Contents

Title		Page No.
Title of Thesi	I	
Certificates		II-IV
Dedication		V
Acknowledge	ements	VI-IX
Table of cont	ents	X-XIII
List of Figure	S	XIV-XVIII
List of Tables		XIX
List of Symbo	ols	XX
List of Abbre	viation	XXI-XXII
Preface		XXIII-XXV
Chapter 1	Introduction	1-7
1.1	Introduction	1
1.2	Problem Statement	5
Chapter 2	Literature Review	8-60
2.0	MOFs Introduction	8
2.1	Hydrogen: The Global Perspective	10
2.1.1	Current status of Hydrogen	12
2.2	• Biomass	13
2.3	• Bio-oil	14
2.3.1	Bio-oil properties	15
2.3.2	Drawbacks of bio-oil	17
2.4	Steam Reforming	18
2.5	Partial Oxidation	20
2.6	Oxidative steam reforming	21
2.7	Aqueous phase reforming	22
2.8	Acetic acid as a model compound of bio-oil	24
2.8.1	 Reaction network and coke formation mechanism of AASR 	26
2.9	Nature of carbon deposition during AASR	32-36

2.10	•	Kinetic studies of steam reforming	37
2.10.1	•	Effect of operating parameters on AASR and coke	37
		deposition	
2.11	•	Effect of choice of reactors	38-43
2.12	•	Catalyst consideration for AASR	43-57
		> Active metals	43
		Noble metal	44
		Transition Metal	45
		> Cobalt	45
		Nickel	46
		> Active metal sintering	48
		> Additives	49
2.13	•	Effect of support	49
		ightharpoonup Al ₂ O ₃	51
		> ZrO ₂	51
		➤ CeO ₂	52
		► La ₂ O ₃	54
2.14	•	Effect of alkali and alkaline earth metals	55
2.15	•	Summary of literature review	58-59
2.16	•	Objective of the present research work	60
Chapter 3	Expe	rimental	61-77
3.1	•	Materials and Methods	61
3.1.1	•	Preparation of Alumina and Alumina lanthanum	61
		cerium (ALC) support	
3.1.2		Synthesis of Ni/ALC Catalyst	63
3.1.3		> Synthesis of Ni-complex and Ni-	64-66
		complex/ALC catalysts	
3.1.4		> Table of synthesized catalysts	67
3.2	•	Experimental set-up for steam reforming	67
2.2.1		reaction Earl specifier	(7
3.2.1		Feed section	67
3.2.2		Reaction section	69
3.2.3		Product analysis	70

3.3	• Characterization of catalysts	71
3.3.1	X-Ray diffraction (XRD)	72
3.3.2	Transmission electron microscope (TEM)	73
	and selected area diffraction (SAED)	
3.3.3	X-Ray Photoelectron spectroscopy	74
3.3.4	Temperature Programmed Reduction (TPR)	75
3.3.5	Thermo gravimetric analysis (DT-TGA)	75
3.3.6	Scanning electron microscopy	76
	(SEM/EDAX)	
3.3.7	➤ Low temperature N₂ adsorption and	76
	desorption (BET analysis)	
Chapter 4	Results and discussion	78
Section: I	• Comparative study of hydrogen production from	78-98
	steam reforming of acetic acid over synthesized	
4.0	catalysts via MOF and wet impregnation method Introduction	78
4.1	Characterization of precursors	78
4.2	 XRD analysis of catalysts 	81
4.3	> TPR analysis	82
4.3	Surface area and pore size analysis	84
4.4	TEM analysis	85
	,	
4.6	➤ SEM/EDAX analysis ➤ VPS analysis	87 89
4.7	> XPS analysis	
4.8	Catalytic activity and yield of catalysts	92-95
4.9	Stability Test	95
4.10	> DT-TGA analysis of spent catalysts	96
	Summary	97-98
Section: II	• Effect of Ni loading on catalytic activity and	99-115
	products distribution for acetic acid steam reforming over nickel-based catalyst synthesized	
	via MOF process	
5.0	> Introduction	99
5.1	➤ Characterization of catalyst	99-106
5.1.1	> XRD analysis	99

5.1.2	Surface area and pore size analysis	101
5.1.3	> TPR analysis	103
5.1.4	SEM analysis	105
	> TEM analysis	106
5.2	 Effect of the operating variables on the performance of catalysts 	107
5.2.1	➤ Effects of temperatures	107
5.2.2	➤ Effects of Ni loadings on product distribution	110
5.2.3	Effect of Ni loading over catalytic stability and coke deposition behaviour	111
5.3	• DT-TGA analysis of spent catalysts	112
	• Summary	114-115
Section: III	Activation, Deactivation and Kinetic studies	116-132
6.0	> Introduction	116
6.1	Characterization of catalysts	116-123
6.1.1	Surface area and pore size analysis	116
6.1.2	XRD analysis	118
6.1.3	> TPR analysis	120
6.1.4	➤ SEM analysis	121
6.1.5	DT-TGA analysis of spent catalysts	122
6.2	• Activation, deactivation and regeneration studies	123-129
6.2.1	Effect of temperatures	123
6.2.2	➤ Effect feed flow rate	125
6.2.3	Effect of steam to carbon molar ratio	127
6.2.4	➤ Catalyst stability and regeneration studies	129
6.2.4	Catalyst stability and regeneration studiesSummary	129 131-132
6.2.4 Chapter 5	, , ,	
	➤ Summary	131-132
	 Summary Conclusions and Future Recommendations 	131-132 133-137

List of Figures

Figure	Figure Caption	Page
No.		No.
1.1	World energy consumption	2
1.2	Worldwide projection of carbon dioxide emission	3
2.1	Different sources of hydrogen generation	12
2.2	Strategies for production of fuels from lignocellulosic	14
	biomass	
2.3	Possible route of hydrogen generation from biomass via	19
	steam reforming	
2.4	The reaction mechanism for C–C and C–O breaking in	23
	the APR of ethylene glycol over a metal catalyst. The	
	horizontal lines represent a metal surface	
2.5	Schematic representation of acetic acid steam reforming	25
2.6	Schematic representation of reaction mechanism for	27
	acetic acid steam reforming	
2.7	The dissociation patterns of acetic acid on catalyst	28
	surface	
2.8	Assumed reaction pathways and carbon deposition	30
	mechanism from intermediate methyl group during	
	AcOH during reforming	
2.9	(a) TGA of used 15Ni/Al (inset, SEM micrographs of	34
	15Ni/Al catalyst after reaction) and 15Ni5Mg/Al (inset,	
	SEM micrographs of 15Ni5Mg/Al catalyst after reaction)	
	catalysts performed under airflow and (b) derivative	
	thermograms for used 15Ni/Al and 15Ni5Mg/Al	
	catalysts	
2.10	DTA analysis of used catalysts (a) 5Ni/MA, 5Cu/MA (b)	35
	5Ni/ HifuelR-120.	

2.11	Scanning electron microscopy and EDX scan of the used	36
	12%Ni/CeO ₂ –ZrO ₂ catalyst	
2.12	A typical schematic diagram of a fixed-bed setup	39
	for steam reforming of acetic acid	
2.13	Schematic diagram of the two-stage reactors performing	40
	acetic acid cracking/regeneration sequences in opposition	
	for continuous hydrogen production	
2.14	Schematic diagram of the spouted bed reactor	41
2.15	A typical schematic representation of sorption enhanced	42
	assembly for AASR	
2.16	HRTEM image of 15 Ni/Al catalyst (sintering process)	48
2.17	The oxidation of CO, coke and coke precursor via	53
	migrated oxygen vacancies in the lattice of CeO ₂ during	
	the steam reforming of acetic acid	
3.1	Process flow diagram for the preparation of support	62
3.2	Process flow diagram for the synthesis of supported	63
	catalyst	
3.3	Process Flow diagram for the synthesis of monometallic	64
	complex of nickel	
3.4	Ni-complex crystal	65
3.5	Process flow diagram for the preparation of supported	66
	monometallic catalyst	
3.6	Process flow diagram for the Synthesis of Ni-	66
	Complex/ALC	
3.7	Schematic diagram of experimental set-up	68
3.8	A real time experimental figure	70
4.1	TGA profiles of nickel formate (Ni(HCOO) ₂).2H ₂ O)	79
4.2	TGA and DTA profiles of Ni-complex	79

4.3	XRD pattern of monometallic complex of Ni	80
4.4	XRD Patterns of Alumina, ALC, Catalyst 1 and Catalyst	82
	2	
4.5	TPR profiles of Catalyst 1, Catalyst 2, and pure NiO	83
4.6	TEM image and SAED diffraction of Catalyst 1	86
4.7	TEM image and SAED diffraction of Catalyst 2	86
4.8	SEM analysis of Catalyst 1 and Catalyst 2	87
4.9	EDAX analysis of Catalyst 1	88
4.10	EDAX analysis of Catalyst 2	88
4.11	(A) Ce 3d XPS spectra of Catalyst 1 & (B) Catalyst 2	89
4.12	Conversion of AcOH and product distribution as a	93
	function of temperature over ALC support	
4.13	Conversion of acetic acid and yield of the gaseous	94
	products over catalyst 1, catalyst 2 in the different	
	temperature range of 400-650 °C. Experimental	
	conditions: S/C mole ratio 6.5:1, mixture flow rate 2.5	
	mL/h	
4.14	Conversion and H ₂ yield (%) of catalyst 1 and catalyst 2,	95
	Reaction condition: temperature - 600 °C; N ₂ flow rate-	
	30 mL/min; mixture flow rate -2.5 mL/h; and S/C-6.5	
	mole/mole	
4.15	TGA-DTG profile of spent catalysts after stability test	96
	(a) TG (b) DTG	
5.1	XRD patterns of catalyst 2, 3 and 4	100
5.2	N ₂ adsorption - desorption isotherms of the support and	101
	catalysts	
5.3	TPR analysis of Catalysts 3, 2 and 4	104

5.4	SEM images of (A) Catalyst 3 (B) Catalyst 2 (C) Catalyst	105
	4	
5.5	TEM micrographs of (A) Catalyst 3 (B) Catalyst 2 (C) Catalyst 4	106
5.6	Acetic acid Conversion and the product distribution over reaction temperature and nickel loading; $S/C = 6.5$; $WHSV= 1.2 h^{-1}$; $P=1atm$	108- 109
5.7	Effect of Ni loading as time on stream (a) AcOH conversion and (b) H ₂ yield	112
5.8	TG and DTG analysis of spent catalysts after 36 h TOS	113
6.1	N_2 adsorption - desorption isotherms of the support and fresh catalyst	117
6.2	XRD patterns of (a) ALC support, (b) Fresh catalyst, (c)	119
	Deactivated, and (d) Regenerated catalyst	
6.3	TPR profiles of 15%Ni-Comp/ALC catalyst and pure	121
	NiO	
6.4	SEM image (A) 15 % Ni-Comp/ALC (Fresh) (B) 15%	122
	Ni-Comp/ALC (Spent) after 36h	
6.5	TG-DTA analysis of fresh catalyst after 36 h TOS deactivation after 36 h of TOS	122
6.6	Conversion and yields of products over 15% Ni-Comp/ALC: S/C = 6.5, Feed flow rate = 2.5 mL/h, P = 1	124
6.7	atm Effect of the feed flow rate of AcOH mixture on conversion and yield of products over 15 wt%Ni-Comp/ALC; Temp 600 °C, S/C ratio - 6.5: 1, P=1atm	126
6.8	Effect of S/C ratio on conversion of AcOH and product	127
	distribution over 15%Ni-Comp/ALC at 600 °C, Feed flow	
	rate-2.5 mL/h, and P-1atm	
6.9	AcOH conversion and yield of gaseous product versus	129
	reaction time over 15%Ni-Comp/ALC catalyst. Reaction	
	condition: temperature-600 °C; N ₂ ; Feed flow rate-2.5	
	mL/h; and S/C- 6.5	

6.10 AcOH conversion and Yield of gaseous products versus reaction time over regenerated 15% Ni-Comp/ALC catalyst. Reaction condition: temperature-600 °C; N₂ flow rate- 30mL/min; feed flow rate - 2.5 mL/h; and S/C- 6.5 mole/mole

List of Tables

Table No.	Title	Page No.
2.1	Combustion values of hydrogen and fossil fuels	11
2.2	Physical properties of bio-oil (pine wood)	15
	produced at different temperatures	
2.3	Effects of S/C on acetic acid conversion and	38
	selectivity of gaseous product at $T = 673$	
	K; T=973 K LHSV = 10.1 h^{-1} ; P = 1 atm	
2.4	Conversion, H ₂ yield, carbon deposition, and	161
	stability analysis during AASR over different	
	type of catalysts	
3.1	Table of synthesized catalysts	67
3.2	Characterization techniques used in the present	72
	study	
4.1	Textural properties of synthesized catalysts	84
4.2	Pore size distribution of catalyst	85
4.3	Binding Energy (eV) (catalyst 1)	90
4.4	Binding Energy (eV) (catalyst 2)	92
5.1	Textural properties of fresh, deactivated and	102
	Regenerated catalysts	
5.2	Pore size distribution of fresh, deactivated and	103
	Regenerated catalysts	
6.1	Textural properties of synthesized catalysts	117
6.2	Pore size distribution of catalysts	118

List of Symbols

AcOH Acetic acid

Dp Crystallite size, nm

dp Pore diameter

D Crystalline lattice size

Ni(0) Metallic nickel

T Temperature, °C

Wt. Weight of catalyst, g

Wt % Weight percentage

XAcOH (%) Acetic acid conversion

X_{C-C} Carbon conversion

Y Yield

List of Abbreviations

AASR Acetic acid steam reforming

AcOH Acetic acid

ALC $Al_2O_3/La_2O_3/CeO_2$

γ-Al₂O₃ Gamma Alumina

APR Aqueous phase reforming

BET Brunauer-Emmet-Teller

C Carbon/Coke

CeO₂ Cerium oxide

CO Carbon monoxide

CO₂ Carbon die oxide

Comp Complex

CH₄ Methane

DT-TGA Differential thermal, Thermal gravimetric

EDAX Energy dispersive Xray-analysis

TCD Thermal Conductive Detector

FID Flame Ionization Detector

GC Gas Chromatography

H₂ Hydrogen

La₂O₃ Lanthanum oxide

MOFs Metal Organic Frameworks

Ni Nickel

Ni-complex (Ni[bpy]₂ Cl₂])

OSR Oxidative steam reforming

POX Partial oxidation

RPM Round per minute

RWGS Reverse water gas shift reaction

S/C Steam to carbon molar ratio

SEM Scanning Electron Microscopy

TEM Transmission Electron Microscopy

TPR Temperature Programme Reduction

WGS Water gas shift Reaction

WHSV Weight hour space velocity

XPS Xray-Photoelectron Spectroscopy

XRD Xray-Diffraction analysis