representation of itemsets has been shown in set-enumeration tree in FIGURE 3.1 and

this representation would become search space for proposed algorithm. The technique

used to explore the search space is same as used in UP-Growth [12]. The difference is

that during the depth-first search, the proposed algorithm recursively appends one item

at a time to itemset α by following � order for an itemset α while generating larger

itemsets as shown in FIGURE 3.1. During the implementation, ordering of itemsets is

done according to increasing RTWU as this reduces the search space for HUIs.

Definition 3.1.1. (Extension of an item). Let the α be itemset and E(α) is a set of items

that is used to extend the itemset α and is defined as E(α) = {z |z ∈ I∧ z� x, ∀x ∈ α}.

Definition 3.1.2. (Extension of an itemset). For the itemset α , Z is an extension of α

that appears in a sub-tree of α in the set-enumeration tree where Z = α ∪W for an item

W ∈ 2E(α).

For example α = {C}. The set E(α) is {D,E}. And single-item extensions of α are

{C,D}, {C,E} and {D,E}. The itemsets extensions of α is {C,D,E}.
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3.1.2 Efficient Dataset Scanning Techniques

The proposed algorithm reduces the dataset scanning costs by reducing the dataset size

using dataset projection and transaction merging techniques.

3.1.2.1 Dataset Scanning using Projection

Dataset projection techniques are employed to reduce the memory requirement and

speed up the execution in the mining process. Dataset Projection technique relies on the

observation when an itemset α is taken into account and all items not belonging to E(α)

can be ignored when dataset is scanned to calculate the utility of itemsets within the

sub-tree of α . Such dataset where items do not belong to extended set is called a

projected dataset.

Definition 3.1.3. (Projected dataset). The projection of a transaction Tj using an itemset

α is denoted as α−T and is defined as α−T = {i |i ∈ T ∧ i ∈ E(α)}. The projection of

a dataset D using an itemset α is denoted as α−D and is defined as the multi-set α−D

= {α−T | T ∈ D∧α−T 6= /0}.

In the running example, let us consider dataset D and α = {c}. The projected dataset

α −D contains transactions α −T2 = {B,E}, α −T3 = {B,E}, α −T4 = {E}, α −T6 =

{B,E} and α − T7 = {B,E}. The projection technique highly reduces the dataset

scanning cost and therefore, larger transactions become smaller as seen in the example.

In order to implement projection technique, we sort each original transaction to the �
total order. Each projected transaction is represented by an offset pointer on the

corresponding original transaction. The major issue is how to efficiently implement

dataset projection technique. To solve this problem, we follow the dataset projection

technique proposed in EFIM algorithm [28].

3.1.2.2 Dataset Scanning using Merging

To reduce the dataset scanning, we utilize a transaction merging technique. This is a

relay on the observation that the dataset contains the identical transactions. Identical

transactions contain the exactly same items but may not have same quantity values
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(internal utility). The merging technique identifies these identical transactions and

replaces them with a single transaction.

TABLE 3.4: Transaction Merging

Tid Transaction Purchase
quantity (IU)

Utility (U) RTU

T1 A, D, B, E 2, 1, 2, 3 4, 4, 6, 3 14
TM 2 7 C, B, E 7, 4, 3 7, 12, 3 22
T3 D, C, B, E, 3, 1, 2, 2 12, 1, 6, 2 20
T4 D, C, E 1, 2, 3 4, 2, 3 9
T5 A 2 4 4
T6 A, D, C, B, E 2, 2, 4, 1, 1 4, 8, 4, 3, 1 16

Definition 3.1.4. (Transaction merging). Let the identical transactions Ta1, Ta2, Ta3, Tan

are replaced by a new transaction TM= Ta1= Ta2 = Ta3 = Tan (Identical transactions may

not contain the same quantity values of each item). And quantity of these identical

transactions is k ∈ TM and is defined as IU(k,TM) = ∑i=1,...,n IU(k,Tai). We need to

merge the transaction in projected datasets. Projected transactions merging produces

higher dataset reduction than original transaction merging because projected transactions

are smaller than original transactions. Therefore, the projected transaction could be more

likely to be identical.

Definition 3.1.5. (Projected transaction merging). Let the identical transactions Ta1, Ta2,

Ta3, Tan in the a dataset α −D is replaced by a new transaction TM= Ta1= Ta2 = Ta3 =

Tan and quantity of these identical transactions k ∈ TM is defined as IU(k,TM) = ∑i=1,...,n

IU(k,Tai).

For example, the identical transactions α − T2 and α − T7 can be replaced by a new

transaction TM 2 7 = {C,B,E} where IU(C,TM) = 7, IU(B,TM) = 4 and IU(E,TM) = 3.

TABLE 3.4 shows the merging of identical transactions. The projected dataset α−D for

α = {C} contains the identical projected transactions as α−TM 2 7 = {C,B,E}, α−T3 =

{C,B,E} and α −T6 = {C,B,E} is further merged by a new projected transaction using

offset pointers in the original dataset.

Transaction merging technique is desirable to reduce the size of the dataset. The main

problem to implement this technique is to identify the identical transactions. In order to

overcome this problem, we need to compare all transactions with each other. But this
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technique to compare all the transactions with one another is not an efficient technique.

To overcome this problem following approach is presented here.

Definition 3.1.6. (Total order on the transactions). For the dataset D, the total order �T

is defined as lexicographical order when the transactions are being read backward. For

more details of total order �T on the transactions, we can see in [28].

We sort the original dataset according to a new total order �T on the transactions.

Accordingly, we can find the identical transactions in the projected dataset as shown in

TABLE 3.4. Sorting of transactions has been performed using RTWU before merging.

This sorting is done in linear time and performs only once, so the cost of the sorting is

negligible. This sorted dataset puts up the following property. The identical transactions

always appear consecutively in the projected dataset α−D. This property binds because

we read the transaction from backward. The projection also plays an important role to

remove the smallest items of the transaction to the �T order.

The projected dataset follows the above property to get all the identical transactions by

comparing each transaction with the next transaction. Therefore, the transaction merging

technique can be done easily by scanning the dataset only once. All One-phase HUIs

mining algorithms do not perform transaction merging technique except for the EFIM.

The utility-list based algorithms like FHM, HUP-Miner and hyper-link based algorithms,

d2HUP do not perform transaction merging due to their vertical dataset representation.

3.1.3 Pruning Strategies

We have so far introduced one novel tighter upper-bound, RTWU with length constraints

for reducing the search space. Now we introduce three new pruning strategies to prune

the search space. These strategies are more efficient and much tighter upper-bound on the

utility of itemsets.

3.1.3.1 Prune search space using Revised Local Utility

Definition 3.1.7. (Revised Local Utility). For an itemset α and an item Z ∈ E(α), RLU

value of α is RLU(α , z) = ∑T∈(α∪Z))[U(α,T )+RRE(α,T )].



Chapter 3. High Utility Itemsets Mining Considering Length Constraints 53

In the running example α = {B}. We have that RLU(α , C) = (9 + 20 + 16 + 13) = 58,

RLU(α , D) = (14 + 20 + 16) = 50.

Definition 3.1.8. (RLU overestimation). For an itemset α and an item Z ∈ E(α), let ZE

be an extension of α such that Z ∈ ZE. Therefore, RLU(α , Z) ≥U(ZE).

Theorem 3.1. (Pruning using RLU). For the itemset α and an item Z ∈ E(α), if RLU(α ,

Z) < min util then the single item Z and all extensions of α containing item Z are

low-utility in a sub-tree. Furthermore, item Z is ignored for exploring all sub-trees of α .

3.1.3.2 Prune search space using Revised Sub-tree Utility

Definition 3.1.9. (Revised Sub-tree Utility). Let us consider an itemset α and an item

Z ∈ E(α) that can extend α according to the depth-first search (Z ∈ E(α)). The RSU

of the item Z w.r.t.1 α is RSU(α , Z) = ∑T∈(α∪{Z})[U(α,T )+U(Z,T )+ ∑i∈T∧i∈E(α∪{Z})

U(i,T )].

Moreover in the running example, α = {C}. We have that RSU(α,B) = (7 + 12 + 3) + (1

+ 6 + 12) + (4 + 3 + 9) = 57.

Property 3.1.1. (RSU Overestimation). For an itemset α and an item Z ∈ E(α), the utility

value of RSU(α , Z) ≥U(α ∪ {Z}) and accordingly, RSU(α , Z) ≥U(Z) which keeps the

extension Z of α ∪ {Z}.

Theorem 3.2. (Pruning using RSU). For an itemset α and an item Z ∈ E(α), if RSU(α ,

Z) < min util then the single item extension α ∪ {Z} and its extensions are low-utility

in sub-tree. Furthermore, the sub-tree of α ∪ {Z} is pruned in the set-enumeration tree.

Using this Theorem, some sub-tree can be pruned of an itemset α . Therefore, the number

of sub-trees is reduced. And hence the search space is reduced.

The relationships between the revised upper-bounds (RTWU , RREU , RLU and RSU) and

the state-of-the-art upper bounds (RTWU , RREU) [47] are following.

Property 3.1.2. For an itemset α , an item z and an itemset Y = α ∪ {Z}, the relationship

TWU ≥ RTWU(Y ) ≥ RLU(α , z) ≥ RREU(Y ) ≥ REU(Y ) = RSU(α , z) holds.

1with respect to
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According to the above relationship, it is seen that the revised upper-bounds are more

tighter upper-bound than the state-of-the-art upper-bounds on the utility of itemset Y .

Length constraints upper-bound RTWU is tighter than original TWU as shown by the

Property 3.0.1. RTWU is equal to RLU , the difference is that RLU is calculated by

performing dept-fist search the tree. Therefore, RLU can be more tighter and effective

for pruning the search space. The relationship and tightness of RREU and REU are also

shown by the Property 3.1.2. The main advantage of the proposed pruning strategies

RLU and RSU is that these are calculated when depth first search for itemset α rather

than for the child itemset Y . Therefore, if RSU(α , z) is less than min util then the

proposed algorithm prunes the whole sub-tree of item z including the itemset Y instead

of pruning only the descendant nodes of Y . Hence, the RSU is more effective for pruning

the search space than other Upper-bounds.

In remaining chapter, we refer to items having RSU and RLU as Primary and Secondary

respectively.

Definition 3.1.10. (Primary and Secondary items). For an itemset α , the Primary items

of itemset α is the set of items, Primary(α)= {Z |Z∈ E(α)∧ RSU(α , Z) ≥ min util}.
The itemset α is the set of items Secondary(α) = {Z|Z∈ E(α) ∧ RLU(α , Z)≥ min util}.
The RLU(α , Z) ≥ RSU(α , Z), so Primary(α) ⊆ Secondary(α).

Definition 3.1.11. (Length Constraints). Mining HUIs with length constraints is to find all

itemsets having a utility not less than min util and containing length at least min length

items and at most max length items. Where min util, min length and max length are

parameters given by the user.

For example, if min util = 30, min length = 2 and max length = 3, the set of HUIs is:

{{D,C}, {D,C,B}, {D,C,E}, {D,B}, {D,B,E}, {D,E}, {C,B}, {C,B,E}, {B,E}}.

3.1.3.3 Pruning using Length Constraints

The proposed technique prunes candidates which do not fulfill the length constraints. We

initially remove the transaction which does not follow min length constrains. We compare

the length of candidates HUIs with max length constraint. If the length of any candidate

HUIs is equals to upper-length constraint then recursion of adding extended itemsets are
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stopped. Otherwise, a new item is added to enhance the length of itemset using recursive

function explained in next subsection. The proposed algorithm is inspired by a similar

length-based HUIs mining algorithm FHM+[47].

3.1.4 Calculate Upper Bounds using Utility Array

Previously, we presented revised upper-bounds to prune the search space. Now we present

an array-based technique to calculate the upper-bounds in the linear time.

Definition 3.1.12. (Utility Array) For the set of items I which appears in a dataset D. The

UA is an array of length |I| that have an entry denoted as UA[Z] for each item Z ∈ I. Each

entry is called UA that is used to store a utility value.

Initially, we delete the transactions based on min length. After that, the remaining length

of transactions is |I|. So UA calculates upper-bounds as follows.

Calculating RTWU of all items using UA: UA is initialized to 0. Then, the UA[Z] for

each item Z ∈ Tj is calculated as UA[Z] = UA[Z] + TU(Tj) for each transaction Tj in the

dataset D. After the dataset scanning, UA[K] contains RTWU(K) where each item K ∈ I.

Calculating RSU(α): UA is initialized to 0. Then the UA[Z] for each item Z ∈ Tj ∩E(α)

is calculated as UA[Z] = UA[Z] + U(α,T ) + U(Z,T ) + ∑i∈T∧i∈E(α∪{Z}) U(i,T ) for each

transaction Tj in the dataset D. After the dataset scanning, the UA[K] contains RSU(α,K)

∀K ∈ I where each item K ∈ E(α).

Calculating RLU(α): UA is initialized to 0. Then the UA[Z] for each item Z ∈ Tj∩E(α)

is calculated as UA[Z] = UA[Z] + U(α,T ) + RRE(α,T ) for each transaction Tj in the

dataset D. After the dataset scanning, the UA[K] contains RLU(α,K)∀ K ∈ E(α) where

each item K ∈ E(α).

Calculating the Length(α): UA is initialize to 0. Then the UA[Z] for each item Z ∈ Tj

∩E(α) is calculated as UA[Z] =UA[Z]+1 for each transaction Tj in the dataset D. After

the dataset scanning the UA[K] contains Length(α,K) ∀K ∈ E(α) where each item K ∈
E(α).
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Algorithm 1: EHIL algorithm
Input: D: a transaction dataset, min util: user-specified threshold, min length,

max length
Output: High utility itemsets (HUIs)

1 α ← Ø;
2 foreach Tj∈D do
3 η ← | Tj |; // no. of items in Tj
4 if η < min length then
5 Remove Tj from D;

6 else if η > max length then
7 sort utilities of Tj in decreasing order;
8 β ← 0; // to store RTU
9 count← 0

10 for count ≤ max length do
11 β ← β +U(count);

12 U(Tj)← β ; // update RTU(Tj) with β

13 Scan D, compute RLU(α,Z) for all items using UA[Z].
14 Secondary(α) = {Z | Z ∈ E(α) ∧ RLU(α,Z) ≥ min util}.
15 Let � be the total order of RTWU increasing values on Secondary(α)
16 Scan D, remove item Z /∈ Secondary(α) from the transactions Tj and delete empty

transactions Tj;
17 Sort all the remaining transactions in D according to �T ;
18 Scan D, compute the RSU(α,Z) of each item Z ∈ Secondary(α), using UA[Z];
19 Primary(α) = {Z | Z ∈ Secondary(α) ∧ RSU(α,Z) ≥ min util};
20 search(max length, α , α−D, Primary(α), Secondary(α), min util);
21 return HUIs;

The proposed algorithm for calculating upper-bounds is highly efficient. It can calculate

all the upper-bounds by performing only one scan of the projected dataset. We also

observe that UA is very compact and efficient data structure. In order to use UAs

efficiently, we introduce three optimizations. 1) All items in the dataset D are used as

consecutive integer numbers. After that the UA[k] stores an item k on the kth position in

the array. This optimization allows to access each item of the UA in O(1) time. 2) Before

each UA uses a reinitializing technique to reuse the same created arrays; hence memory

requirement is greatly reduced. In our work, only three UAs are used to calculate

RTWU , RSU , RLU and length of each itemset. Hence the proposed algorithm consumes

very low memory compared to the state-of-the-art HUIs mining algorithms. 3) UA

re-initializes for calculating the RSU or RLU of single-item extensions of an itemset α .
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Only related UA re-initializes corresponding to extended items α .

3.1.5 The Proposed Algorithm

Algorithm 2: The Search procedure
Input: max length : a maximum length threshold specified by user, α : an itemset,

α−D : a projected dataset, Primary(α) : the primary items of α , Secondary(α):
the secondary items of α , min util

Output: HUIs that are extension of α

1 η ← | α | // no. of items in α

2 if η ≤ max length then
3 foreach item Z ∈ Primary(α) do
4 β ← α ∪{Z}
5 Scan α−D, compute U(β ) and create β −D; // using transaction merging
6 if U(β )≥min util then
7 Output β

8 Scan β −D, Compute RSU(β ,Z) and RLU(β ,Z) where item Z ∈ Secondary(α),
using two UAs

9 Primary(β ) = {Z ∈ Secondary(α) | RSU(β ,Z) ≥ min util};
10 Secondary(β ) = {Z ∈ Secondary(α) | RLU(β ,Z) ≥ min util};
11 search(max length, β ,β −D,Primary(β ), Secondary(β ),min util);

In this section, we propose an efficient algorithm EHIL for discovering HUIs. EHIL is an

extension of EFIM [28]. EHIL includes several strategies to discover HUIs with length

constraints. We utilize array-based utility counting technique to efficiently calculate the

upper-bounds.

The Algorithm 1 takes a transactional dataset and three threshold min util, min length,

max length as input. Line 1 initially considers the empty itemset α . The foreach loop in

lines 2-12 scan each transaction and comply length constraints on each transaction. Line

3 initializes the cardinality of the transaction to η . Lines 4-5 remove the transactions that

have less number of items than min length threshold. Lines 6-12 process the transactions

which are having more number of items than min length threshold. Line 7 sorts all the

transactions in descending order according to their utility values. Lines 8-9 initialize the

β with zero value and count variables. Lines 10-11 calculate the RTU value of each

transaction using variable β and count. Line 12 updates the utility of the transaction. Line

13 scans the dataset and calculates RLU of each item using the UA. Line 14 obtains the
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Secondary items for itemset α by comparing the RLU of each item with the threshold

min util. These Secondary items are then consider in the extension of itemset α . Line

15 sorts the items in ascending order according to � order as suggested in HUI-Miner

[24]. Line 16 scans the dataset D and removes all the items those are not the member

of Secondary for α . These removed items cannot be the member items of any HUIs

as suggested by Property 3.1.8. Line 17 sorts all the remaining transaction by the �T

order. Thereafter, the transaction merging performs. Line 18 scans the dataset again and

calculates the RSU for each in Secondary for the itemset α . UA calculates the RSU . At

the end of the procedure, Line 20 explores the itemset α by calling the recursive procedure

search with min length, max length, α , Primary(α), Secondary(α) and min util.

The Algorithm 2 takes seven inputs such as α , the projected dataset α −D, Primary

items, Secondary items and three thresholds, max length, min length and min util. Line

1 initializes with the length of the itemset α . Line 2 checks each time the length of α . If

the number of items in α is not greater than max length, then the algorithm recursively

calls itself and extends the items of α . Otherwise, the algorithm returns back. The foreach
loop in lines 3-11 extends the each item of α . Line 4 extends each single item of α with

primary item Z. Line 5 scans the dataset and calculates the utility of itemset β . At the

same time the projected dataset (β −D ) is created. The transaction merging performs

while creation of projected dataset. Line 6 checks the utility value of β with min util

threshold. If the utility of items in itemset β is not less than min util then the itemset is a

HUIs. Line 8 scans the dataset and calculates the RSU and RLU with Z and β using two

UAs. Line 9 and line 10 determine the Primary and Secondary items for β respectively.

Line 11 calls Algorithm 2 to extend itemset β . Since the algorithm starts from single

items and calls recursively to explore the search space of itemsets by appending single

items at a time.

TABLE 3.5: Final HUIs of the running example

Itemset Utility Itemset Utility
{D,C} 31 {D,E} 37
{D,C,B} 34 {C,B} 33
{D,C,E} 37 {C,B,E} 39
{D,B} 39 {B,E} 36
{D,B,E} 45 – – – –
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3.1.6 An Illustrative Example

In this section, a simple illustrative example is given to find HUIs from a transactional

dataset. The transactional dataset (TABLE 2.1) and external utility (TABLE 2.2) are given

in Section 2.1 in Chapter 2. We carry on the same datasets and example here. Moreover,

min util, min length and max length threshold are assumed as 30, 2 and 3 respectively.

The proposed algorithm uses Definition 3.0.1 to overestimate the transaction utility. The

TU and RTU of the running example are shown in TABLE 3.1. The RLU is also

calculated using depth-first search which is equal to RTWU as explained in Section

3.1.3. The TWU and RTWU values of each item with different max length threshold are

shown in TABLE 3.2 and TABLE 3.3.

The utility value of items in RLU is not less than min util then the items are considered as

Secondary itemset. The items in Secondary(α) = {A,B,C,D,E}. After this, all items are

sorted according to the order � of ascending RTWU . Thereafter, the items are removed

which are not the elements of Secondary set. At the same time, empty transactions are

removed from the dataset. And then the remaining transactions are sorted according to

total order �T . After that, the proposed algorithm scans dataset again and calculates

RSU of all itemsets. The items of RSU which are having utility not less than min util

are in Primary set. Only the items of the Primary set are used to explore by depth-first

search. Algorithm 2 finds descendant nodes in sub-tree using dept-first search. The

search algorithm is recursively called to extend all items. The final HUIs of the running

example are shown in TABLE 3.5.

TABLE 3.6: Statistical information about datasets

Dataset # of
transactions

# of
distinct
items

Avg.
length

Max.
Length

chess 3196 75 37 37
mushroom 8124 119 23 23
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FIGURE 3.2: Execution times on chess dataset with different max length constraints

3.2 Experimental Results

In this section, we compare the performance of EHIL with the state-of-the-art algorithm

FHM+ [47]. All our experiments are performed on a Intel Core-i7-6700 machine, 3.40

GHz CPU with 8 GB of memory and Windows 10 Pro (64-bit Operating System). Both

the algorithms are implemented in java. The source code of FHM+ algorithm is available

at spmf [76]. TABLE 3.6 shows the detailed characteristics of all the datasets. We ran all

our experiments ten times and reported the average results.

In order to analyze the performance of the algorithms in different situations, we test the

algorithms with chess and mushroom datasets, which are available at spmf [76]. For

comparing the proposed algorithm EHIL with FHM+, we execute on all datasets by

decreasing min util. min util was decreased until both the algorithms take too much time

or out of memory or a clear winner is observed. In the experiment, both the algorithms
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FIGURE 3.3: Execution times on mushroom dataset with different max length
constraints

are run with four different max length threshold values (5, 10, 15, 20). A min length

threshold was set to 2 as it has no influence on efficiency. The max length constraint

greatly reduces the execution time and the number of patterns. It also consumes less

memory than the state-of-the-art FHM+ algorithm.

3.2.1 Runtime Performance Comparison

FIGURE 3.2 and 3.3 show the execution time on chess and mushroom dataset

respectively. FIGURE 3.2 and FIGURE 3.3 show that when min util decrease, the

runtime increases for both the algorithms. EHIL algorithm’s execution time is far less

sensitive to decrease of min util threshold compare to FHM+ algorithm. EHIL algorithm

outperforms because of transaction merging and dataset projection techniques to
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FIGURE 3.4: Memory usage on chess dataset with different max length constraints

compact the dataset. Another reason for the better performance is array-based utility

counting technique. Length based pruning strategies play an important role to decrease

the execution time for EHIL algorithm.

3.2.2 Memory Performance Comparison

In this section, we compare the memory usage comparison of both the algorithms. The

memory tests are conducted under the same experimental conditions as those of the

runtime tests. We can observe that EHIL consumes the fewer memories in the

experiments on both the datasets. FIGURE 3.4 and FIGURE 3.5 show the memory usage

comparison for different values of max length (5, 10, 15 and 20) on chess and mushroom

datasets respectively. The memory usage increases when min util threshold decreases.
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FIGURE 3.5: Memory usage on mushroom dataset with different max length constraints

Figure shows that EHIL always consumes less memory than FHM+ on both the datasets

and with all the max length constraints.

TABLE 3.7: Relative runtime improvement analysis on chess dataset

min util Length (5) Length (10) Length (15) Length (20)
550 5.351 142.422 862.058 1032.159
500 8.939 244.812 1125.723 1251.778
450 13.409 344.084 1343.069 1775.040
400 17.880 458.425 1429.643 1895.920
350 22.591 471.130 1354.621 1795.091
300 18.144 297.850 978.472 1242.498



Chapter 3. High Utility Itemsets Mining Considering Length Constraints 64

TABLE 3.8: Relative runtime improvement analysis on mushroom dataset

min util Length (5) Length (10) Length (15) Length (20)
350 7.104 40.815 36.803 39.906
300 9.459 47.629 52.634 48.981
250 13.475 74.806 86.427 87.179
200 17.923 102.704 128.227 131.247
150 25.909 141.253 170.888 185.771
100 34.008 157.456 154.112 163.281
50 35.275 101.403 104.396 105.635

TABLE 3.9: Relative memory consumption analysis on chess dataset

min util Length (5) Length (10) Length (15) Length (20)
550 2.773 20.897 21.797 22.851
500 4.326 19.834 20.127 21.873
450 6.423 19.001 13.860 13.335
400 9.559 7.206 5.139 5.298
350 20.093 2.850 2.827 2.740
300 10.631 3.039 2.707 2.729

TABLE 3.10: Relative memory consumption analysis on mushroom dataset

min util Length (5) Length (10) Length (15) Length (20)
350 9.927 28.087 26.280 26.41
300 15.020 21.928 20.647 20.553
250 12.488 19.502 19.482 19.531
200 15.244 16.331 11.216 11.152
150 19.197 10.028 9.991 9.983
100 12.816 4.629 2.593 2.578
50 7.829 2.556 2.564 2.574

TABLE 3.11: Relative runtime best, average and minimum comparison

dataset Length (5) Length (10) Length (15) Length (20)

chess
min 5.351 142.422 862.058 1032.159
max 22.591 471.13 1429.643 1895.920
avg 14.386 326.454 1182.265 1498.748

mushroom
min 7.104 40.815 36.803 39.906
max 35.275 157.456 170.888 185.771
avg 20.450 95.152 104.784 108.857
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TABLE 3.12: Relative memory consumption best, average and minimum comparison

dataset Length (5) Length (10) Length (15) Length (20)

chess
min 2.773 2.850 2.707 2.729
max 20.093 20.897 21.797 22.851
avg 8.967 12.138 11.076 11.471

mushroom
min 7.829 2.556 2.564 2.574
max 19.197 28.087 26.280 26.410
avg 13.217 14.723 13.253 13.254
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FIGURE 3.6: Scalability Runtime Comparison on chess dataset with different
max length constraints

3.2.3 Relative Runtime and Memory Comparison Analysis

In this section, we describe the relative runtime and relative memory comparison. We

analyze the performance improvement by measuring the total execution runtime and

total memory consumption by EHIL and FHM+. For this experiment, we took the total

execution runtime by EHIL as the baseline (100%). The relative runtime is calculated as
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FIGURE 3.7: Scalability Runtime Comparison on mushroom dataset with different
max length constraints

the ratio of runtime of FHM+ algorithm to that of EHIL algorithm. Same phenomena are

applied for the relative memory usage comparison.

3.2.3.1 Relative runtime comparison

TABLE 3.7 and TABLE 3.8 show the relative runtime comparison for different

max length (5, 10, 15 and 20) thresholds on chess and mushroom dataset respectively.

These tables show that how much EHIL algorithm is faster than FHM+ algorithm. For

example, EHIL algorithm is 5.351 times faster than FHM+ algorithm for min util 550k

and with max length 5 on chess dataset.
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FIGURE 3.8: Scalability Memory Comparison on chess dataset with different
max length constraints

3.2.3.2 Relative memory comparison

TABLE 3.9 and TABLE 3.10 show the relative memory comparison for different

max length (5, 10, 15 and 20) thresholds on chess and mushroom datasets respectively.

The relative memory comparison tests were conducted on the same experimental

conditions as the relative runtime comparison tests. The comparison shows that EHIL

algorithm consumes how many times less memory than FHM+ algorithm. For example,

EHIL algorithm consumes 2.773 times less memory than FHM+ algorithm for min util

550k and with max length 5 on chess dataset.
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FIGURE 3.9: Scalability Memory Comparison on mushroom dataset with different
max length constraints

3.2.3.3 Relative best, average and minimum comparison

We now examine the relative best, average and minimum comparison of EHIL and

FHM+ algorithm. TABLE 3.11 and TABLE 3.12 show that EHIL algorithm always

performs better than FHM+ algorithm on all (best, average and minimum) cases on both

the datasets. TABLE 3.11 shows how much EHIL algorithm is faster than FHM+

algorithm in maximum, average and minimum cases and TABLE 3.12 shows that how

many times EHIL consume less memory than FHM+ in maximum, average and

minimum cases.
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3.2.4 Scalability

In this section, we evaluate the scalability of proposed algorithm EHIL. For the scalability

comparison experiment, min util threshold is fixed to the lowest minimum threshold that

is used in each dataset for runtime and memory experiment. As shown in FIGURE 3.6

and 3.7, EHIL has a good scalability with varying size of the datasets. The size of the

datasets is varied from 20% to 100% to evaluate the scalability results.

The runtime of EHIL linearly increase or remain constant as the dataset size increases.

The runtime of FHM+ algorithm increases exponentially when the size of the dataset

increases. The difference between the runtime of both algorithms grows wider when the

dataset size increases as shown in FIGURE 3.6 and 3.7. The memory usage of EHIL

is almost stable with the increased size of the dataset. FHM+ algorithm memory usage

increases rapidly as shown in FIGURE 3.8 and 3.9.

3.3 Summary

In this chapter, we tackle with the problem of mining too many very small and very large

itemsets. We proposed a novel algorithm that mines HUIs considering length constraints.

The minimum and maximum length constraints restrict the length of HUIs. The

minimum length constraint removes very small itemsets and maximum length constraint

restrict the higher length of the itemsets. We redefined sub-tree and TWU pruning

strategies and incorporate length constraints in these pruning strategies. We use

transaction merging and dataset projection based merging as a preprocessing of the

dataset which reduce the dataset scanning cost. We utilized array-based utility counting

technique that calculates the utility in negligible runtime and memory space. We present

a detailed example to show the working of proposed algorithm with dummy transactional

datasets. The experimental results show that proposed algorithm EHIL greatly reduced

the runtime and memory requirements. The results also show that EHIL algorithm

outperforms the state-of-the-art algorithm FHM+ for both in runtime and memory for all

our observations. We have seen that when decrease in minimum utility threshold,

runtime and memory requirements increase for FHM+ algorithms, whereas EHIL

algorithm is almost constant. The relative runtime comparison shows that EHIL is
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maximum up to 1896 times and minimum 5 times faster than FHM+. In memory

comparison, EHIL usages is maximum up to 28 times and minimum 2.5 times less

memory than FHM+ algorithm. The experimental results show that EHIL outperforms

FHM+ for all tested cases with all max length constraints. The scalability analysis

shows that runtime of EHIL is increase linearly where runtime of FHM+ increase

exponentially. The proposed algorithm is more scalable for memory usage comparison.
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