I would like to dedicate this dissertation to my family who has supported and encouraged me throughout this endeavour: thank you for your love and support throughout my entire life and helping me realize who I am today!

It is certified that the work contained in the thesis titled "Studies on Development of rGO Supported Chalcogenide Photoelectrocatalysts for Reduction of Water to Hydrogen by Visible Light" by "Rajiv Ranjan" has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

A.S.K. Sinha

(Supervisor)

Professor, Department of Chemical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi221005 India

DECLARATION BY THE CANDIDATE

I, *Rajiv Ranjan*, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of *Prof. A.S.K. Sinha* from Oct-2012 to June-2019, at the *Department of Chemical Engineering & Technology*, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not wilfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date:

Place: Varanasi

(Rajiv Ranjan)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my knowledge.

A.S.K. Sinha

(Supervisor)

Professor, Department of Chemical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi221005 India

P.K. Mishra

(Head of Department)

Professor, Department of Chemical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi221005 India

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Studies on Development of rGO Supported Chalcogenide Photoelectrocatalysts for Reduction of Water to Hydrogen by Visible Light

Name of the Student: Rajiv Ranjan

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "*Doctor of Philosophy*".

Date:

Place: Varanasi

(Rajiv Ranjan)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Over the last six years as PhD student, I have learned great things not only about engineering and academics, but also about the life, the truth and the faith.

First and foremost, I would like to thank my supervisor, Dr A.S.K. Sinha, Professor, Department of Chemical Engineering & Technology, IIT (BHU) for his unparalleled guidance, expertise, encouragement and wisdom to improve my research, academic writing and presentation skills throughout my PhD. Throughout the ups and downs, he remained focused and determined, two characteristics which have definitely rubbed off on me. He will remain a lifelong mentor.

I would also like to thank Dr. R.K. Mandal, Professor, Department of Metallurgical Engineering, IIT (BHU), Dr. Ram Prasad, Professor and Dr. Manoj Kumar, Department of Chemical Engineering for the forever enthusiastic & forward-thinking and giving valuable suggestions during my research progress evaluation committee meetings. They also taught me about the ups and downs of reviewers, which I'll never forget. I express my sincere thanks to Dr. P.K. Mishra, Head & Professor, Department of Chemical Engineering & Technology for his great help. Special thanks to past and present convenor, Departmental post graduate committee (DPGC), Dr. P. Ahuja; Professor, Dr. H. Pramanik; Associate Professor, Dr. V.L. Yadav; Professor and Dr. Ankur Verma Department of Chemical Engineering & Technology, for encouraging me and providing necessary guidelines about my project during the course of my work. I am highly indebted to Dr. O.N. Shrivastva, Professor, Department of physics, BHU, for providing me the TEM facilities.

I also would like to show my gratitude to IIT (BHU) for its financial support during the entire period of my candidature.

Mr. Tarun Kumar Dixit, Mr. Ankit Kumar, Mr. Zahoor Alam Mr. Sudhakar Saroj Mr. Munna Kumar, Mr. Pawan Kumar and Mis. Shreya Shrivastva, Mr. Vivek Kumar was seven of the best PhD student could have. Sometimes it's really beneficial to have somebody who can give you a quick answer, rather than search for it for hours. Definitely a friend for life, and despite me moving away from the group, I'm sure our paths will cross again soon. I would appreciate Mr. Bhuwneshwer Sharma, Mr. Arjun Prasad, Mr. Umesh Pratap, Mr. Shailendra Kumar Upadhyay & Mr. Rajiv Nayan Pandey, Technical staff, sophisticated instrumentation laboratory and Mr. Arvind Kumar, & Mr. Varun Kumar from Computer Lab for their assistance on the experimental issues with their expertise in characterization, providing me valuable help, support during characterizations & the course of work. And say thanks for their wishes and love.

The people who made my PhD actually fun in moments kept me sane and helped with work during the later hours; Mr.Dilip Kumar, Dr. Ch. V. Raghunath, Dr. Chandradhwaj Nayak, Dr. Pramendra Gaurh, Shobhit Dixit, Dr. Ashutosh Kumar (Department of Chemistry, IIT BHU), Dr. Dan Bahadur, Dr. Ravi Patel (Department of Physics, BHU), Prasant Tripathi (Department of Physics, BHU) Mr. Kali and Dr. Ajay Maurya all the rest of you guys for our friendship and thank you for all the pleasant lunches together and the nice breaks.

I wish to thank all of the M. Tech, PhD and Post-doctoral students within the department of Chemical Engineering Department who have come and gone during this project for all their support, humour, food, and memorable times. Thanks to all my friends in the department, Institute, around BHU and throughout my entire life.

Special thanks for the people that more than everyone else have contributed to the success of my PhD: my family. Words cannot express how grateful I am to; my father Shri Devendra Jha, elder brother Dr. Priya Ranjan Bhabhi Dr. Aprajita Roy and my wife Mrs. Sunita Ranjan, you literally kept me going and I will never forget the sacrifices made. Your prayer for me was what sustained me thus far. And most of all to 'Ishwar' without whom nothing is possible.

Date:

Place: Varanasi

(Rajiv Ranjan)

Certificate		iv-vi
Acknowledgement		vii
Table of content		xi
List of table		xiv
List of figure		xvi
List of notations, nom	enclatures, symbols	xvii
Preface		XX
Chapter 1	Introduction	1-14
1.1	General	1
1.2	Hydrogen as an energy carrier	5
1.3	Hydrogen production technique	6
1.4	Solar Hydrogen	10
Chapter 2	Literature Review	15-46
2.1	Semiconductor electrolyte interface	15
2.2	Fabrication of electrode	19
2.3	Photoelectrocatalyst	23
2.4	Charge recombination and its prevention	29
2.5	Future scope of work based on the literature review	44
2.6	Objectives of present work	46
Chapter 3	Section - 1	47-80
I.3.1	General	48
I.3.2	Experimental	50
I.3.3	Activity of Photoelectrodes	52
I.3.4	Characterization Techniques	53
	I.3.4.1 FTIR studies	53
	I.3.4.2 X-Ray Diffraction (XRD) studies	55
	I.3.4.3 Diffuse Reflectance Spectroscopy	56
	I.3.4.4 Photoluminescence spectroscopy (PL)	57
	I.3.4.5 TEM and SAED studies	57
	I.3.4.6 XPS studies	58
	I.3.4.7 EIS studies	60
	I.3.4.8 Mott-Schottky Analysis	61
I.3.5	Results and Discussion	62
	I.3.5.1 Photoelectrochemical Activity	62
I.3.6	Characterization studies	65
	I.3.6.1 FTIR studies	65
	I.3.6.2 X-Ray Diffraction (XRD) studies	66
	I.3.6.3 Diffuse Reflectance Spectroscopy	70
	I.3.6.4 XPS studies	71
	I.3.6.5 EIS studies	74
	I.3.6.6 Mott-Schottky Analysis	77
I.3.7	Mechanism	79
	Section II	81-110
II.3.1	General	82
II.3.2	Experimental	84
II.3.3	Activity of Photoelectrodes	86
II.3.4	Characterization Techniques	87
II.3.5	Results and Discussion	87

	II.3.5.1	Photoelect	rochemical activity	87
	II.3.5.2	Characteriz	zation studies	89
		II.3.5.2.1	FTIR studies	89
		II.3.5.2.2	X-Ray Diffraction (XRD)	91
			studies	
		II.3.5.2.3	HRSEM	93
		II.3.5.2.4	TEM and HRTEM analyses	95
		II.3.5.2.5	Diffuse Reflectance	98
			Spectroscopy	
		II.3.5.2.6	Photoluminescence studies	99
		II.3.5.2.7	XPS studies	100
		II.3.5.2.8	EIS studies	106
		II.3.5.2.9	Mott-Schottky Analysis	107
II.3.6	Mechani	sm		110
	Section -	-III		111-140
III.3.1	General			112
III.3.2	Experime	ental		116
III.3.3	Activity	of Photoelec	trodes	118
III.3.4	Characte	naracterization Techniques		119
III.3.5	Results a	nd Discussion	on	119
	III.3.5.1	Photoelect	rochemical activity	119
	III.3.5.2	Characteriz	zation studies	121
		III.3.5.2.1	FTIR studies	121
		III.3.5.2.2	XRD studies	123
		III.3.5.2.3	Morphology studies	125
		III.3.5.2.4	Diffuse Reflectance	129
			Spectroscopy	
		III.3.5.2.5	XPS studies	130
		III.3.5.2.6	EIS studies	135
		III.3.5.2.7	Mott-Schottky Analysis	136
III.3.6	Mechani	sm		138
4.1	Conclusi	ons		141
	Referen	ces		145
	List of P	ublications		180

List of notations, nomenclatures, symbols

ΔΗ	Heat of reaction
BE	Binding energy
CI	Interface capicitance
ĊB	Conduction band
	Interplanar spacing
<i>e</i>	Electron
	Energy of the involved
	bound electron state
F	Fermi energy
E _F F	Band gan energy
	Energy of the ejected
L_{KE}	electron
<i>d</i>	Interplanar spacing
u_{hkl}	Flectron
	Energy of the involved
L_{BE}	hound alastron state
E_{-}	Formi on organ
	Pend con energy
Eg F	Energy of the signated
E_{KE}	electron
F	Electron England and the stant
	Faraday constant
FWHM	Full width at half
	maximum
GHG	Green House gases
GO	Graphene oxide
h	Plank constant
h+	Hole
IEA	International energy
- /	agency
J/year	Joule per year
k	Rate constant
K	Scherrer constant
MNRE	Ministry of new and
	renewable energy
Mtoe	Million tonnes
OSR	Oxidative steam
	reforming
PEC	Photo-electrochemical
POX	Partial oxidation reaction
PV	Photovoltaic
PZT	Piezoelectric transducers
R_I	Resistance associated at
	interface
rGO	Reduced graphene oxide

R_s	Resistance due to solution/
	electrolyte
SR	Steam reforming
VB	Valence band
Ζ	Impedance
α	optical absorption
	coefficient
β	Broadening
λ	Wave length
v	Frequency of light
Φ_m	Work function of the
	metal
Φ_{s}	Work function of the
-	semiconductor
Φ_{b}	Height of the potential
~	barr

List of Table	Table
---------------	-------

Table no.	Table caption	Page no.
Table 1.1	Environmental effects of fuels	4
Table 1.2	Combustion properties of hydrocarbon	5
Table 1.3	Combustions values of hydrogen and fossil fuels	6
Table I.3.1	Summary of catalyst and electrode	52
Table I.3.2	Characterization techniques used in present study	62
Table- I.3.3	XRD Results catalysts for CdS	68
Table- I.3.4	c/a ratios and crystallize size of CdS in different catalyst.	69
Table I.3.5	Band Gap of various catalysts	70
Table I.3.6	Peak position of Cd-3d and S-2p in catalysts	74
Table I.3.7	Peak position of Cd-3d and S-2p in electrode	76
Table I.3.8	List of circuit parameters	77
Table I.3.9	Flat band potential and carrier density of catalyst photocathode	79
Table II.3.2	Summary of Catalysts/electrodes prepared in present study	87
Table II.3.2	Results of XRD analysis of CdS in catalysts	92
Table II.3.3	Unit cell parameters and crystallize size of CdS in catalysts	92
Table II.3.4	Peak positions of Cd 3d and S-2p in catalyst	104
Table II.3.5	Peak positions of Cd 3d and S-2p in electrodes	105
Table II.3.6	Flat band potential and carrier density of catalyst photocathode	108
Table III.3.1	Performances of catalysts reported	115
Table III.3.2	Summary of Catalysts/electrodes prepared in present study	118
Table III.3.3	Band gap of photocathodes	130
TableIII.3.4(a)	Peak position of Mo 3d in different catalyst	134
TableIII.3.4(b)	Peak position of S 2p in different catalyst	134
TableIII.3.4(c)	Peak position of Cd ²⁺ in different catalyst	134
Table III.3.5	Flat band potential and carrier density of catalyst photocathode	137

List of Table	Table
---------------	-------

Table no.	Table caption	Page no.
Table 1.1	Environmental effects of fuels	4
Table 1.2	Combustion properties of hydrocarbon	5
Table 1.3	Combustions values of hydrogen and fossil fuels	6
Table I.3.1	Summary of catalyst and electrode	52
Table I.3.2	Characterization techniques used in present study	62
Table- I.3.3	XRD Results catalysts for CdS	68
Table- I.3.4	c/a ratios and crystallize size of CdS in different catalyst.	69
Table I.3.5	Band Gap of various catalysts	70
Table I.3.6	Peak position of Cd-3d and S-2p in catalysts	74
Table I.3.7	Peak position of Cd-3d and S-2p in electrode	76
Table I.3.8	List of circuit parameters	77
Table I.3.9	Flat band potential and carrier density of catalyst photocathode	79
Table II.3.2	Summary of Catalysts/electrodes prepared in present study	87
Table II.3.2	Results of XRD analysis of CdS in catalysts	92
Table II.3.3	Unit cell parameters and crystallize size of CdS in catalysts	92
Table II.3.4	Peak positions of Cd 3d and S-2p in catalyst	104
Table II.3.5	Peak positions of Cd 3d and S-2p in electrodes	105
Table II.3.6	Flat band potential and carrier density of catalyst photocathode	108
Table III.3.1	Performances of catalysts reported	115
Table III.3.2	Summary of Catalysts/electrodes prepared in present study	118
Table III.3.3	Band gap of photocathodes	130
TableIII.3.4(a)	Peak position of Mo 3d in different catalyst	134
TableIII.3.4(b)	Peak position of S 2p in different catalyst	134
TableIII.3.4(c)	Peak position of Cd ²⁺ in different catalyst	134
Table III.3.5	Flat band potential and carrier density of catalyst photocathode	137

List of figure

Figure no.	Figure caption	Page no
Fig 1.1	Years of global coal, oil and natural gas left, reported as the reserves-to-	2
-	product (R/P) ratio which measures the number of years of production left	
	based on known reserves and annual production levels in 2015.	
Fig 1.2	World energy consumption	3
Fig 1.3	Flow diagram of steam reforming	7
Fig 1.4	Flow diagram of partial oxidation process.	9
Fig 1.5	Flow diagram of oxidative steam reforming.	10
Fig 1.6	Schematic Diagram for dissociation of water by PV cell	11
Fig 1.7	Schematic Diagram for dissociation of water by Photocatalytic process	12
Fig 1.8	Schematic Diagram for dissociation of water by Photobiological process	13
Fig 1.9	Band structure for water splitting reaction	14
Fig 2.1	Band Bending of semiconductor	15
Fig 2.2	The semiconductor – electrolyte interface before (LHS) after (RHS) for (a)	16
	n-type semiconductor (b) p – type semiconductor	
Fig 2.3	Effect of bias potential on semiconductor – electrolyte interface	18
Fig 2.4	Conduction and valance band edge position of semiconductor	24
Fig 2.5	Schematic diagram for charge transfer between two semiconductors	32
Fig 2.6	Electronic structure of Graphene Lattice	35
Fig 2.7	Oxidation of Graphene to produce Graphene oxide	35
Fig 3.1	Line diagram for experimental set-up	54
Fig. 3.2	Experimental set up in operational mode	54
Fig. 3.3	Summary of the experimental procedure for producing XPS depth profiles	59
Fig. 3.4	Basic component of Nyquist plot of electrochemical impedance	60
U	spectroscopy	
Fig I.3.1	LSV test of various catalysts in S^{2-} and $S_2O_3^{2-}$ electrolyte: $E_x \& E_x^*$ are	64
U	without light and with light	
Fig I.3.2	FTIR spectra of catalyst	66
Fig I.3.3	FTIR spectra of electrode prepared by catalyst powder	67
Fig I.3.4	XRD patterns of catalysts CdS, (c): Cubic phase of CdS	69
Fig I.3.5	DRS results of catalysts	71
Fig I.3.6	XPS spectra of S-2p (I) and Cd-3d (II) in catalyst powder	74
Fig I.3.7	XPS spectra of S-2p (I) and Cd-3d (II) for electrode E ₂ . (* surface etched	75
-	for 60s)	
Fig I.3.8	XPS spectra of S-2p (I) and Cd-3d (II) for electrode E ₃ . (* surface etched	75
	for 60s)	
Fig I.3.9	EIS of various electrodes at 0.2 V vs SHE	77
Fig I.3.10	Equivalent circuit diagram of various electrodes	77
Fig I.3.11	Mott-Schottky plot of catalyst at 1 kHz in S^{2-} and SO_3^{2-} electrolyte	79
Fig I.3.12	Proposed mechanism of the system	80
Fig II.3.1	LSV test of catalysts in S^{2-} and $S_2O_3^{2-}$ electrolyte: $E_x \& E_x^*$ are without and	89
	with light	
Fig II.3.2	FTIR spectra of Catalysts	90
Fig II.4.3	FTIR spectra of electrodes	91
Fig II.3.4	XRD pattern of catalysts	93

List of figure

Fig II.3.5	HRSEM images of catalysts	94
Fig II.3.6	Color map of different catalysts using HRSEM	95
Fig II.3.7	TEM image of a: Cat-1, b: Cat-2, c: cat-3 and d: Cat-4	96
Fig II.3.8	Histogram of particle size of catalyst	96
Fig II.3.9	SAED of a: Cat-1, b: Cat-2, c: cat-3 and d: Cat-4	97
Fig II.3.10	HRTEM images of Cat-1(A),Cat-2(B), cat-3(C) and Cat-4(D)	97
Fig II.3.11	Absorbance spectra and Band gap (inset) of CdS in different catalyst	98
Fig II.3.12	Photoluminescence spectra of catalysts	99
Fig II.3.13	Photoluminescence spectroscopy of electrodes	100
Fig II.3.14	XPS spectra of Cd-3d and S-2p in catalysts	103
Fig II.3.15(a)	XPS spectra of S-2p and Cd-3d for electrode E_2 . (* surface etched for 60s)	105
Fig II.3.15(b)	XPS spectra of S-2p and Cd-3d for electrode E_{3} . (* surface etched for 60s)	106
Fig II.3.15(c)	XPS spectra of S-2p and Cd-3d for electrode E_4 . (* surface etched for 60s)	107
Fig II.3.16	EIS of various electrodes at 0.2 V vs SHE	107
Fig II.3.17	Mott-Schottky plot of catalyst at 1 kHz in S^{2-} and SO_3^{2-} electrolyte	109
Fig II.3.18	Proposed mechanism of the system	110
Fig III.3.1	Result of Linear Sweep Voltammetry in Dark and light (marked as *) in S^{2-} and SO_2^{2-} electrolyte	120
Fig III.3.2	Schematic diagram of the electrochemical process	121
Fig III.3.3	FTIR spectra of catalysts	122
Fig III.3.4	XRD spectra of catalysts C: Cubic phase CdS H: Hexagonal phase CdS M:	124
8	hexagonal MoS_2	
Fig III.3.5	HRSEM images of catalysts	125
Fig III.3.6	TEM and corresponding SAED of catalysts	127
Fig III.3.7	Schematic diagram of catalysts preparation	128
Fig III.3.8	DRS and Tauc plot of catalyst	129
Fig III.3.9a	XPS spectra of Mo-3d and S-2p in different catalyst I: Mo ⁴⁺ (1T), II: Mo ⁴⁺	132
-	(2H), III, Mo^{6+} 1: For S ²⁻ (for MoS ₂ 2H and CdS), 2: For S ²⁻ (For MoS ₂ 1T)	
Fig III 2 Oh	XPS spectra of Cd^{2+} in catalyst 3 and 4	133
Fig III.3.90	FIS results of catalyst at $_{0.2}$ V vs SHE in S ² and SO ² electrolyte	135
Fig III.3.10	Mott-Schottky plot of catalyst at 1.0 kHz in S^{2-} and SO_{3-}^{2-} electrolyte	135
Fig III.3.11	Schematic diagram of charge transfer in cat_4	130
1 1 <u>5</u> 111.J.14	Sonomano anagram or onargo iransior in car-	137