CONTENTS

	Content	Page No.
	Title of Thesis	
	Dedication	i
	Certificate	ii
	Declaration by the candidate	iii
	Certificate by the supervisor(S)	iv
	Copyright transfer certificate	v
	Acknowledgment	vi-vii
	Content	viii-xi
	List of figures	xii-xv
	List of table	xvi
	List of symbol	xvii-xviii
	Abstract	1-5
CHAPTER – 1	Introduction	1
	1.1 Metal oxide	1
	Materials Science	1
	Classifications of nanostructured materials	2
	Metal oxides and mixed metal oxides nanoparticles	4
	Applications of metal oxides and mixed metal oxides nanoparticles	8
	PEROVSKITE OXIDES: A GENERAL OVERVIEW	11
	Classification of Perovskite	13
	Type and Structures of Perovskite	13
a	I ABO3 Perovskite	13
b	II A+1B+5O3 Perovskite	15
c	III A+2B+4O3 Perovskite	15
d	IV A+3B+3O3 Perovskite	
e	V (ABO3)n AO Perovskite	16

Contents

f	VI A2B2O5 Perovskite	
	Complex Perovskite	19
	History of Sillenite	20
	Stoichiometric Sillenites	24
	Non-stoichiometric Sillenites	24
	Applications	26
	Dielectric properties of metal oxide	27
	Capacitors	27
	Dielectric Materials	28
	Electronic Polarization	30
	Orientation Polarization	30
	Space Charge Polarization	31
	Atomic or Ionic Polarization	31
	Dielectric Constant	32
	Dielectric Loss	33
	Impedance	34
	Adsorption	37
	Mechanism of Adsorption	37
	Types of Adsorption	38
	Characteristics of Physical Adsorption	38
	Chemical Adsorption or Chemisorption	39
	Adsorption isotherms	39
	Freundlich Adsorption Isotherm	

	Reference	41-55
CHAPTER – 2	Experimental Procedure	
	2.1 Experiment	56
	2.2 Synthesis of Materials	57
(a)	(b) Semi wet Route	57
(c)	(d) Preprartion of Ceramic Material	57
	2.3 Calcination Process	58
	2.4 Sintering Process	58
	2.5 X-Ray diffraction Pattern	59
	2.6 FTIR spectroscopy	60
	2.7 Transmission Electron Microscopy (TEM) Analysis	61
	2.8. Scanning Electron Microscopy (SEM) Analysis	62
	2.9 Energy Dispersive X-ray Analysis (EDX)	63
	2.10 Atomic Force Microscopy (AFM) Analysis	64
	Superconducting Quantum Interference Device	64
	2.11 Electric and Dielectric Measurement:	65
CHAPTER - 3	Studies on BiFeO ₃ ceramic	
	3.1.Introduction	67
	3.2.Experimental	70
	a. Material Synthesis	70
	b. Material Characterization	70
	c. Electrochemical characterizations:	71
	d. Electrode preparation:	71
	3.3. Results and discussion	71
	3.3.1 Microstructural studies	72
	3.3.2. Dielectric studies	77
	3.3.3 Cyclic Voltammetry	82

	3.3.4 Photocatalytic activity:	84
	3.4. Conclusion	87
	References	88-89
CHAPTER – 4	Studies on Bi ₂ Fe ₄ O ₉ ceramic	
	4.1. Introduction	89
	4.2. Experimental	92
	a. Material Synthesis	92
	b Material characterization	94
	c Electrochemical characterizations:	94
	4.3. Results and discussion	95
	4.3.1. Microstructural studies	96
	4.3.2. Dielectric studies	98
	4.3.3. Adsorption	102
	4.4. Conclusion	112
	References:	114
CHAPTER - 5	Studies on Bi ₁₂ TiO ₂₀ Ceramic	
	5.1. Introduction	117
	5.2. Experimental	118
	5.3. Results and discussion	119
	5.3.1. Microstructural studies	119
	5.3.2. Dielectric behavior	124
	5.4. Conclusion	129
	References:	130-132
CHAPTER – 6	Studies on Bi ₂₅ FeO ₄₀ ceramic	
	6.1. Introduction	133
	6.2. Experimental a. Material Synthesis	135

Contents

	b Material characterization	
	6.3. Results and discussion	137
	6.3.1. Microstructural studies	138
	6.3.2 Adsorption	143
	6.4. Conclusion	154
	Reference	155-156
_		

LIST OF FIGURES

	Page No.
Fig.1.1. Schematic presentation of reduced-dimensional systems	3
Fig.1.2. SEM image of the Ce2O3–TiO2 composite nanofibers	6
Fig.1.3. SEM image of ZnO nanorings	6
Fig.1.4. SEM image of NiO nanotubes	7
Fig.1.5. SEM image of flower-like CuO	7
Fig.1.6. TEM image of γ-Fe2O3 spherical nanoparticles	8
Fig.1.7. Application of metal oxides and mixed metal oxides nanoparticles in various fields	11
Fig.1.8. Classification of perovskite.	13
Fig.1.9. The structure of ABO3 perovskite	14
Fig.1.10. Structure of Ca2Mn2O5 unit cell showing oxygen vacancy along the direction of normal A B plane	17
Fig.1.11. Crystal structure of Bi2/3Cu3Ti4O12 (BCTO)	20
Fig.1.12. Crystal structure of the sillenite Bi12 SiO20, space group I 23	21
Fig.1.13. Trigonal coordination of an MO ₃ group in an oxygen- deficient Sillenite	25
Fig.1.14. The O4 site, in the centre of the diagram.	25
Fig.1.15. The altered bismuth co-ordination environment in an oxygen excess Sillenite	26
Fig.1.16 Shows parallel plate capacitors in circuit, including the alignment of charges in the dielectric material	27
Fig.1.17 The polarized and non-polarized plates of an applied electric field	28
Fig. 1.18. Types of adsorption	38
Fig. 1.19. Adsorption isotherm	39

Fig. 1.20. Freundlich isotherm		40
Fig.2.1.	Flow chart for the synthesis of Complex Perovskite by the semi-wet route	58
Fig.2.2.	Powder X-ray diffractrometer, RigakuMiniflex 600 (Japan)	60
Fig.2.3.	FT-IR Spectroscopy (Bruker, ALPHA model)	61
Fig.2.4.	Transmission Electron Microscope (TEM, FEI TECANI G ² 20 TWIN, USA) used to determining particle structure	61
Fig.2.5.	Scanning Electron Microscope (ZEISS, model EVO-18 Research) used for microstructure of the surface of the ceramics	63
Fig.2.6.	LCR Meter (PSM 1735, Newton 4th Ltd, U.K.) used for dielectric properties measurement	65
Fig.3.1.	TGA and DTA graph	72
Fig.3.2.	X-ray diffraction (XRD) pattern of BiFeO ₃ (BFO) ceramic sintered at 800°C for 6 h	73
Fig.3.3.	XPS spectra of (a) Bi (b) Fe for BFO sample sintered at 800°C for 6h	74
Fig.3.4.	(a) Represent bright field TEM image (b) indicate SAED pattern (c) HR -TEM images of BFO ceramic	75
Fig.3.5.	SEM images of BiFeO ₃ (BFO) ceramic	76
Fig.3.6.	Plot of Dielectric constant (ϵ_r) as a function of frequency for BiFeO ₃ sintered at 800 °C for 8h.	77
Fig.3.7.	Plot of Dielectric Loss ($\tan \delta$) as a function of frequency (Hz) for BiFeO ₃ sintered at 800 °C for 8 h.	78
Fig.3.8.	Plot of Dielectric constant (ε) as function of Temperature (K) for BiFeO ₃ sintered at 800 °C for 8 h.	79
Fig 3.9	Plot of Dielectric loss (tan δ) as a function of temperature for BiFeO ₃ sintered at 800 °C for 8h.	80
Fig.3.10	. also shows when increase the temperature Z" also increases.	81
Fig. 3.11 Current(A) Vs Potential(V)		82
Fig. 3.12	2 Imaginary(Z) Vs Real (Z)	82

Fig. 3.13 Absorbance vs wavelength		83
Fig. 3.14 Reflectance (%) Vs Wavelength		85
Fig.4.1.	X-ray diffraction (XRD) pattern of Bi ₂ Fe ₄ O ₉ ceramic sintered at 800°C for 8 h	95
Fig.4.2.	Represent bright field TEM image (b) indicate SAED pattern (c) HR -TEM images of Bi ₂ Fe ₄ O ₉ ceramic sintered at 800°C for 8 h	97
Fig.4.3.	SEM images of Bi ₂ Fe ₄ O ₉ ceramic sintered at 800°C for 8h	98
Fig.4.4.	Variation of (a) real dielectric constant (ϵ '), (b) dielectric loss (tan δ) as a function of frequency at few selected temperatures.h	99
Fig.4.5.	Temperature dependence (a) dielectric constant (ϵ '), (b) dielectric loss (tan δ) at a few representative frequencies	100
Fig.4.6.	The effect of contact time on CR removal (%) at different concentration of CR	101
Fig.4.7.	The effect of contact time on CR removal (%) at different concentration of CR	102
Fig.4.8.	The effect of adsorbent dose (g) on the removal (%) of CR	103
Fig.4.9.	The effect of adsorbent dose (mg/L) on the removal (%) of CR	104
Fig. 4.10	O. Conductance vs frequency graph.	106
Fig. 4.1	1. Conductance vs temperature graph.	108
Fig. 4.1	2 Diffuse reflectance spectra of Bi ₂ Fe ₄ O ₉ nanoparticle. Inset figure showing optical bandgap value of Bi ₂ Fe ₄ O ₉ nanoparticle evaluated from Kubelka-Munk theory.	109
Fig. 4.1	3 Cyclic voltammetry of bismuth ferrite based electrode in 1M KOH at 5 mV/s.	111
Fig. 4.1	4 Nyquist plot of bismuth ferrite based three electrode system	112
Fig.5.1.	XRD patterns of Bi ₁₂ TiO ₂₀ (BTO) ceramic (a) calcined at 600 °C (b) sintered at 800 °C for 6 h, respectively.	120
Fig.5.2.	(a) Bright field TEM image (b) Selected area diffraction (SAED) pattern (c) HR-TEM image of BTO ceramic.	121

Fig.5.3.	(a)SEM image of the fractured surface (b) EDX spectra of BTO ceramic sintered at 800 °C for 6 h	123
Fig.5.4.	AFM images (a) 2D for grain boundaries (b) 3D for surface roughness and (c) histogram graph for particle size distribution of sintered BTO ceramic.	125
Fig.5.5.	Temperature dependence (a) dielectric constant (ϵ '), (b) dielectric loss (tan δ) at a few representative frequencies.	126
Fig.5.6.	Variation of (a) real dielectric constant (ϵ '), (b) dielectric loss (tan δ) as a function of frequency at few selected temperatures.	128
Fig.6.1.	X-ray diffraction (XRD) pattern of $Bi_{25}FeO_{40}$ (BFO) ceramic sintered at $800^{\circ}C$ for 8 h.	139
Fig.6.2.	XPS spectra of (a) Bi (b) Fe and (c) Oxygen for BFO sample sintered at 800°C for 8 h.	140
Fig.6.3.	FTIR spectra of Bi ₂₅ FeO ₄₀ (BFO) ceramic before adsorption and after treatment of adsorption.	141
Fig.6.4.	(a) and (b) represent bright field TEM image (c) and (d) indicate SAED pattern (e) and (f) HR -TEM images of BFO ceramic before and after adsorption	142
Fig.6.5.	SEM images of $Bi_{25}FeO_{40}$ (BFO) ceramic (a) before treatments with methylene blue, (b) after treatments with methylene blue.	143
Fig.6.6	The effect of contact time on MB removal (%) at different concentration of MB.	144
Fig.6.7.	Fig 6.7. Effect of adsorbent dose (0.2-1.0 g/L) on the removal (%) of MB.	145
Fig.6.8.	Fig 6. 8. The effect of pH (4.0-10.0) on removal efficiency of MB.	146
Fig.6.9.	The adsorption isotherms of MB by Bi25FeO40 samples; the data from experiment have been fitted by Langmuir and Freundlich isotherm models.	147
Fig.6.10	The fitted kinetics models from experiment data: (a) pseudo-first-order and (b) pseudo-second-order models, respectively.	150

Fig 6.11 . Variation of electrical conductivity with frequency at few selected temperatures of BFO ceramic sintered at 800°C for 8 h.	151
Fig 6.12 . Variation of electrical conductivity with Temperature at few selected temperatures of BFO ceramic sintered at 800°C for 8 h	153

LIST OF TABLE

		Page No.
Table.1.1.	Example of some perovskite explains property application and their use	18
Table.1.2.	Shows polarization mechanism of dielectric materials.	32
Table 1.3.	High dielectric constant of few oxide compounds.	36