
Chapter 2

Literature Review

In this Chapter, we present an overview of HUIs mining which contains an introduction

to the research so far, HUIs mining, constraint-based HUIs mining, top-k HUIs mining,

closed HUIs mining and HUIs mining with negative utility value.

2.1 High Utility Itemset Mining

The limitations of frequency-based itemset mining solutions motivated researchers to

conceive a utility-based mining approach, which allows a user to express his or her

perspectives concerning the usefulness of itemsets as utility values and then find itemsets

with utility values not less than a specified minimum utility threshold. In HUIs mining,

the meaning of utility refers to the interestingness, importance, or profitability of the

itemsets. Studies in this area generally focus on mining HUIs from transactional datasets

[21, 22, 25, 27, 28, 31].

In 2003, Chan et al. introduced first time the concept of HUIs [8]. Later on, some other

algorithms have been proposed [9, 10]. However, these works did not support downward

closure property. In 2005, Liu et al. proposed an algorithm named Two-Phase [22] which

presents TWU based overestimation strategy. TWU follows downward closure property

to speed up and prune the search space.

15

Chapter 2. Literature Review 16

Yao et al. proposed two new algorithms named UMining and UMining H [32]. These

algorithms proposed two new pruning strategies named utility and support upper bound

to reduce the cost of finding HUIs. With these pruning strategies, a k-itemset with an

utility upper bound less than min util can be pruned immediately without accessing the

dataset to calculate its actual utility value. These algorithms also suffer from scalability

issues due to its level-wise candidate generation, prune and test methodology. Comparing

both of these algorithms, UMining is preferred over UMining H, as UMining guarantees

the discovery of all HUIs. The depth first search based approaches have many advantages

over level-wise mining. In 2008, Li et al. also proposed two new algorithms named FUM

and DCG+ [33]. These algorithms also find HUIs using level-wise mining. Where the

author presented an strategy named IIDS to generate limited the number of candidates.

IIDS identifies isolated items and ignores them in the process of candidate generation. To

improve performance, IIDS can be applied to any two-phase based algorithm to reduce

the candidates.

Lan et al. proposed projection-based (PB) mining algorithm to speeding up the runtime

time and reduce the memory requirement [34]. PB based algorithm uses special indexing

structure to efficiently mine HUIs. This indexing mechanism can imitate the traditional

projection algorithms to achieve the aim of projecting sub-datasets for mining. This

algorithm does not copy original dataset for each itemset to find HUIs, instead of that,

they can directly extract through the indexing structure. Therefore, it consume less

memory than that needed by directly copying the original dataset. The authors showed

that PB algorithm is much efficient than Two-phase and CTU-PRO [35].

Ahmed et al. proposed an efficient method for mining HUIs from incremental datasets

[11]. The author presented three tree structures to handle incremental dataset. First tree

structure is IHUPL-Tree (Incremental HUP Lexicographic Tree), where tree has been

arranged in lexicographic order according to its items. It is very easy and simple to

construct and handle. It requires very small restructuring operation for incremental

update of the datasets and hence this tree requires less memory. Second tree structure is

the IHUPTF-Tree (IHUP Transaction Frequency Tree). It obtains a compact size by

arranging itemsets in descending order according to their transaction frequency. Third

tree structure is IHUPTWU-Tree (IHUP-Transaction-Weighted Utilization Tree).

IHUPTWU-Tree arranges TWU values of itemsets in descending order. It reduces the

execution time compared to previous methods. All three tree structures need maximum

Chapter 2. Literature Review 17

two dataset scans. These tree structures are highly suitable for interactive mining and

follow the property of build once mine many. Performance analysis shows that proposed

tree structures are very scalable and efficient for incremental HUIs mining. All proposed

tree structure algorithms outperform the existing algorithms in execution time as well as

memory usage. Furthermore, all the tree structure algorithms are scalable for handling a

large number of distinct items and transactions.

Tseng et al. proposed Utility Pattern Tree (UP-Tree) based algorithm named UP Growth

[12]. UP-Growth tries to solve two major problems that are multiple dataset scans and

the huge number of candidate itemsets. UP-Tree based algorithms generate candidates

by only two scans of the dataset. In the first scan, it computes transaction utility (TU) as

well as TWU of each item. UP-Growth prunes the low utility itemsets by using TWU

pruning strategy. In the second scan, the transactions are inserted into UP-Tree.

UP-Growth algorithm mines HUIs in three phases. First phase constructs of UP-Tree and

makes it compact. UP-tree maintains the information of items and transactions. The

second phase generates the candidate HUIs using UP-Tree. Third phase mines HUIs

from the set of candidate HUIs. Though UP-Growth outperforms the state-of-the-art

IHUP algorithm. Experimental results show that UP-Growth outperform IHUP

algorithms particularly when the size of transactions is long. UP-Growth generates too

many candidate itemsets. To reduce this limitation, Tseng et al. proposed UP Growth+

algorithm by pushing two strategies (DLU and DLN) into UP-Growth algorithm [21].

Using these strategies overestimated utilities of itemsets can be decreased and thus the

number candidate itemsets can be further reduced. Jin et al. proposed an algorithm

which is extension of UP-Growth algorithm. In this extended algorithm author

incorporate the minimum support and mines frequent and HUIs [36].

Ahemd et al. presented a novel tree structure and pruning technique named HUC-tree

and HUC-Prune respectively [23]. HUC-Prune solves too many candidate itemsets

generation problems. HUC-Prune algorithm is completely independent of length of

candidate itemsets . It solves the problem of level-wise candidate itemsets generation

and test problem. As authors demonstrated, HUC-Prune requires a maximum of three

dataset scans to calculate the resultant set of HUIs for the given minimum utility

threshold. IHUP, HUC-Prune, UP-Growth and UP-Growth+ are tree based algorithms

and mines HUIs without expensive candidate generation and test.

Chapter 2. Literature Review 18

The tree based algorithms process a large number of candidate itemsets during their

mining process. In most of the cases, many candidate itemsets are not HUIs and are

discarded finally. To overcome this limitation Liu and Qu proposed a novel data

structure, utility-list and developed an efficient one-phase, depth-first search based

algorithm named HUI-Miner [24]. HUI-Miner mines HUIs without candidate

generation, which avoids generation and test strategy. HUI-miner uses set-enumeration

tree data-structure to store itemsets. A utility-list stores information such as Transaction

Tid , utility of an itemset and utility of remaining itemsets. The utility-list structure allows

directly computing the utility of generated itemsets in main memory without scanning

the original dataset. HUI-Miner computes TWU and performs TWU based pruning.

After that transactions are sorted ascending order according to their TWU . In the end,

the remaining utility based pruning is used to find HUIs. The author demonstrated that

HUI-Miner is superior to IHUP, UP-Growth+ and all other two-phase methods.

In 2012, Liu et al. proposed an efficient algorithm named d2HUP [37]. It is also

one-phase that mines HUIs without generating candidate. d2HUP introduces two new

pruning strategies, irrelevant item filtering and look-a-head strategy to prune the search

space. d2HUP further uses these strategies to enhance the performance by recursive

irrelevant item filtering with sparse data and by the look-a-head strategy with dense data.

d2HUP and HUI-Miner algorithms were presented in 2012 by different set of authors.

However, the key pruning strategies presented by both of these algorithms are

conceptually equivalent though the underlying different data structures.

In 2015, Krishnamoorthy proposed an algorithm HUP-Miner [25] that is an extension of

HUI-Miner algorithm. HUP-Miner presents a new data structure called partitioned utility

list (PUL) that maintains utility information at the partition level. It introduces two new

pruning strategies named PU-Prune and LA-Prune. These pruning strategies are very

effective in pruning unpromising candidates, especially for sparse datasets. HUP-Miner

is faster than the state-of-the-art algorithms, HUI-Miner, IHUP, UP-Growth and

UP-Growth+. HUI-Miner and HUP-miner performs costly join operations to evaluate the

utility of each itemset. To overcome this costly joins operations; Viger et al. proposed an

algorithm FHM [27]. FHM proposes EUCP (Estimated Utility Co occurrence Pruning)

that prunes itemsets without performing the join operation. EUCP relies on a new

structure. FHM method is very similar to HUI-Miner, the only difference is in pruning

strategy.

Chapter 2. Literature Review 19

All the one-phase algorithms are more efficient concerning time and space compare to

two-phase algorithms. The utility-lists provide not only utility information about

itemsets but also important pruning information. The complexity of building of

utility-list is not efficient concerning time and memory. So there are chances to improve

the storage structure for efficient storage space and efficient algorithm to mine HUIs

quickly.

All the one-phase algorithms discussed above generate the candidates and calculate the

utility of an itemset by joining the utility-lists. To overcome this limitation, Zida et al.

proposed an algorithm EFIM [28]. EFIM presents new techniques to speed up HUIs

mining process. It also presents two new upper-bounds, SU-Prune and LU-Prune for

pruning. Recently Srikumar Krishnamoorthy proposed an algorithm named HMiner

[31]. HMiner uses compact utility-list and virtual hyperlink data structure to store the

informations of the items. The author demonstrated that HMiner is thirty percent to three

orders of magnitude faster than the state-of-the-art algorithms. It is the fastest HUIs

mining algorithm at the present time among all one-phase algorithms. The definition of

HUIs mining is as follows.

TABLE 2.1: A transaction dataset

Tid Transaction
T1 (A, 2) (B, 2) (D, 1) (E, 3)
T2 (B, 1) (C, 5) (E, 1)
T3 (B, 2) (C, 1) (D, 3) (E, 2)
T4 (C, 2) (D, 1) (E, 3)
T5 (A, 2)
T6 (A, 2) (B, 1) (C, 4) (D, 2) (E, 1)
T7 (B, 3) (C, 2) (E, 2)

TABLE 2.2: External utility value

Item A B C D E
External Utility 2 3 1 4 1

Definition 2.1.1. (Transaction dataset). Let I = {I1, I2, . . . , Im} be a set of distinct items.

A set X ⊆ I is called an itemset. D = {T1,T2, ...,Tn} be a transaction dataset where each

transaction is represented by Tj ∈ D where n is the total number of transactions in the

dataset D.

Chapter 2. Literature Review 20

Consider the sample transactional dataset D which is given in TABLE 2.1. This dataset

contains seven transactions (T1,T2, ...,T7). Transaction T1 indicates that items A,B,D and

E appear with quantity respectively 2,2,1 and 3. TABLE 2.2 indicates the external utility

of each item.

Definition 2.1.2. (Internal utility). Internal utility or purchase quantity for an item x is a

positive number denoted by IU(x,Tj).

For example, IU(A,T1) = 2 and IU(D,T1) = 1 as shown in TABLE 2.1.

Definition 2.1.3. (External utility). External utility (EU) of an item x denoted as EU(x).

Each item has their corresponding external utility.

For example, EU(A) = 2 as shown in TABLE 2.2.

Definition 2.1.4. (Utility of an item). The utility of an item x in a transaction Tj is denoted

as U(x,Tj) and is defined as U(x,Tj) = IU(x,Tj) ×EU(x).

For example, U(A,T1) = IU(A,T1)×EU(A) = 2×2 = 4.

Definition 2.1.5. (Utility of an itemset in a transaction). The utility of an itemset X in a

transaction Tj is denoted as U(X ,Tj) and is defined as U(X ,Tj) = ∑x∈XU(x,Tj).

For example, U(AD,T1) = 4+4 = 8.

Definition 2.1.6. (Utility of an itemset). The utility of an itemset X in D is denoted as

U(X) and is defined as U(X) = ∑X⊆Tj∧Tj∈D U(X ,Tj).

For example, U(AD) = U(AD,T1)+ U(AD,T6) = 8+12 = 20.

TABLE 2.3: Transaction Utility (TU)

Tid Transaction Purchase quantity (IU) Utility (U) TU
T1 A, B, D, E 2, 2, 1, 3 4, 6, 4, 3 17
T2 B, C, E 1, 5, 1 3, 5, 1 9
T3 B, C, D, E, 2, 1, 3, 2 6, 1, 12, 2 21
T4 C, D, E 2, 1, 3 2, 4, 3 9
T5 A 2 4 4
T6 A, B, C, D, E 2, 1, 4, 2, 1 4, 3, 4, 8, 1 20
T7 B, C, E 3, 2, 2 9, 2, 2 13

Chapter 2. Literature Review 21

Definition 2.1.7. (Transaction utility). The transaction utility of a transaction Tj is denoted

as TU(Tj) and is defined as TU(Tj) = ∑
m
i U(xi,Tj) where m is the number of items in

transaction Tj.

For example, TU(T1) = U(A,T1)+ U(B,T1)+ U(D,T1)+ U(E,T1) = 4+6+4+3 = 17.

TABLE 2.3 shows TU of all the transactions.

TABLE 2.4: TWU values of items

Item A B C D E
TWU 41 80 72 67 89

Definition 2.1.8. (Transaction weighted utilization). The transaction weighted utilization

of an itemset X is the sum of the transaction utility values of all the transactions containing

X which is denoted as TWU(X) and is defined as TWU(X) = ∑X⊆Tj∧Tj∈D TU(Tj).

For example, TWU(A) = TU(A,T1)+ TU(A,T5)+ TU(A,T6) = 17+4+20 = 41. TWU

of the items are shown in TABLE 2.4.

Definition 2.1.9. (Support of an itemset). The support of an itemset X is defined as the

number of transactions containing X in D and is denoted as support(X).

For example, support of an item B is 5. The support of an itemset {A,B,D,E} is 2, it

occurs in transaction T1 and T6.

Definition 2.1.10. (High utility Itemset). An itemset X is called high utility itemset if

U(X) ≥ min util. Otherwise, itemset X is a low-utility itemset.

While many HUIs mining algorithms have been proposed to discover HUIs. However,

the main problem is that HUIs mining algorithms discover too many HUIs with lots of

tiny itemsets. These huge tiny itemsets are less useful for taking the decision. Therefore,

constraint HUIs play an important role to discover more relevant and actionable itemsets.

Hence, we define the problem of mining HUIs with length constraints. Length constraint

based FIM mining is proposed by [38] and utilized by [39, 40].

Chapter 2. Literature Review 22

2.2 Constraint-based High Utility Itemset Mining

Constraints are essential for many data mining applications. In the process of data

mining, some constraints may be given by users in order to find relevant rules or patterns

and increase the execution efficiency. Constraint-based mining can greatly reduce the

number of patterns, reduce search space and make decision making easier. Some studies

[41, 42, 43, 44] have categorized constraints into several categories such monotone,

anti-monotone, succinct, convertible monotone and convertible anti-monotone

constraints. Han et al. published some studies about constraint-based mining

[38, 45, 46]. They classified the constraints according to their applications, including

item constraint, length constraint, super-pattern constraint (Model-based constraint),

aggregate constraint, regular expression constraint, duration constraint and gap

constraint.

While many HUIs mining algorithms have been proposed to discover HUIs. However,

the main problem is that HUIs mining algorithms discover too many HUIs with lots of

tiny itemsets. These huge tiny itemsets are less useful for taking the decision. Therefore,

constraint-based HUIs can play an important role to discover more relevant and

actionable itemsets. In order to target these issues, in 2016, Fournier-Viger et al.

proposed an algorithm named FHM+ which mines HUIs with length constraints [47].

FHM+ is the first algorithm that uses the concept of length constraints in HUIs mining. It

presents a novel concept named LUR (Length Upper-bound Reduction) to reduce the

upper-bounds on the utility of itemsets using length constraints. LUR reduces the search

space. The author demonstrated that the proposed algorithm reduces the number of

itemsets compare to the state-of-the-art algorithm FHM.

Length based constraints have been proposed in some FIM and sequential itemset mining

studies such as [38, 45, 46]. The use and applications of length constraint have been

proposed in [39, 40].

Chapter 2. Literature Review 23

2.3 Top-k High Utility Itemset Mining

One of the limitations of HUIs mining is the assignment of min util threshold which is

very tough task for the end users. The user does not know which min util threshold utility

value is good for mining the required or actionable HUIs. If min util threshold value is

too low, then a very high HUIs will come out, hence analyzing of such a huge itemsets is

not an easy and is not usable. If min util threshold value is too high, then a very few HUIs

come out to be used. So choosing the appropriate min util threshold value is very crucial

task. To address these issues, top-k HUIs mining was proposed because specifying the

value of k is easy instead of specifying min util threshold. And the top-k HUIs are also

very useful in many domains.

Recently, Several algorithms have been proposed to mine top-k HUIs

[14, 48, 49, 50, 51, 52, 53, 54]. They follow the same phenomena. Initially, the internal

min util threshold is set to one or zero. In the next step, the procedures automatically

raise the internal threshold using some strategies. Important things about internal

threshold raising strategies are that algorithms do not miss any top-k HUIs. And often

some strategies are introduced to prune the search space. At last, the algorithms

terminate and find top-k HUIs.

In the next chapter, we provide an overview of the key techniques used by top-k HUIs

mining algorithms and explain their advantages and limitations. These techniques are

very important as they have inspired numerous researchers in the field of utility mining.

2.3.1 Two-Phase Algorithms

Several algorithms have been proposed in recent years for mining top-k HUIs mining.

TABLE 2.5 shows the overview of the state-of-the-art two-phase algorithms. The first

and most popular algorithm for mining top-k HUIs is TKU [48] which is an extension of

UP-Growth algorithm [12, 21]. TKU follows two-phase model and inherits their useful

properties. In the first phase, potential top-k HUIs (PKHUIs) are generated and the

algorithm uses four strategies (PE, MD, NU and MC) to raise the internal min util

threshold and prune the search space. In the second phase, top-k HUIs are identified

from the set of PKHUIs that are discovered in first-phase. TKU uses fifth strategies (SE)

Chapter 2. Literature Review 24

TABLE 2.5: An overview of two-phase top-k High utility itemset mining algorithms

Algorithm Author Data
structure

Dataset Mining Pruning
strategy

State-of-the-art
algorithms

Utility
value

Base
algorithm

TKU,
2016[48]

Vincent
S.
Tseng
et al.

UP-tree Transactional Top-k
HUIs

PE, NU,
MD, MC
and SE

UP-Growth[12]
and
HUI-Miner[24]

Positive
only

UP-Growth

T-HUDS,
2014[14]

Morteza
Zihayat
et al.

HUDS-
tree
(FP-tree
like)

Data Stream Top-k
HUIs

PerfixUtil TKU and
HUMPS[55]

Positive
only

UP-Growth

REPT,
2015[49]

Heungmo
Ryang
et al.

UP-tree Transactional Top-k
HUIs

PUD, RIU,
RSD and
SEP

TKU,
UP-Growth,
UP-Growth+[21]
and
MU-Growth[56]

Positive
only

TKU

TUS,
2013[50]

Junfu
Yin et
al.

TUSlist Transactional Top-k
High
utility
sequential
itemsets

Pre-insertion,
Sorting
concatenation
order, Keep
refreshing
the blacklist

TUSNaive[50]
(self)

Positive
only

.

to sort the candidate itemsets and raise the internal threshold. To improve the

performance of TKU, Ryang and Yun proposed an algorithm, called REPT [49]. REPT

also relies on the UP-Tree structure. REPT improves the performance of TKU by

applying additional strategies that raise the border min util rapidly. REPT develops four

strategies named PUD, RIU, RSD and SEP to reduce the search space by raising the

internal min util. In the first phase, PKHUIs are generated. Then the algorithm uses two

strategies (NU and MC) which are utilized from TKU algorithm. Three proposed

strategies (PUD, RIU and RSD) are also used to raise the internal utility threshold and

prune the search space. In the second phase, REPT uses SEP strategy to sort the

candidate itemsets and raise the internal threshold. One of the limitations of REPT is that

user has to set parameter N to control the effectiveness of RSD strategy. It is very tough

for end users to choose an appropriate value for N and the choice of N greatly influences

the performance of REPT. But still, TKU and REPT generate a large number of

candidates because they follow the two-phase model. They also scan the dataset

repeatedly to obtain the exact utility of candidate itemsets and mine the actual top-k

HUIs.

Zihayat et al. proposed an algorithm named T-HUDS for mining top-k HUIs over data

streams [14]. T-HUDS proposed a novel over-estimate utility model called PrefixUtil

model. This model follows compressed FP-tree like data structure, HUDS-tree and it

Chapter 2. Literature Review 25

TABLE 2.6: An overview of one-phase top-k High utility itemset mining algorithms

Algorithm Author Data
structure

Dataset Mining Pruning
strategy

State-of-the-
art
algorithms

Utility
value

Base
algorithm

TKO,
2016[53]

Vincent
S. Tseng
et al.

utility
list

Transactional Top-k
HUIs

RUC,RUZ
and EPB

UP-Growth
and
HUI-Miner

Positive
only

HUI-
Miner

kHMC,
2016[51]

Quang-
Huy
Duong
et al.

utility-list Transactional Top-k
HUIs

RIU,
CUD and
COV

TKO and
REPT

Positive
only

FHM[27]

TKUL-
Miner,
2016[52]

Serin
Lee et
al.

utility-list Transactional Top-k
HUIs

FSD,
RUZ and
FCU

TKU,
UPGrwoth+,
REPT

Positive
only

FHM

KOSHU,
2017[54]

Thu-Lan
Dam et
al.

utility
list

Transactional Top-k
on-shelf
HUIs

EMPRP,
PUP and
CE2P

FOSHU[57] Positive
and
negative

FOSHU,
FHM

has two auxiliary lists, maxUtilList and MIUList. These lists are designed to store the

information that is needed for computing PrefixUtil and for initializing and dynamically

adjusting the internal threshold. Yin et al. have proposed a new algorithm named TUS

for mining top-k high utility sequential patterns [50]. It introduced a pre-insertion and

a sorting strategy to raise the internal utility threshold. To improve the performance of

TUS, three effective strategies are introduced; two for raising min util threshold and one

for reducing the search space.

2.3.2 One-Phase Algorithms

In order to overcome the limitations of two-phase algorithms, recently one-phase

algorithm has been introduced. Tseng et al. proposed an algorithm named TKO to mine

top-k HUIs [53] which outperforms TKU and REPT. TKO utilizes the utility-list

structure of the HUI-Miner. It presents the novel pruning strategies RUC, RUZ and EPB

to improve the performance. TABLE 2.6 shows the overview of the state-of-the-art

two-phase algorithms.

kHMC is another single-phase algorithm proposed by Duong et al. which relies on the

utility-list structure [51]. kHMC is an extension of the FHM algorithm [27]. It employs

two pruning strategies called EUCPT and Transitive Extension Pruning strategy (TEP).

EUCPT avoids the join operations for calculating the utilities of itemsets as in FHM.

Chapter 2. Literature Review 26

The TEP strategy reduces the search space using a novel upper-bound on the utilities of

itemsets. kHMC introduces three strategies named RIU, CUD and COV to raise internal

min util effectively. The COV strategy introduces a novel concept of coverage. The

concept of coverage can be employed to prune the search space or to raise the threshold

in top-k HUIs mining. Moreover, kHMC proposes a new pruning strategy named TEP for

reducing the search space. Another utility-list and the EUCS based top-k HUIM algorithm

is TKUL-Miner [52]. It utilizes several strategies called FSD, RUZ and FCU to raise

min util rapidly and prune the search space effectively.

Recently, an on-shelf based top-k HUIs mining algorithm is proposed KOSHU [54]. It

introduced three pruning strategies to speed-up the execution named EMPRP, PUP and

CE2P. KOSHU is a top-k version on the FOSHU algorithm [57].

In this survey, we present an in-depth analysis of two-phase and one-phase of algorithms

which made significant contribution to improving the efficiency of top-k HUIs mining.

2.4 Closed High Utility Itemset Mining

Traditional HUIs mining algorithms mine lots of repeated HUIs which degrade the

performance. These algorithms may have good performance when min util threshold is

high and itemset space is sparse. However, when min util drops low, the number of HUIs

goes up dramatically and the performance of these algorithms deteriorates quickly

because of the generation of a huge number of itemsets. Moreover, the effectiveness of

the mining of the complete set degrades because it generates numerous redundant

itemsets. A simple example is that in a dataset having only one transaction of length 100,

it will generate 2100−1 HUIs if the absolute min util is set to very low.

To overcome the drawbacks of traditional HUIs algorithms, closed HUIs has been

introduced. Closed HUIs mining algorithms mine only those HUIs having no proper

superset with the same support. Mining closed HUIs, as shown in [58], can lead to orders

of magnitude smaller result set (than mining HUIs) while retaining the completeness,

i.e., from this concise result set, it is straightforward to generate all HUIs.

Chapter 2. Literature Review 27

FIGURE 2.1: Taxonomy of closed high utility itemsets mining according to mining
approaches

Closed HUIs mining can be classified into three groups as shown in FIGURE 2.1, namely,

level-wise (join-based or Apriori-based), tree-based (pattern growth) and utility-list based

(vertical).

2.4.1 Level-wise Mining Algorithms

CHUD: In 2011, Wu et al. proposed an algorithm named CHUD (Closed+ High Utility

itemset Discovery) [59]. CHUD is the first work that incorporates closed concept into

HUIs mining. It presents a compact representation. The author demonstrated that it

reduces the number of itemsets by several orders of magnitude (up to 800 times),

especially for dense datasets. It is extension of Two-phase algorithm. It presents a

lossless representation by using a new structure named utility unit array. CHUD presents

three pruning strategies (REG, RML and DCM) which greatly improve the performance.

CHUD presents a top-down approach DAHU (Derive All High Utility itemsets) for

efficiently recovering all HUIs from the Closed HUIs.

AprioriHC & AprioriHC-D: In 2015, Tseng et al. proposed three efficient algorithms

AprioriHC (Apriori-based algorithm for mining High utility Closed+ itemsets),

AprioriHC-D (AprioriHC algorithm with Discarding unpromising and isolated items)

Chapter 2. Literature Review 28

and CHUD [58]. This chapter is a continuation and extension of earlier work [59].

AprioriHC and AprioriHC-D are also two-phase based algorithms like CHUD.

AprioriHC and AprioriHC-D perform a breadth-first search for mining closed HUIs from

horizontal dataset, while CHUD performs a depth-first search for mining closed HUIs

from vertical dataset. AprioriHC is a HUIs version of well known FIM algorithm Apriori

[1]. AprioriHC-D is an improved version of AprioriHC which includes two strategies

(DGU [21] and IIDS[33]) to prune the search space. AprioriHC-D performs better than

AprioriHC because of these pruning strategies. AprioriCH and AprioriHC-D can not

perform well on dense datasets when min util is low because of its Apriori like structure.

CHUD performs better than AprioriHC and AprioriHC-D. However, AprioriHC and

AprioriHC-D are easier to implement and extend for more applications.

2.4.2 Tree-based Mining Algorithms

CloHUI: In 2016, Guo et al. proposed an algorithm named CloHUI [60]. CloHUI works

like UP-Growth algorithm. It presents a new data structure HUITWU-Tree (High Utility

Itemsets tree which arranges items according to Transaction Weighted Utility of single

itemsets) to store the information of itemsets. CloHUI needs two dataset scans to construct

proposed HUITWU-Tree. In first dataset scan, it discovers TWU of all the items. In

second dataset scan, it discovers closed HUIs. The author demonstrated that CloHUIs is

an order of magnitude faster than the state-of-the-art algorithm CHUD.

EFIM-Closed: In 2016, Fournier-Viger et al. proposed an algorithm named

EFIM-Closed [61]. It is an extension version of HUIs mining algorithm EFIM [28]. It

introduces two new techniques (Transaction merging and dataset projection) to reduce

the dataset scanning cost. It presents two tree-based pruning strategies (local-utility and

subtree-utility). It also presents a jumping closure and backward closure checking to

prune non-closed HUIs. The author demonstrated that EFIM-Closed is up to 71 times

faster and consumes up to 18 times less memory than the state-of-the-art CHUD

algorithm.

LHUCI-Miner: In 2017, Mai et al. present an algorithm named LHUCI-Miner [62].

LHUCI-Miner presents a lattice-based approach to mine closed HUIs and their

generations. It works like HUCI-Miner [63].

Chapter 2. Literature Review 29

2.4.3 Utility-list based Mining Algorithms

HUG-Miner & GHUI-Miner: In 2014, Fournier-Viger et al. proposed two novel

algorithms, HUG-Miner (High Utility Generators) and GHUI-Miner (Generator of High

Utility Itemsets) to mine closed HUIs and their generators1 [64]. HUG-Miner mines

only HUGs and does not consider LUGs (Low Utility Generators) that are not HUIs.

Hence, HUG-Miner is up to two orders of magnitude faster than the state-of-the-art FHM

and CHUD algorithms for closed HUIs mining and HUIs mining. GHUI-Miner

discovers complete set of GHUIs and spends more time to consider LUGs. GHUI-Miner

firstly mines closed HUIs by using a closed HUIs mining algorithm CHUD and then

mines generators using a modified FHM algorithm. HUG-Miner is over 100 times faster

than GHUI-Miner but misses GHUIs that are LUGs.

CLS-Miner: In 2017, DAM et al. proposed an algorithm named CLS-Miner

[Thu-Lan DAM]. CLS-Miner utilizes the utility-list structure to directly compute the

utilities of itemsets without producing candidates. It presents three pruning strategies

Chain-EUCP (Chain-Estimated Utility Co-occurrence Pruning), LBP (Lower Branch

Pruning) and Coverage. Chain-EUCP calculates utility of pairs of items to determine if

an itemset and its extensions should be pruned alike FHM [27]. Chain-EUCP works on

ECUS structure proposed by FHM. LBP reduces the search space by pruning low utility

transitive extensions of itemsets. Chain-EUCP and LBP eliminate candidates without

fully constructing their utility-lists. Coverage prunes low utility itemsets and calculates

the closure of itemsets quickly. These three pruning strategies can greatly reduce the

number of join operations for constructing utility-lists. CLS-Miner presents pre-check

based method to quickly compute closure. The author demonstrated that Chain-EUCP

and the LBP strategies could prune up to 93% of candidates and pre-check method can

reduce the total runtime by up to 50% compare to the current state-of-the-art CHUD [58]

and CHUI-Miner [65].

CHUI-Miner: In 2015, Wu et al. proposed an algorithm named CHUI-Miner [65].

CHUI-Miner is an extension and closed HUIs version of HUI-Miner algorithm. Hence, it

does not generate candidate itemsets to mine CHUIs. It uses the extended utility-list

structure called EU-List (Extended Utility-List). The author demonstrated that

1generators itemsets are the set of HUIs that have no subsets having the same support.

Chapter 2. Literature Review 30
T

A
B

L
E

2.7:
A

n
overview

ofclosed
high

utility
item

sets
m

ining
algorithm

s

A
lgorithm

Y
ear

A
uthor

D
ataset

scanning
D

ata
structure

D
ataset

M
ining

Pruning
strategy

State-of-the-
art
algorithm

s

B
ase

algorithm

L
evel-w

ise
m

ining
algorithm

s

C
H

U
D

[59]
2011

W
u

etal.
M

ultiple
tim

es
...

Transactional
C

H
U

Is,
H

U
Is

T
W

U
U

P-G
row

th
[21]

Tw
o-Phase

[22]
A

prioriH
C

,
A

prioriH
C

-D
&

C
H

U
D

(extended)
[58]

2015
T

seng
et

al.
M

ultiple
tim

es
...

Transactional
C

H
U

Is,
H

U
Is

T
W

U
,

D
G

U
a

&
IID

S
b

Tw
o-Phase

&U
P-G

row
th

Tw
o-Phase

Tree-based
m

ining
algorithm

s

C
loH

U
I[60]

2016
G

uo
etal.

Tw
o

tim
es

H
U

IT
W

U
-Tree cTransactional

C
H

U
Is

T
W

U
C

H
U

D
U

P-G
row

th

E
FIM

-
C

losed
[61]

2016
Fournier-
V

iger
et

al.

O
ne

tim
e

only
U

P-Tree
Transactional

C
H

U
Is

L
ocal

utility,
sub-tree

utility
&

B
ackw

ard
extension

pruning

C
H

U
D

E
FIM

[28]

L
H

U
C

I-
M

iner[62]
2017

M
aietal.

O
ne

tim
e

only
L

attice
Transactional

C
H

U
Is

T
W

U
H

U
C

I-M
iner[63]...

U
tility-listbased

m
ining

algorithm
s

H
U

G
-

M
iner

&
G

H
U

I-
M

iner[64]

2014
Fournier-
V

iger
et

al.

Tw
o

tim
es

U
tility-list

Transactional
C

H
U

Is,
G

H
U

Is
&

H
U

G
s

T
W

U
&

E
U

C
P

FH
M

&
C

H
U

D
FH

M
[27]

H
U

C
I-

M
iner[63]

2014
Sahoo

et
al.

...
U

tility-list
Transactional

C
H

U
Is

T
W

U
,

R
em

aining
utility

based
&

E
U

C
P

FH
M

FH
M

C
H

U
I-

M
iner[65]

2015
W

u
etal.

Tw
o

tim
es

E
xtended

U
tility-L

ist
Transactional

C
H

U
Is

T
W

U
&

R
em

aining
utility

based
C

H
U

D
&

H
U

I-M
iner

H
U

I-M
iner

[24]
C

L
S-

M
iner

[T
hu-L

an
D

A
M

] –
D

A
M

et
al.

O
ne

tim
e

only
U

tility-list
Transactional

C
H

U
Is

C
hain-E

U
C

P,
L

B
P

d

&
C

overage
C

H
U

D
&

C
H

U
I-M

iner
FH

M

aD
iscarding

G
lobalU

nprom
ising

item
s

bIsolated
Item

s
D

iscarding
Strategy

cH
igh

U
tility

Item
sets

Tree
w

hich
arranges

item
s

according
to

Transaction
W

eighted
U

tility
ofsingle

item
sets

dL
ow

erB
ranch

Pruning

Chapter 2. Literature Review 31

CHUI-Miner has good scalability even on large datasets and it uses less memory than the

state-of-the-art algorithm CHUD, especially for dense dataset.

HUCI-Miner: In 2014, Sahoo et al. proposed an algorithm named HUCI-Miner [63].

HUCI-Miner mines CHUIs and their generators. It is an extension of FHM. It initially

mines HUIs using FHM algorithm and then mines CHUIs and generators among HUIs.

2.4.4 Discussion

The previous section reviewed three types of closed HUIs mining algorithms; level-wise

algorithms based on the Two-phase model [22], tree-based algorithms based on the

UP-tree [12] and utility-list based algorithm following vertical data structure like Eclat

[66]. TABLE 2.7 provides a summary of the characteristics of the algorithms discussed

in previous section. Level-wise algorithms work like Apriori algorithm. Hence, these

algorithms scan the dataset multiple time and generate too many candidate itemsets.

Tree-based algorithms improve the mining process by scanning the dataset only twice.

Tree-based algorithms generate many candidate itemsets but less than level-wise

algorithms. Utility-list based algorithms scan the dataset only once and store all the

information into utility-lists. These algorithms suffer to utility-list joining problem when

distinct number of itemsets are high. But utility-list based algorithms still perform better

than level-wise and tree-based algorithms. TABLE 2.7 shows the data structure, pruning

strategies and some other important characteristics of closed HUIs mining algorithms.

2.5 High Utility Itemset Mining with Negative Utility

Value

HUIs mining is an important research area of data mining. HUIs mining gained the

immense importance because of huge application areas. HUIs with negative item value

recently received much attention from the decision making community. It is quite useful

in the marketing and retail communities as well as other more diverse fields. The

definitions of HUIs mining with negative utility value are as follows.

Chapter 2. Literature Review 32

A transactional dataset D is a set of transactions where each transaction contains a set of

items and is associated with a unique transaction identity Tid . Let I = {i1, i2,. . . , in} be

the complete set of distinct items appearing in D. An itemset X is a non-empty subset

of I and is called a k−itemset if it contains k items. An itemset x1, . . . ,xk is also denoted

as x1 . . .xk. The number of transactions in D containing itemset X is called the support

of itemset X , denoted as support(X). For example, let us consider the data presented in

TABLE 2.8 and TABLE 2.9. TABLE 2.8 presents a dataset comprising seven transactions

T = {T1,. . . ,T7} and five items I = {A,B,C,D,E}. The profit (external utility) of these

items is presented in TABLE 2.9.

TABLE 2.8: Transactional dataset

Tid Transaction
T1 (A, 2) (B, 2) (D, 1) (E, 3)
T2 (B, 1) (C, 5) (E, 1)
T3 (B, 2) (C, 1) (D, 3) (E, 2)
T4 (C, 2) (D, 1) (E, 3)
T5 (A, 2)
T6 (A, 2) (B, 1) (C, 4) (D, 2) (E, 1)
T7 (B, 3) (C, 2) (E, 2)

TABLE 2.9: External utility of items

Item A B C D E
External Utility 2 -3 1 4 1

Definition 2.5.1. (Internal utility). Internal utility or purchase quantity for an item x is a

positive number denoted by IU(x,Tj).

For example, IU(A,T1) = 2 and IU(D,T1) = 1 as shown in TABLE 2.8.

Definition 2.5.2. (External utility). External utility (EU) of an item x denoted as EU(x).

Each item has their corresponding external utility.

For example, EU(A) = 2 as shown in TABLE 2.9. If the EU of an item x is a positive

value, i.e., EU(x)> 0, the item has positive item profit or positive utility. Otherwise, the

item x has negative utility, if EU(x)< 0.

Definition 2.5.3. (Utility of an item). The utility of an item x in a transaction Tj is denoted

as U(x,Tj) and is defined as U(x,Tj) = IU(x,Tj) ×EU(x).

Chapter 2. Literature Review 33

For example, utility of an item A is U(A,T1) = IU(A,T1)×EU(A) = 2×2 = 4.

Definition 2.5.4. (Utility of an itemset in a transaction). The utility of an itemset X in a

transaction Tj is denoted as U(X ,Tj) and is defined as U(X ,Tj) = ∑x∈XU(x,Tj).

For example, utility of an itemset {A,D} is U({A,D},T1) = 4+4 = 8.

Definition 2.5.5. (Utility of an itemset). The utility of an itemset X in D is denoted as

U(X) and is defined as U(X) = ∑X⊆Tj∧Tj∈D U(X ,Tj).

For example, U(AD) = U(AD,T1)+ U(AD,T6) = 8+12 = 20.

Definition 2.5.6. (Transaction utility). The transaction utility of a transaction Tj is denoted

as TU(Tj) and is defined as TU(Tj) = ∑
m
i U(xi,Tj) where m is the number of items in

transaction Tj.

For example, TU(T1) =U(A,T1)+U(B,T1)+U(D,T1)+U(E,T1) = 4+4+3+(−6) =

5. The TU values for the running example is shown in third column in TABLE 2.10.

Definition 2.5.7. (Transaction weighted utilization). The transaction weighted utilization

of an itemset X is the sum of the transaction utilities of all the transactions containing X

which is denoted as TWU(X) and is defined as TWU(X) = ∑X⊆Tj∧Tj∈D TU(Tj).

For example, TWU(A) = TU(A,T1)+ TU(A,T5)+ TU(A,T6) = 5+4+14 = 23. TWU

for B, C, D and E is 26, 30, 37 and 35 respectively.

Definition 2.5.8. (High utility Itemset). An itemset X is called high utility itemset if U(X)

≥ min util. Otherwise, itemset X is a low-utility itemset.

For example, HUIs for running example is shown in TABLE 2.13.

2.5.1 Properties to Handle Negative Utility Items

To handle the negative utility, the proposed algorithm follows several properties:

Property 2.5.1. (Relationship between positive utilities and negative utilities within an

itemset). For an itemset X , putil(X) and nutil(X) denote the sum of positive utilities and

sum of negative utility values of an itemset X respectively, such that U(X) = putil(X)+

Chapter 2. Literature Review 34

nutil(X). Hence, the relationship holds: putil(X) ≥ U(X) ≥ nutil(X) where U(X)

contains the actual utility of an itemset X .

Rationale. Positive utility items can only increase utility of an itemset X , on the contrary,

the negative utility items can only decrease the utility of an itemset X . Hence, the property

holds putil(X) ≥U(X) ≥ nutil(X).

Property 2.5.2. (Upper bound using positive utilities). The upper bound utility of itemset

X is U(X) = putil(X) because putil(X) is greater than actual utility.

Rationale. Since U(X)− nutil(X) = putil(X), the negative utility of itemsets only can

decrease the utility of an itemsets X . Hence, U(X) or nutil(X) cannot be used to

overestimate the utility of an itemsets X . As in Property 2.5.1 and Property 2.5.2,

putil(X) can only be used to overestimate the utility of an itemsets X .

The state-of-the-art HUIs algorithms only can handle positive utility values and can

utilize TWU based Property 2.5.3 to prune the search space. The positive utility mining

algorithms cannot be directly applied to handle negative utility mining. To handle the

problem of mining HUIs with negative utility, HUINIV-Mine [29] utilizes redefined

transaction utility (RTU) and redefined TWU as described follows.

TABLE 2.10: Redefined Transaction Utility

Tid Transaction TU RTU
T1 A,B,D,E 5 11
T2 B,C,E 3 6
T3 B,C,D,E 9 15
T4 C,D,E 9 9
T5 A 4 4
T6 A,B,C,D,E 14 17
T7 B,C,E -5 4

Definition 2.5.9. (Redefined transaction utility). The redefined transaction utility is

denoted by RTU(Tj) for transaction Tj and is computed as RTU(Tj) = ∑
m
i U(xi,Tj) in

which m is the number of items in Tj transaction. To calculate RTU , items must be

sorted according to descending order to their utility values.

For the running example RTU of T1 is as RTU(T1)= U(A,T1) + U(D,T1) + U(E,T1) +

U(B,T1) = 4+4+3+(−6) = 11 because we calculate RTU by only adding the positive

Chapter 2. Literature Review 35

items. RTU(X) ≥ TU(X), because, TU is the summation of all items in a transaction

without any deletion and summation of negative items where RTU is the summation of

remaining items and summation with only positive items. TABLE 2.10 shows the TU and

RTU value of each transaction.

TABLE 2.11: RTWU value of each item

Item A B C D E
RTWU 32 53 51 52 62

Definition 2.5.10. (Redefined transaction weighted utility). The redefined transaction

weighted utility (RTWU) of an itemset X is defined as RTWU(X) =∑X⊆Tj∈D RTU(Tj)

For example, RTWU value of each item is shown in TABLE 2.11.

Property 2.5.3. (Pruning using RTWU). The RTWU downward closure property states

that any superset of a low RTWU itemset is low utility. For an itemset X , if the

RTWU(X) < min util then X is not a HUIs and all the supersets of itemset X are also

not HUIs. The detailed proof of this property can be found in [29].

Property 2.5.4. (Relationship between RTWU and TWU). The RTWU based

overestimation has larger utility value compare to TWU . For an itemset X , the

relationship between these upper-bounds is RTWU(X) ≥ TWU(X).

Proof: For the itemset X , we can observe that RTU(X) ≥ TU(X). Hence, RTWU(X) ≥
TWU(X) where RTWU(X) = ∑X⊆Tj∈D RTU(Tj) and TWU(X) =∑X⊆Tj∈D TU(Tj).

TABLE 2.12: Sorted items according to � total order

Tid Transaction Utility (U) RTU
T1 A,D,E,B 4, 4, 3, -6 11
T2 C,E,B 5, 1, -3 6
T3 C,D,E,B 1, 12, 2, -6 15
T4 C,D,E 2, 4, 3 9
T6 A,C,D,E,B 4, 4, 8, 1, -3 17
T7 C,E,B 2, 2, -9 4

Definition 2.5.11. (Ordering of items). The items in the transactions are sorted according

to the � total order as RTWU ascending order. For the running example, the sorted items

are as A� C � D� E � B. The negative items are always follow the positive items. For

the sample dataset, the ordered set of items are provided in TABLE 2.12.

Chapter 2. Literature Review 36

TABLE 2.13: HUIs of the running example

Itemset Utility Itemset Utility
{A,C,D} 16 {C,D,E} 37
{A,C,D,E} 17 {C,D,E,B} 19
{A,D} 20 {C,E} 23
{A,D,E} 24 {D} 28
{A,D,E,B} 15 {D,E} 37
{C,D} 31 {D,E,B} 15
{C,D,B} 16 −− –

Definition 2.5.12. (Extension of an item). Let the itemset be α and set of items that used

to extend the itemset α is denoted as E(α) and is defined as E(α) = {x |x ∈ I ∧ x � i,

∀i ∈ α}.

Definition 2.5.13. (Extension of an itemset). Let the itemset be α and Y is an extension

of α that appears in a sub-tree of α in the set-enumeration tree. If Y = α ∪ {X} for an

itemset X ∈ 2E(α).

Here, Y is a single-item extension of α that is a child of α in the set-enumeration tree. If

Y = α ∪ {X} for an item X ∈ E(α).

For example, α = {C} and hence, the set E(α) is {D,E}. And single-item extensions of

α are {C,D}, {C,E} and {D,E}. The itemsets extensions of α is {C,D,E}.

Property 2.5.5. (Extension of negative item). Let the itemset be α which can be extended

to itemset X , where Y = α ∪{X} and X is a set of items with negative utility.

Rationale. α ∪ {X} only occurs in less than or equal to the number of transactions

containing itemset α . Extensions of itemset α with positive utility item may be less than

or equal to or greater than the utility of itemsets α . But extensions of itemset X with

negative utility item always decrease the utility of itemsets as proposed by the Property

2.5.1. Hence, from the above properties, if an itemset U(α) > min util then the negative

utility itemset X is added to itemset α . The utility of extended itemset is still greater than

or equal to min util then the itemset is HUIs.

This section categories HUIs mining algorithms into three parts as shown in FIGURE

2.2: level-wise (Apriori-based), tree-based (UP-tree like) and utility-list (vertical dataset

format) based algorithms.

Chapter 2. Literature Review 37

FIGURE 2.2: Taxonomy of high utility itemsets mining with negative utility according to
mining approaches

2.5.2 Level-wise Mining Algorithms

Level-wise algorithms follow Apriori-like approach to create candidate such as joining.

k-itemsets can generates (k+1)-candidates. Level-wise approach generates itemsets of

length k before length (k + 1)-itemsets. Only two (HUINIV-Mine and TS-HOUN) HUIs

with negative algorithms mine HUIs using level-wise mining approach.

HUINIV-Mine: In 2009, Chu et al. proposed an algorithm named HUINIV-Mine. It is

the first level-wise algorithm that considers negative utility [29]. It is an extension of the

Two-Phase algorithm. It mines HUIs with negative item values by following Two-Phase

model. HUINIV-Mine presents RTWU based overestimation and pruning strategy. The

author demonstrated that HUIs mining with negative utility mast has at-least one positive

item. Otherwise, utility would be negative and it would not be a HUIs. It is a level-wise

algorithm. Hence, it needs to maintain a large amount of itemsets in memory to find larger

itemsets. It scans dataset three times and mines HUIs.

TS-HOUN: In 2014, Lan et al. proposed an algorithm named TS-HOUN [67]. It is the

first algorithm that mines HUIs with negative utility and on-shelf time periods. Using

on-shelf time periods, the actual utility values of itemsets in a temporal dataset can be

accurately evaluated. Most algorithms consider that items have the same shelf time, i.e.

that all items are on sale for the same time period. In real-life, some items are only sold

Chapter 2. Literature Review 38

during some short time period (e.g., the summer). The proposed algorithm scans dataset

three times and efficiently find high on-shelf utility itemsets with negative profit values

from temporal datasets. TS-HOUN uses simply Two-phased pruning strategy to prune the

search space. It is purely extension of Two-Phase approach. Hence, it needs much runtime

and memory space to finish the mining task and thus generates a lot of candidates.

2.5.3 Tree-based Mining Algorithms

Tree-based algorithms are based on set-enumeration concepts. The candidates can be

explored with the use of lexicographic tree or enumeration tree. The main characteristic of

tree-based algorithms is that the enumeration tree (or lexicographic tree) provides a certain

order of exploration that can be extremely useful in many scenarios. It is assumed that a

lexicographic ordering exists among the items in dataset. This lexicographic ordering is

essential for efficient set enumeration without repetition.

Tree-based mining algorithms mines HUIs by starting from itemset length-1 (as an initial

suffix itemset), constructing its UP-tree and performing mining recursively on such a

tree. The pattern growth is achieved by the concatenation of the suffix itemset with HUIs

from UP-tree. Tree-based algorithms transform the problem of finding long itemsets to

searching for shorter ones recursively and then concatenating the suffix. Only four

(MHUI-BIT-NIP, MHUI-TID-NIP, UP-GNIV and HUSP-NIV) HUIs with negative

algorithms mine HUIs using tree-based approach.

MHUI-BIT-NIP & MHUI-TID-NIP: In 2011, Li et al. proposed two algorithms to

mine HUIs with negative item profit over continuous stream transaction-sensitive sliding

windows [68]. An efficient data structure LexTree-2HTU (Lexicographical Tree with

2-HTU-itemsets) is presented for maintaining a set 2-HTU (high transaction-weighted

utilization)-itemsets from current transaction-sensitive sliding window. LexTree-2HTU

consists of two components, item-information and a set of trees with prefixes. The

item-information is bit-vectors and TID-lists for MHUI-BIT algorithm and MHUI-TID

algorithm respectively. The prefix is an entry contained in item-information. Bit-vector

and TID-list improve the performance of proposed algorithms. The MHUI-BIT-NIP &

MHUI-TID-NIP algorithms mine HUIs in three phases: window initialization phase,

Chapter 2. Literature Review 39

window sliding phase and HUIs generation phase. The proposed algorithms use TWU

based search space pruning technique.

UP-GNIV: In 2015, Subramanian et al. proposed an algorithm named UP-GNIV [69]

(Utility Pattern-Growth approach for Negative Item Values) to mine HUIs with negative

values by using tree-based approach without candidate generation. It is negative utility

version of UP-Growth [12] algorithm. It inserts and maintains the itemsets in UP-Tree

alike proposed in [11]. UP-GNIV proposed two strategies RNU (Removing Negative

item Utilities) and PNI (Pruning Negative Itemsets). UP-GNIV calculates the TU using

RNU strategies. PNI is applied for mining HUIs. The author checked the performance of

proposed algorithm and the state-of-the-art algorithm HUINIV-Mine using IBM synthetic

dataset.

HUSP-NIV: In 2017, Xu et al. proposed high utility sequential itemsets with negative

utility value [70]. In high utility sequential itemsets mining, an item occurs more than

once in a sequence and its utility has multiple values. None of the state-of-the-art

algorithms are suitable for sequential mining. It is the first algorithm that mines high

utility sequential itemsets with negative utility. HUSP-NIV is an extension of USPAN

algorithm [71]. It uses the same LQS-tree (lexicographic quantitative sequence tree) as

USPAN to extract the high utility sequence using I-Concatenation and S-Concatenation

mechanisms. I-Concatenation and S-Concatenation mechanisms are utilized from

USPAN algorithm to generate new candidate sequences and calculate the utility of

sub-nodes based on its super node’s utility. The author demonstrated that the proposed

algorithm is the first method of its kind.

2.5.4 Utility-list based Mining Algorithms

Both the level-wise and tree-based algorithms mine HUIs from a set of transactions in

horizontal data format. Alternatively, mining can also be performed with data presented

in vertical data format like proposed in Eclat [66]. Vertical data based mining algorithms,

first scan of dataset builds the Tid set of each single item. The computation is done by

intersection of the Tid sets of HUIs k-itemsets to compute the Tid sets of the

corresponding (k+ 1)-itemsets. This process repeats until itemsets fulfill min util

threshold. In the generation of candidate (k + 1)-itemset from k-itemsets, the merit of

Chapter 2. Literature Review 40

T
A

B
L

E
2.14:

A
n

overview
ofH

igh
utility

item
setm

ining
algorithm

s
w

ith
negative

utility
values

A
lgorithm

Y
ear

A
uthor

D
ataset

scanning
D

ata
structure

D
ataset

M
ining

Pruning
strategy

State-of-the-art
algorithm

s
B

ase
algorithm

L
evel-w

ise
m

ining
algorithm

s

H
U

IN
IV

-M
ine

[29]
2009

C
hu

etal.
T

hrice
...

Transactional
H

U
Is

T
W

U
-based

N
one

(first
ofits

kind)
Tw

o-Phase[22]

T
S-H

O
U

N
[67]

2014
L

an
etal.

T
hrice

...
Tem

poral
transactional

H
igh

on-shelf
utility
item

sets

T
W

U
-based

N
one

(first
ofits

kind)
Tw

o-Phase[22]

Tree-based
m

ining
algorithm

s

M
H

U
I-B

IT-
N

IP
&

M
H

U
IT

ID
-N

IP
[68]

2011
L

ietal.
O

nce
L

exicographical
tree

D
ata

stream
H

U
Is

T
W

U
-based

self
T

H
U

I-M
ine[72]

(Tw
o-Phase)

U
P-G

N
IV

[69]
2015

Subram
anian

etal.
Tw

ice
U

P-Tree
Transactional

H
U

Is
D

G
U

,D
G

N
[12]

H
U

IN
IV

-M
ine

U
P-G

row
th[12]

H
U

SP-N
IV

[70]
2017

X
u

etal.
O

nce
L

exicographical
tree

Sequential
transactional

H
igh

utility
sequential
item

sets

D
epth-pruning,

w
idth-pruning

and
depth

&
w

idth
pruning.

N
one

(first
ofits

kind)
U

Span[71]

U
tility-listbased

m
ining

algorithm
s

FH
N

[73]
2014

V
igeretal.

O
nce

U
tility-list

Transactional
H

U
Is

T
W

U
-based

&
E

U
C

P
H

U
IN

IV
-M

ine
FH

M
[27]

FO
SH

U
[57]

2015
V

igeretal.
O

nce
U

tility-list
Tem

poral
transactional

high
on-shelf

utility
item

sets

T
W

U
-based

&
E

U
C

P
T

S-H
O

U
N

FH
N

FH
N

[30]
(extended)

2016
L

in
etal.

O
nce

U
tility-list

Transactional
H

U
Is

T
W

U
-based,E

U
C

P
&

L
A

-Prune
H

U
IN

IV
-M

ine
FH

N

G
H

U
M

[74]
2017

K
rishnam

oorthy
O

nce
Sim

plified
utility-list

Transactional
H

U
Is

U
-Prune,

L
A

-Prune,
N

-Prune
&

A
-Prune

FH
N

FH
N

H
U

PN
U

[75]
2017

G
an

etal.
O

nce
PU

+
−

-list
a

U
ncertain

transactional
H

U
Is

PU
-Prune,R

T
W

U
&

E
U

C
P

N
one

(first
ofits

kind)
...

aProbability-U
tility

listw
ith

Positive-and-N
egative

profits

Chapter 2. Literature Review 41

this method is that there is no need to scan dataset to find the utility of (k + 1)-itemsets.

This is because the Tid set of each k-itemset carries the complete information required for

counting utility. Only four (FHN, GHUM, HUPNU and FOSHU) HUIs with negative

algorithms mine HUIs using vertical dataset mining approach.

FHN: In 2014, Fournier-Viger et al. proposed an algorithm named FHN (Faster

High-Utility itemset miner with Negative unit profits) [73]. FHN is an extension of FHM

algorithm [27]. It utilizes utility-list structure to explore the search space of itemsets.

FHN uses separate utility-list data structure for positive and negative utility values. It

also utilizes EUCS (Estimated Utility Co-occurrence Structure) which provides an

efficient pruning strategy to limit the search space. The author demonstrated that FHN is

up to 500 times faster and uses up to 250 times less memory than the state-of-the-art

algorithm HUINIV-Mine. Later, in 2016, an extensive version of basic FHN algorithm

was proposed. The extended FHN [30] utilizes LA-Prune strategy proposed in [25] to

prune the search space. The extended FHN is shown to be 2-3 orders of magnitude faster

than HUINIV-Mine.

GHUM: In 2017, Krishnamoorthy et al. proposed an efficient algorithm named GHUM

(Generalized High Utility Mining) [74]. GHUM presents a simplified utility-list based

data structure to store information of itemsets. It does not use separate utility-list to store

items. It sorts the negative items in ascending order using support (frequency) of items to

generate candidates efficiently. GHUM utilizes and modifies existing pruning strategies

U-Prune and LA-Prune [25]. Utility-list based algorithms require expensive utility list

intersections and candidate evaluations. Hence, it presents a novel pruning strategy

(N-Prune) to significantly reduce the total number of evaluations. It also presents an

anti-monotonic property based pruning strategy (A-Prune) for mining HUIs with

negative items. GHUM is shown more than an order of magnitude improvement at a

fraction of the memory over the current state-of-the-art FHN.

HUPNU: In 2017, Gan et al. proposed an algorithm named HUPNU (mining

High-Utility itemsets with both Positive and Negative unit profits from Uncertain

databases) to mining HUIs with negative utility value from uncertain datasets [75]. It

considers the probability values of items for mining HUIs. It uses a vertical PU±-list

(Probability-Utility list with Positive-and-Negative profits) structure to store both

Chapter 2. Literature Review 42

negative and positive items. It presents six pruning strategies to reduce the search space,

a number of unpromising itemsets can be early pruned when constructing the PU±-list.

FOSHU: In 2015, Fournier-Viger et al. proposed an algorithm FOSHU (Faster On-Shelf

High Utility itemset miner) [57] to mine HUIs with negative utility from on-shelf datasets.

On-shelf items consider the shelf time of items. It is an extension of FHN algorithm [73].

Hence, it utilizes the utility-list structure to store the information of items. FOSHU mines

itemsets in a single phase without generating candidates and also mines all times periods at

the same time rather than mine each time period separately unlike USpan [71]. Therefore,

it avoids the costly merge operations of itemsets found in each time period.

2.5.5 Discussion

The previous section has reviewed three main types of HUIs with negative utility mining

algorithms. The key differences between these algorithms can be described in terms of

dataset scanning, data structure used, pruning strategies and base algorithm. TABLE 2.14

summarizes the characteristics of ten negative utility based HUIs algorithms. It is noticed

that there is no comprehensive study covering all of these algorithms in the literature.

TABLE 2.14 depicts basic details of algorithms such as name of algorithms, publishing

year of algorithms, name of the authors. The “Dataset scanning” column of this table

gives the information how many times algorithm scans dataset; the “Data structure”

shows the type of data structure used to store the information of items; the “Dataset”

type of inputted dataset used for experiments; This table shows that all the mining

algorithms; the “Mining” represents output HUIs; the “Pruning strategy” column shows

the strategies used to prune search space; the “State-of-the-art algorithms” shows the

name the state-of-the-art algorithms and the “Base algorithm” represents the base

algorithm for the presented algorithms. This table shows all the mining algorithms used

to mine HUIs with negative utility value.

Chapter 2. Literature Review 43

2.6 Summary

In this chapter, we introduce HUIs mining algorithms and their related work. In Section

2.1, we provide the preliminary definitions of HUIs mining and some existing work. In

Section 2.2, we briefly discuss the constraint-based HUIs mining. We present

constraint-based FIM algorithms. Then, we describe constraint-based HUIs mining

algorithm. In Section 2.3, we discuss existing top-k HUIs mining algorithms. We

classify top-k HUIs mining algorithms into two parts, Two-Phase and One-Phase. We

briefly discuss both (Two-Phase and One-Phase) type of algorithms. In Section 2.4, we

describe the recent work on closed high utility itemset mining. Here, we classify closed

HUIs mining algorithms into three parts, Level-wise, Tree-based and Utility-list based.

Lastly, in Section 2.5, we discuss HUIs mining algorithms with negative utility value.

	2 Literature Review
	2.1 High Utility Itemset Mining
	2.2 Constraint-based High Utility Itemset Mining
	2.3 Top-k High Utility Itemset Mining
	2.3.1 Two-Phase Algorithms
	2.3.2 One-Phase Algorithms

	2.4 Closed High Utility Itemset Mining
	2.4.1 Level-wise Mining Algorithms
	2.4.2 Tree-based Mining Algorithms
	2.4.3 Utility-list based Mining Algorithms
	2.4.4 Discussion

	2.5 High Utility Itemset Mining with Negative Utility Value
	2.5.1 Properties to Handle Negative Utility Items
	2.5.2 Level-wise Mining Algorithms
	2.5.3 Tree-based Mining Algorithms
	2.5.4 Utility-list based Mining Algorithms
	2.5.5 Discussion

	2.6 Summary

