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C H AP TER  6  

6 Time window and frequency band optimization using regularized 

neighbourhood component analysis for Multi-View Motor Imagery EEG 

classification 

6.1 Introduction 

In recent years, advancements in medical and computational sciences have developed a 

communication pathway between the human brain and external devices; such methods 

are popularly referred as Brain-computer interfaces (BCIs) [1]. As a medical application, 

(BCI) devices are widely used to assist people with neuromuscular disorders. Among 

many types of BCIs [226,227,254,255], motor imagery (MI) based BCI uses brain signals 

associated with the imagination of motor movement-related tasks [9]. Various studies 

have suggested that when a subject thinks about a specific motor movement, there are 

significant relative power changes occur in the mu (8-13 Hz) and beta (13-30 Hz) rhythms 

of EEG acquired over the sensorimotor cortex area of the brain [8,14,229]. Subsequently, 

these power changes in EEG are processed and classified using pattern recognition 

methods to control external devices [27,28]. The power changes in EEG occur due to 

imagination of limb movements, are referred as event-related desynchronization (ERD)/ 

event-related synchronization (ERS), which can be further processed to control an 

external device [14]. However, EEG time series are highly contaminated by body motion 

artifacts and environmental noises, due to which distinguishing between different motor 

movements is a challenging exercise to perform [256]. Hence it is essential to employ 

preprocessing methods to suppress artifacts and noises before extracting useful 

information from the EEG signals [255].  
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In MI-BCI signal processing, EEG time latencies in motor imagery task differ subject to 

subject and thus require time window optimization methods. As discussed in section 2.6, 

with time windows, MI-EEG data become a higher order tensor. To optimize EEG tensor 

data, we propose a novel multi-task learning model to simultaneously optimize frequency 

bands and time windows and preserve the multi-view EEG data structure. In some of the 

recent BCI signal classification studies, learning methods based feature selection 

approaches such as regularized neighbourhood component analysis (RNCA) [240,257], 

L-1 norm regularization [28] have been proposed. In others, filter methods such as fisher 

score [258] and mutual information [259] are used for feature selection. However, filter-

based methods are faster but achieve lower classification accuracies compared to 

learning-based feature selection methods. A few studies have compared various learning-

based and filter-based feature selection methods and reported the superiority of learning-

based feature selection methods in terms of classification accuracies [240,260]. RNCA is 

a fast-learning based feature selection method to optimize a single matrix feature vector 

[128]. In our proposed model, we formulized the RNCA objective function by adding a 

time constraint to optimize multi-view EEG data. Specifically, MI-related EEG data are 

segmented into multiple time windows, and then each of them is filtered using a dual-tree 

complex wavelet transform (DTCWT) decomposition and reconstruction approach. 

Afterward, CSP features are extracted, and a multi-view feature space is generated. 

Subsequently, optimal features are selected using the proposed method for MI 

classification. 

The rest of the chapter is organized as follows: Section 6.2 explains the method and 

materials used in this work. Section 6.3 elucidate the experimental study conducted on 

the BCI datasets followed by results in section 6.4. Further, a discussion is presented in 

section 6.5. The last section gives the conclusion.  
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6.2 Methods 

6.2.1 Preprocessing of EEG 

The most important step in BCI system design while signal processing EEG time series 

is to remove the noises and artifacts, affecting the signal's vital information. The nature 

of EEG is known to be very random and non-stationary that makes it a complex signal to 

be analyzed [261]. Moreover, MI task-related EEG patterns are highly subject-specific 

and trials specific in the same subject. Therefore, it is important to perform time-

frequency analysis on the EEG to eliminate artifacts, noises and extract useful features. 

Wavelets are considered one of the best tools to deal with biomedical signals in various 

studies [262–264]. We opted for Dual-tree complex wavelet transform (DTCWT) for 

decomposing the EEG signal in this work. As an advanced variant discrete wavelet 

transform (DWT), DTCWT overcomes the shortcomings of DWT, such as transition band 

power losses and aliasing. The structure of DTCWT comprises two DWTs connected in 

parallel to evaluate the real and imaginary part of the transform.  

The presence of ERD/ERS patterns are prominent in mu (8-13Hz), and beta (13-30Hz) 

frequency ranges during a motor imagery task [14]. Many studies have proposed using 

frequency band optimization to increase the MI classification accuracy [68,257–259]. 

Basically, in these methods, EEG is filtered at multiple frequency bands between 4 and 

30 Hz to capture discriminative features at different sub-bands. In our approach, we 

devise a DTCWT filter bank to filter the EEG into three sub-bands of frequency range 4-

8 Hz, 8-16 Hz, and 16-32 Hz.  In the experiment, the EEG is decomposed into DTCWT 

coefficients of four details and an approximation. Every detail or approximation has a 

different frequency band. For the first sub-band, we chose the coefficients with sub-band 

frequency between 4 and 8 Hz to reconstruct the EEG time series, whereas thresholding 

is applied on the other coefficients by replacing their values with zero. Similarly, we 



96 

 

filtered the EEG into two more sub-bands: 8-16 Hz and 16-32 Hz. An illustrative view of 

DTCWT filter banks used for the decomposition and reconstruction is shown in Figure 

6.1. We eliminated the ocular artifacts using the method explained in [234]. 

6.2.2 Feature extraction from Multi-view EEG data  

For the classification of motor imagery signals, pattern recognition methods are widely 

investigated in numerous studies [28,177,240]. The first and most important step in 

pattern recognition methods is feature extraction. In motor imagery classification, 

features are commonly extracted by spatial, spectral, and temporal analysis. CSP, as 

spatial analysis, is considered the most effective algorithm for MI classification. Before 

implementing the CSP, we first define the multi-view nature of motor imagery EEG. In 

general, the EEG dataset contains a two-dimensional matrix of temporal points and 

channels. When recording EEG for BCI applications, the time series are further marked 

by different trials. This naturally adds one more dimension to the dataset and makes BCI 

dataset a multi-view classification problem. Assume that the ith trial EEG data is 

represented as 𝑋𝑖,𝐶 ∈ ℝ𝑀×𝑇 where C, M, and T represent the motor imagery class, total 

number of channels, and temporal points, respectively. Now, for total N trials, we have 

N number of M×T matrices. Before applying CSP, we assume that each of the matrices 

is mean subtracted and filtered at a suitable frequency band.  

For a given two-class motor imagery classification problem, suppose 𝑋𝐴 is the EEG 

matrix of 𝐴𝑡ℎ class averaged over all the 𝐴𝑡ℎ class trials. Similarly 𝑋𝐵 is the EEG matrix 

of 𝐵𝑡ℎclass averaged over all the 𝐵𝑡ℎ class trials. CSP projection matrix is generated by 

first calculating the normalized covariance EEG matrices 𝑅𝐴 and 𝑅𝐵 given by 

 
𝑅𝐴 =

𝑋𝐴𝑋𝐴
𝑇

𝑡𝑟𝑎𝑐𝑒(𝑋𝐴𝑋𝐴
𝑇)

            𝑅𝐵 =
𝑋𝐵𝑋𝐵

𝑇

𝑡𝑟𝑎𝑐𝑒(𝑋𝐵𝑋𝐵
𝑇)

 
(6.1) 
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Where 𝑋𝑇 computes the transpose of 𝑋 and 𝑡𝑟𝑎𝑐𝑒(𝐵) adds all the diagonal elements in 

𝐵. In the next step, eigenvector decomposition is performed on the addition of 𝑅𝐴, 𝑅𝐵 as 

given by  

 𝑅 = 𝑅𝐴 + 𝑅𝐵 = 𝑈0 ∈ 𝑈0
𝑇 (6.2) 

Where 𝑈0 and ∈ represent eigenvector and diagonal eigenvalue matrix. Subsequently, 

two covariance matrices are calculated using the formulas given as  

 𝑆𝐴 = 𝑃𝑅𝐴𝑃𝑇               𝑆𝐵 = 𝑃𝑅𝐵𝑃𝑇 (6.3) 

Where 𝑃 is termed as whitening transformation matrix and can be evaluated as 𝑃 =

∈−1
2⁄ 𝑈0. Moreover, the eigenvector matrix 𝑈 of 𝑆𝐴 and 𝑆𝐵 will always be the same with 

the summation of their eigenvalues be unity. Finally, spatial filters are generated using 

𝑊 = 𝑈𝑇𝑃. For 𝑖𝑡ℎ trial EEG data matrix, 𝑋𝑖,𝐶 can be transformed by the spatial filters 

using the following equation   

 𝑍 = 𝑊𝑋 (6.4) 

The designed spatial filters have a property that the first and last m columns maximize 

the variance for one class and minimizes that for the second class. Thus, the final feature 

space has spatial features defined by 

 
𝑓𝑝 = log (

(𝑣𝑎𝑟(𝑍𝑝)

∑ 𝑣𝑎𝑟(𝑧𝑝)2𝑚
𝑝=1

) 
(6.5) 

Where 𝑣𝑎𝑟(. ) is a function that solves for the variance and 𝑝 is the row of 𝑍𝑝 ( 𝑝 =

1, … . 2𝑚 ). 

Advance variants of CSP such as FBCSP, and DFBCSP have shown that the effectiveness 

of CSP gets further improved when EEG is filtered in multiple frequency bands before 
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the implementation of CSP. Therefore, we apply the CSP feature extraction method from 

Equation (6.1) on the EEG filtered at different frequency bands. In this work, we devise 

a filter bank to filter the EEG by first decomposing the EEG using dual-tree complex 

wavelet transform into details and approximation coefficients and then reconstructing the 

EEG using the details coefficients from specific frequency ranges. We used coefficients 

of three details for the reconstruction of the EEG. Thus, this procedure filters the EEG 

into three distinct frequency bands: ranges 4-8Hz, 8-15Hz, and 16-32 Hz. Now, the CSP 

features are extracted from the EEG at multiple frequency bands and feature space, 𝐹𝑉 is 

created as given by 

 

𝐹𝑉 = (

𝑓1,1 ⋯ 𝑓1,𝑄

⋮ ⋱ ⋮
𝑓𝑁,1 ⋯ 𝑓𝑁,𝑄

) 

 

(6.6) 

Where 𝑁 is the total number of trials combining both the classes and 𝑄 is given by 

2𝑚 × 𝐽, where 𝐽 is the total number of filters in the filter bank.  

Besides frequency band optimization, time window optimization is equally important 

because the brain response to a motor imagery task is different in different subjects and 

varies with frequency band and time. In an MI paradigm, the MI task is generally 

performed for 4s, where the starting period (from 0s to 1s) is mainly considered as the 

imagination preparation stage and the later period (from 3.5s to 4s) is considered as a post 

imagination period [183]. Hence, it is crucial to select a time window covering the 

significant ERD/ERS patterns and reject the irrelevant time interval. In studies 

[28,184,265],  

EEG data is segmented into multiple time windows using sliding time window approach 

to select relevant time windows. Further, in sliding time window methods of EEG, 

generally, a width of 2s with 0.5s shift has given optimum results. Keeping this in view, 
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we segmented the EEG data into 𝐾 time windows of length 2s each. Considering t=0s as 

the start of the motor imagery task and t=4s as the end of the motor imagery task, the first 

time window is from -0.5 s to 1.5 s, followed by five more time windows (0s to 2s, 0.5s 

to 2.5s……, 2s to 4s), where each is shifted by 0.5s. Hence, we have total six time 

windows (𝐾 = 6). Finally, using the above explained feature space extraction method 

given in Equation (6.6), we evaluated multi-view feature space 𝐹𝑉(𝑡) where 𝑡 is the time 

window index.  Figure 6.1 describes the complete multi-view feature extraction scheme.  

Figure 6.1 Illustration of multi-view feature extraction from MI-related EEG dataset for 

classification. Naturally, EEG data has three modes: channels, time, and trials. In the 

first stage, EEG time series of each trial is segmented into K multiple time windows. 

Next, each time window is filtered at three frequency bands using DTCWT filter bank. 

Afterward, CSP is executed on filtered EEG to evaluate MI-related features. The final 

feature space has K matrices. Columns of each such matrix have DTCWT CSP features, 

and rows represent trials. 
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6.2.3 Multi-view Feature selection approach: Regularized Neighbourhood 

component analysis 

Regularized neighbourhood component analysis (RNCA) learns the mahalanobis 

distance with a regularizing parameter 𝜆. RNCA estimates the weights of all the features 

present in feature space by optimizing an average leave one out classification accuracy 

objective function [128]. The optimization is done by evaluating the best regularization 

parameter using cross-validation on the train set. In this algorithm, a weight vector for 

feature vector is learned using nearest neighbour learning classifier. Let us consider a 

multiclass feature space, 𝐹𝑉 = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2 … , 𝑛} from which optimal features need 

to be selected for classification. Where 𝑥𝑖 ∈ ℝ𝑛×𝑟 are the feature vectors, and 𝑛 and 

𝑟 representing total number of trials and extracted features, respectively. 𝑦𝑖 = {1,2, … 𝑐} 

represents class label, 𝑐 is the total number of class. In RNCA, the mahalanobis distance 

between a sample 𝑥𝑖 and a selected reference sample 𝑥𝑗 is calculated. The selection of a 

reference sample 𝑥𝑗 for a sample 𝑥𝑖 has a probability 𝑃𝑖𝑗 , which is higher if the distance 

between the two samples is less. The formula for evaluating this distance 𝐷𝑤 is given by 

 
𝐷𝑤(𝑥𝑖, 𝑥𝑗) = ∑ 𝑤𝑚

2 |𝑥𝑖𝑚 − 𝑥𝑗𝑚|

𝑟

𝑚=1

 (6.7) 

Where the evaluated weight of 𝑚th feature is 𝑤𝑚. Further, an exponentially decaying 

kernel function establishes a relationship between the probability 𝑃𝑖𝑗 and the weighted 

distance 𝐷𝑤 as given by  

 

𝑃𝑖𝑗 =  

𝐺 (𝐷𝑤(𝑥𝑖, 𝑥𝑗))

∑ 𝐺 (𝐷𝑤(𝑥𝑖 , 𝑥𝑗))𝑛
𝑗=1,𝑗≠𝑖

 𝑓𝑜𝑟 𝑖 ≠ 𝑗

0 𝑓𝑜𝑟 𝑖 = 𝑗

 

(6.8) 
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Where 𝐺 is the exponentially decaying kernel function given by 𝐺(𝑎) = 𝑒𝑥𝑝(−
𝑎

𝜎
) and 𝜎 

represents the width of the kernel. The probability that a sample 𝑥𝑖 is correctly classified 

as the true class is defined by   

 

𝑃𝑖 = ∑ 𝑃𝑖𝑗𝑌𝑖𝑗

𝑛

𝑗=1,𝑗≠𝑖

 
(6.9) 

Where 𝑌𝑖𝑗 is an indicator to show if a true class is predicted, it returns 1 for 𝑦𝑖 = 𝑦𝑗 and 

0 for 𝑦𝑖 ≠ 𝑦𝑗 . From Equation (6.9), the average leave-one-out (LOO) probability of true 

classification is defined as 

 
𝐹(𝑊) =

1

𝑛
∑ 𝑃𝑖

𝑛

𝑖=1

 
(6.10) 

In RNCA, a term regularized parameter, 𝜆 is added in Equation (6.9) to avoid overfitting 

of the model, and Equation (6.10) can be rewritten as  

 
𝐹(𝑊) =

1

𝑛
∑ 𝑃𝑖

𝑛

𝑖=1

− 𝜆 ∑ 𝑊𝑚
2

𝑟

𝑚=1

 
(6.11) 

Since 𝐹(𝑊) is the average LOO true classification probability, RNCA algorithm targets 

to maximize 𝐹(𝑊) for a given 𝜆 to evaluate feature weight vector W  

 
𝑊̂ = argmax

𝑤
𝐹(𝑊) = argmax

𝑤
(

1

𝑛
∑ 𝑃𝑖

𝑛

𝑖=1

− 𝜆 ∑ 𝑊𝑚
2

𝑟

𝑚=1

)

 = argmin
𝑤

(−
1

𝑛
∑ 𝑃𝑖

𝑛

𝑖=1

+ 𝜆 ∑ 𝑊𝑚
2

𝑟

𝑚=1

)

 = argmin
𝑤

(−
1

𝑛
∑ ∑ 𝑃𝑖𝑗𝑌𝑖𝑗

𝑛

𝑗=1,𝑗≠𝑖

𝑛

𝑖=1

+ 𝜆 ∑ 𝑊𝑚
2

𝑟

𝑚=1

)

 

 

 

 

 

(6.12) 

Note that a constant (p=1) added to the objective function does not affect the argument of 

minimum. From Equation (6.9), we have, 
1

𝑛
∑ ∑ 𝑃𝑖𝑗

𝑛
𝑗=1,𝑗≠𝑖

𝑛
𝑖=1 = 1 
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𝑊̂ = argmin
𝑤

(1 −
1

𝑛
∑ ∑ 𝑃𝑖𝑗𝑌𝑖𝑗

𝑛

𝑗=1,𝑗≠𝑖

𝑛

𝑖=1

+ 𝜆 ∑ 𝑊𝑚
2

𝑟

𝑚=1

)

 = argmin
𝑤

(
1

𝑛
∑ ∑ 𝑃𝑖𝑗

𝑛

𝑗=1,𝑗≠𝑖

𝑛

𝑖=1

−
1

𝑛
∑ ∑ 𝑃𝑖𝑗𝑌𝑖𝑗

𝑛

𝑗=1,𝑗≠𝑖

𝑛

𝑖=1

+ 𝜆 ∑ 𝑊𝑚
2

𝑟

𝑚=1

)

 = argmin
𝑤

(
1

𝑛
∑ ∑ 𝑃𝑖𝑗

𝑛

𝑗=1,𝑗≠𝑖

𝑛

𝑖=1

(1 − 𝑌𝑖𝑗) + 𝜆 ∑ 𝑊𝑚
2

𝑟

𝑚=1

)

 

 =                 argmin
𝑤

(
1

𝑛
∑ ∑ 𝑃𝑗

𝑛

𝑗=1,𝑗≠𝑖

𝑛

𝑖=1

𝐼(𝑦𝑖 ≠ 𝑦𝑗) + 𝜆 ∑ 𝑊𝑚
2

𝑟

𝑚=1

) 

 

 

 

 

 

 

 

(6.13) 

Where condition-based indicator value, 𝐼(. ) returns one if 𝑦𝑖 is not equal to 𝑦𝑗 else it 

assigns zero. The argument of minimum will give the weights to each feature, present in 

the feature space 𝐹𝑉. However, as can be seen from Equation (6.13), the derived objective 

function can assign weights to features of a single matrix feature space only. For the 

optimization of a multiple matrix feature space, 𝐹𝑉(𝑡) that has three dimensions, the 

objective function in Equation (6.13) is formulated as  

 

 𝑊(𝑡)̂ = argmin
𝑤

(
1

𝑛
∑ ∑ 𝑃𝑖𝑗

(𝑡)

𝑛

𝑗=1,𝑗≠𝑖

𝑛

𝑖=1

𝐼(𝑡)(𝑘𝑖 ≠ 𝑡𝑖) + 𝜆(𝑡) ∑ (𝑊𝑚
(𝑡))

2
𝑟

𝑚=1

) 

 

     (6.14) 

Equation (6.14) is maximized by selecting the 𝜆(= 𝜆𝑏𝑒𝑠𝑡) at which the average leave one 

out classification accuracy is highest or generalization loss is lowest. The tuning of the 𝜆 

is done by running a certain number of iterations. Further, 𝑊̂is calculated using the 

conjugate gradient approach. Lastly, values of 𝑊̂ are the weights assigned by the 

objective function to the features. All the weights are thus compared with a threshold 

value to select optimal features. The threshold chosen in this work is 5% of the maximum 

evaluated weight. The flowchart shown in Figure 6.2 elucidates how the 𝜆𝑏𝑒𝑠𝑡 is chosen 
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to select optimal features by RNCA for a single time window EEG feature space. This is 

further explained in steps as below.  

Step 1: Start the iteration and create a uniformly distributed array of 𝜆 values. In this work, 

100 linearly spaced values are used, ranging between 0 and 2. Hence, the iteration size is 

also 100. 

Step 2: Fit the 𝜆 value of the first iteration in Equation (6.13). Then, evaluate feature 

weights, select a subset of features by comparing with the threshold and calculate the 

generalization loss as given by  

Figure 6.2 Flow chart presents the approach of tuning the regularization parameter 

within the NCA framework for optimal feature selection. 
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𝑒𝑟𝑟 =
1

𝑛
∑ 𝐼(𝑘𝑖 ≠ 𝑡𝑖)

𝑁

𝑖=1

  
(6.15) 

Where 𝑘𝑖and 𝑡𝑖 are predicted and true classes, respectively. The Indicator value I(.) 

returns one if 𝑘𝑖 is not equal to 𝑡𝑖 else it assigns zero. Next store 𝑒𝑟𝑟 for each changing 

value of 𝜆. Repeat the procedure until maximum iteration size is achieved. 

Step 3: Plot 𝑒𝑟𝑟 vs. 𝜆 values. Chose the best 𝜆, 𝜆𝑏𝑒𝑠𝑡 at which 𝑒𝑟𝑟 is minimum.  

Step 4: Select the best feature subset using 𝜆𝑏𝑒𝑠𝑡 in Equation (6.13).  

In multi-view data classification, preserving the structure of the data is a complex exercise 

to perform. The aforementioned multi-view features extracted from motor imagery 

related EEG must be optimized by a feature selection method so that the basic structure 

of the features does not get altered. Figure 6.3 presents a scheme to classify multi-view 

features. In this approach, frequency band CSP features of each time window are first 

normalized. Normalizing the data makes the frequency band CSP features from different 

time windows comparable because EEG characteristics (such as amplitude, phase, and 

frequency) changes with time. Afterward, among all the CSP extracted features at 

multiple frequency bands from each sliding time window, the best feature subset is 

evaluated using the proposed multi-view learning approach based on RNCA. In other 

words, we selected 𝐾 feature subsets from the 𝐾 shifted time windows by the proposed 

method. Subsequently, selected features are combined together to train a classifier. Once 

the classifier is trained on the training dataset using only the selected optimal features, 

only these selected features are extracted from the test dataset and fed into the classifier 

to perform the classification task. Unlike FBCSP and DFBCSP algorithms that 

concentrate solely on frequency band selection, the proposed method provides a more 

sophisticated approach to optimize robust CSP features at multiple frequency bands and 

time windows under a multi-view learning framework.  
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6.2.4 Classification 

In this work, the two-class MI classification task is performed using a support vector 

machine (SVM). In SVM framework, a discriminant hyperplane globally maximizes the 

marginal distance between the two classes. In most BCI studies, SVM is chosen for 

classification because it is a relatively faster classifier and can effectively be used for a 

lesser number of trials [219]. 

  

Figure 6.3 The workflow elucidates the proposed feature selection method to optimize 

time windows and frequency band CSP features of MI-related EEG. Optimization is 

performed under a structured-based multi-view learning environment where RNCA is 

applied on each of the matrices of feature space (extracted in Figure 6.1) for optimal 

feature selection. Subsequently, all the selected features are combinedly used to train an 

SVM classifier. During the test phase, similar multi-view features are extracted from the 

Test data and predict the MI class. 
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6.3 Experimental study 

6.3.1 Dataset description 

The performance of the proposed algorithm is validated on three publicly available BCI 

datasets. Details of these datasets are as follows 

A motor imagery EEG dataset popularly named BCI competition IV dataset 2a is the first 

dataset used in this work [68]. It consists of 22 channels EEG acquired from nine different 

subjects indulged in four class motor imagery tasks. The four tasks were thinking about 

the movement of either left hand, right hand, foot, or tongue following the presented cue 

on the screen. Further, it is bandpass filtered between 0.5 Hz and 100 Hz. It consists of 

72 trials for each class from one subject.   

The second dataset is BCI competition III dataset IIIa [266]. This dataset contains 60 

channels of EEG recording of three subjects, namely "K3b", "K6b", and "L1b". The 

dataset was preprocessed by applying bandpass filtering between 1 and 50 Hz with a 60Hz 

power line noise eliminator, notch filter. The sampling frequency of the recording device 

was 250 Hz. The total number of trials were 180, 120, and 120 for subjects "K3b", "K6b", 

and "L1b" respectively. During each trial, cue-based motor imagery tasks were performed 

by the subjects for four classes, i.e., the imagination of movement of either left hand, right 

hand, foot, or tongue. 

BCI competition IV dataset 2b is utilized as the third dataset for this study [16]. EEG 

from three channel locations C3, Cz, and C4 was recorded in this dataset while nine 

subjects performed cue-based two-class motor imagery tasks. The two tasks were to 

imagine either left hand or right-hand movement. The recorded EEG was sampled at 250 

Hz and filtered between 0.5 Hz and 100 Hz.  
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6.3.2 Performance evaluation 

The proposed method's performance is measured by conducting a comparative study 

among following standard feature extraction algorithms and the proposed method. 

• CSP: The EEG time series data are first filtered using a chebyshev type II filter 

between 4 Hz and 40 Hz, and then CSP features are extracted from a single time 

window, 0.5s to 3.5s [267]. CSP algorithm generally uses a fixed frequency range 

and time window, due to which suboptimal classification accuracy is achieved 

[268]. 

• CSP with shifted time windows (𝑪𝑺𝑷𝑺𝑻𝑾): In this method, CSP features are 

extracted from multiple overlapped time windows of 2s each, shifted by 0.5s. The 

first time window starts 0.5s before the beginning of the cue. The number of time 

windows used is six. The EEG is pre-filtered in the frequency band 4-40 Hz. All 

the extracted features are used together for classification. 

• FBCSP: We used experimental settings given in [269]. Multiple frequency band 

filters are applied to the EEG data. The frequency ranges of filters are 4-10Hz, 

10-16Hz, 16-22Hz, 22-28Hz, 28-34 Hz, and 34-40Hz. After filtering, features are 

extracted using CSP. A single time window of 3s after 0.5s from the beginning of 

the cue is taken. Subsequently, optimal features are selected for classification 

using a mutual information-based feature selection algorithm.  

• DFBCSP: As in [164], a filter bank with sixteen overlapped filters, each having 

a passband of 4 Hz and shifted by 2 Hz, is designed. The overall range of the filter 

bank is 4-40Hz. Subsequently, from each trial, 3s recording during the motor 

imagery task is taken, and the overlapped filters are applied. Then, CSP features 

are extracted from each of the frequency band filtered EEG. Among all the 

extracted features, the best feature subset is selected by fisher score. 



108 

 

Next, we applied a shifted time window approach to analyze the effect of time window 

selection on existing conventional methods such as FBCSP and DFBCSP. 

• FBCSP with shifted time windows (𝑭𝑩𝑪𝑺𝑷𝑺𝑻𝑾): FBCSP feature extraction 

method is applied on the EEG of multiple overlapped time windows. Six time 

windows are extracted in a similar way as in the 𝐶𝑆𝑃𝑆𝑇𝑊 method. Subsequently, 

we extracted the FBCSP features from each of the time windows. Next, we 

combined all the features extracted from multiple time windows at multiple 

frequency bands to create a two-dimensional feature space. Finally, the best 

feature subset is estimated by a mutual information-based feature selection 

algorithm. 

• DFBCSP with shifted time windows (𝑫𝑭𝑩𝑪𝑺𝑷𝑺𝑻𝑾): Similar to 𝐶𝑆𝑃𝑆𝑇𝑊, 

multiple time windows are extracted from the raw EEG data. Then, DFBCSP 

features are extracted from each of the time windows. All the features extracted 

from multi time windows at multi frequency bands are combined to create a 

feature space in the next step. Further, a subset of best features is chosen for 

classification as estimated by a fisher score-based feature selection approach. 

• Proposed method: EEG trials are segmented at multiple time windows and 

frequency bands, and then CSP features are extracted from each segment. The 

best subset of features is selected by the RNCA feature selection method for 

classification from all the extracted features. 

6.4 Results  

This section presents the classification performance of the proposed feature extraction 

and selection method in comparison with standard feature extraction method such as CSP, 

CSPSTW, FBCSP, FBCSPSTW, DFBCSP, and  DFBCSPSTW. For all the algorithms, an SVM 
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classifier is used to perform the classification tasks. The software module used for the 

development of all the algorithms was MATLAB 2019b installed on a computer with 16 

GB of RAM and Intel Core i7 (@ 3.4 GHz) processor. All the algorithms were applied to 

the three publicly available BCI datasets, which are discussed in the previous section.  

The most commonly used evaluation criterion to measure the performance of BCI 

algorithms is classification accuracy. It is calculated from the confusion matrix as given 

by  

 
𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑝0 =

∑ 𝑎𝑖𝑖
𝐶
𝑖=1

∑ ∑ 𝑎𝑖𝑗
𝐶
𝑗=1

𝐶
𝑖=1

 
(6.16) 

Where, 𝑎𝑖𝑗 is an element of the confusion matrix with 𝑖 and 𝑗 representing different 

classes. 𝐶 is the total number of classes. Hence, the classification accuracy is the ratio of 

true predicted classes to the total number of trials. 

Classification results are presented in Tables 6.1-6.4, where a comparison of classification 

accuracies (in %) estimated by the CSP, CSPSTW, FBCSP, FBCSPSTW, DFBCSP, and  

DFBCSPSTW, and the proposed algorithm is done for three BCI datasets (BCI competition 

IV dataset 2a, BCI Competition IV dataset 2a, and BCI competition III dataset IIIa). Table 

6.1 lists the classification accuracies (in %) achieved for BCI competition IV dataset 2a 

to distinguish between two class motor imagery trials such as left hand vs. right hand, left 

hand vs. foot, and right-hand vs. foot. Similarly, Table 6.2 presents the classification 

accuracies for BCI competition III dataset IIIa. Whereas Table 6.3 elucidates the results 

obtained on BCI Competition IV dataset 2a for only left-hand vs. right-hand motor 

imagery classes. The results show that time window optimization to the spectrum 

optimized CSP features improve the MI signal classification performance. More 

importantly, the proposed algorithm outperforms all the competing algorithms. 
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Table 6.1 Classification accuracies (CA) (%) achieved using CSP, CSPSTW, FBCSP, 

FBCSPSTW, DFBCSP, and  DFBCSPSTW, and the proposed algorithm on BCI 

competition IV dataset 2a (between two classes Left Hand vs. Right Hand, Left Hand 

Vs. Foot, and Right Hand vs. Foot). SVM classifier is learned and CA is calculated 

using 10-fold Crossvalidation. The highest CA obtained is marked in boldface for each 

subject. In addition, p-values are calculated using paired t-test between the proposed 

method and each of competing methods. 

Left Hand Vs. Right Hand 

 CSP 𝑪𝑺𝑷𝑺𝑻𝑾 FBCSP 𝑭𝑩𝑪𝑺𝑷𝑺𝑻𝑾 DFBCSP 𝑫𝑭𝑩𝑪𝑺𝑷𝑺𝑻𝑾 Proposed 

algorithm 

A01T 71.1 71.5 69.6 74.9 73.3 79.1 85.6 

A02T 63.9 59.6 66.2 67.2 61.6 64.9 66.7 

A03T 89.4 91.8 91.1 92.2 90.1 91.8 97.2 

A04T 61.1 66.7 65.1 64.2 68.9 70.7 77.1 

A05T 61.8 60.4 62.6 66.3 65.8 68.6 82.6 

A06T 70.1 73.1 66.3 68.1 64.6 63.2 69.4 

A07T 63.9 70.8 69.3 71.3 70.5 76.8 79.1 

A08T 92.8 95.8 89.4 87 90.6 92.8 95.4 

A09T 74.3 84.7 81.3 80.2 82.4 86.2 86.1 

Mean 72.04 74.93 73.43 74.6 74.2 77.12 82.13 

p-value p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 - 

Left Hand Vs. Foot 

 CSP 𝑪𝑺𝑷𝑺𝑻𝑾 FBCSP 𝑭𝑩𝑪𝑺𝑷𝑺𝑻𝑾 DFBCSP 𝑫𝑭𝑩𝑪𝑺𝑷𝑺𝑻𝑾 Proposed 

algorithm 

A01T 79.2 85.4 68.3 90.3 71.5 87.5 92.4 

A02T 75.7 91.7 69.6 78.9 69.0 91.3 96.5 

A03T 92.7 91.7 83.6 91.2 86.7 86.8 93.7 

A04T 63.2 64.6 59.3 66.1 61.1 70.1 72.9 

A05T 61.8 63.2 62.1 67.9 67.8 71.3 77.1 

A06T 75.0 71.5 66.6 74.3 69.3 73.6 80.5 

A07T 89.6 93.1 78.0 81.9 83.3 88.2 96.5 

A08T 75.7 84.7 73.2 79.1 75.6 77.1 80.6 

A09T 79.2 86.1 61.1 84.1 70.1 84.8 87.5 

Mean 76.9 81.3 69.1 79.3 72.7 81.2 86.4 

p-value p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 - 

Right Hand Vs. Foot 

 CSP 𝑪𝑺𝑷𝑺𝑻𝑾 FBCSP 𝑭𝑩𝑪𝑺𝑷𝑺𝑻𝑾 DFBCSP 𝑫𝑭𝑩𝑪𝑺𝑷𝑺𝑻𝑾 Proposed 

algorithm 

A01 93.1 94.3 86.1 86.8 89.6 95.8 95.1 

A02 87.5 93.2 70.2 78.8 67.1 80.1 91.7 

A03 91.0 91.3 84.1 91.1 89.9 82.9 95.1 

A04 51.0 66.0 56.3 74.1 64.1 68.1 71.6 

A05 61.8 63.2 61.1 77.1 66.9 78.1 81.6 

A06 70.1 65.3 60.8 71.2 65.4 68.1 74.3 

A07 72.9 88.9 76.3 80.1 79.1 85.4 97.2 

A08 59.7 77.8 62.4 76.1 63.7 77.1 85.4 

A09 53.5 59.0 68.6 72.1 65.8 73.2 79.2 

Mean 71.2 77.7 69.5 78.6 72.4 78.7 85.7 

p-value p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 - 
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Table 6.2 Classification accuracies (CA) (%) achieved using CSP, 𝐶𝑆𝑃𝑆𝑇𝑊, FBCSP, 

𝐹𝐵𝐶𝑆𝑃𝑆𝑇𝑊, DFBCSP, and  𝐷𝐹𝐵𝐶𝑆𝑃𝑆𝑇𝑊, and the proposed algorithm on BCI 

competition III dataset IIIa. SVM classifier is learned and CA is calculated using 10-

fold Crossvalidation. The highest CA obtained is marked in boldface for each subject. 

In addition, p-values are calculated using paired t-test between the proposed method and 

each of competing methods. 

 CSP 𝑪𝑺𝑷𝑺𝑻𝑾 FBCSP 𝑭𝑩𝑪𝑺𝑷𝑺𝑻𝑾 DFBCSP 𝑫𝑭𝑩𝑪𝑺𝑷𝑺𝑻𝑾 Proposed 

algorithm 

Left hand 

vs Right 

hand 

       

K3b 90.0 93.2 96.0 95.8 96.7 96.4 98.6 

K6b 75.0 73.3 65.8 75.0 68.3 81.1 89.3 

L1b 90.0 83.1 94.2 88.3 84.7 91.6 93.3 

Left hand 

vs foot 

     

 

 

K3b 96.7 96.8 91.2 96.2 93.3 97.8 95.6 

K6b 73.3 77.1 76.7 81.7 71.7 78.4 83.3 

L1b 76.7 75.2 78.3 85.0 81.7 86.1 86.7 

Right 

hand vs 

foot 

       

K3b 98.9 95.8 95.6 98.1 95.6 98.9 99.3 

K6b 70.0 80.7 71.1 77.6 83.3 79.1 81.7 

L1b 68.3 87.1 89.1 80.0 90.0 95.1 97.7 

Mean 82.1 84.7 84.2 86.4 85.0 89.4 91.7 

p-value p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 - 

 

Table 6.3 Classification accuracies (CA) (%) achieved using CSP, 𝐶𝑆𝑃𝑆𝑇𝑊, FBCSP, 

𝐹𝐵𝐶𝑆𝑃𝑆𝑇𝑊, DFBCSP, and  𝐷𝐹𝐵𝐶𝑆𝑃𝑆𝑇𝑊, and the proposed algorithm on BCI 

Competition IV dataset 2a. SVM classifier is learned and CA is calculated using 10-fold 

Crossvalidation. The highest CA obtained is marked in boldface for each subject. In 

addition, p-values are calculated using paired t-test between the proposed method and 

each of competing methods. 

 

CSP 𝑪𝑺𝑷𝑺𝑻𝑾 FBCSP 𝑭𝑩𝑪𝑺𝑷𝑺𝑻𝑾 DFBCSP 𝑫𝑭𝑩𝑪𝑺𝑷𝑺𝑻𝑾 Proposed 

algorithm 

B0103T 70.6 70.1 76.3 79.2 80.3 83.1 88.1 

B0203T 62.5 62.8 56.6 58.7 56.1 57.1 61.9 

B0303T 63.4 65.3 64.4 59.1 59.3 64.5 60.5 

B0403T 94.6 95.4 91.9 98.7 98.8 98.2 99.4 

B0503T 77.5 75.0 78.9 86.2 86.3 87.4 95.0 

B0603T 74.0 76.3 75.6 83.7 73.1 73.6 83.5 

B0703T 80.0 82.7 84.4 85.0 85.0 83.7 88.8 

B0803T 86.3 89.0 88.3 94.5 93.1 92.5 93.5 

B0903T 85.0 83.1 87.2 86.2 86.3 81.3 89.4 

Mean 77.1 77.7 78.2 81.3 79.8 80.2 84.5 

p-value p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 - 
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In addition, we used paired t-test (p<0.01) with a Bonferroni correction to evaluate p-

values between the proposed method and each of the competing methods to investigate 

the statistical significance difference of classification accuracy. The null hypothesis 

assumes that all the competing methods have identical performance. The results shown 

in Table 6.1-6.3 indicate that the performance of the proposed method is statistically 

significant than the competing methods (p<0.01). 

6.5 Discussion 

6.5.1 Selected spatial patterns at multiple frequency bands and time windows 

Feature extraction is the most crucial step in the design of the BCI system software 

module. Among different features, spatial features are widely investigated in numerous 

studies for MI signal classification [270–272]. The commonly used method for spatial 

feature extraction is CSP. While many extensions to conventional CSP have incorporated 

the importance of filtering the EEG into several frequency bands but only a few have 

shown the effect of multiple shifted time windows on the MI classification performance. 

Since the brain's response time to motor imagery tasks is unknown and varies subject to 

subject, the importance of optimizing the time windows increases.  

To explain the proposed algorithm's effectiveness in the frequency band and time window 

optimization, we created topoplots of spatial filters.  

Performance of the proposed method for time window optimization: To present time 

window optimization performance, we made topoplots of spatial filters from BCI 

competition IV dataset 2a for subject "A05T" as an example (see Figure 6.4). Figure 6.4 

(a) elucidates the feature space learned by the proposed method for subject A05T using a 

pictorial representation. Overall, feature space has six time windows where for each time 

window, we have three frequency bands, each of which contains 4 CSP features. The 
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proposed method's selected features are marked by blue color and rejected by no color. 

Notice that the selected features are from different time windows at different frequency 

bands. Since we set CSP parameter, m is equal to 2; there are four (2m) features in each 

frequency band. Also, in Figure 6.4(a), features from CSP feature index 11 at all the time 

windows are marked by an orange outline. The corresponding feature weights calculated 

by the proposed algorithm of the orange marked features are shown in Figure 6.4 (b). It 

can be noted that features of CSP index 11 in time windows -0.5s to 1.5s, 0.5s to 2.5s, 

and 2s to 4s are selected by the proposed method. To further analyze the proposed 

algorithm's working in selecting only the optimal features, the topoplots of the estimated 

spatial filters from third frequency band (CSP feature index 11) at all the six time 

windows are shown in Figure 6.4(c). An evident change in ERD/ERS patterns in the 

sensory-motor cortex area is observed as the time window changes, which shows that the 

neural response during motor imagery tasks changes with the time window. In time 

windows -0.5s to 1.5s, 0.5s to 2.5s, and 2s to 4s spatial features are significant over 

sensory-motor cortex area and shows the presence of ERD/ERS. In contrast, in other time 

windows, they are not so significant and hence rejected by the proposed algorithm. Hence, 

the proposed algorithm is selecting time windows with the most discriminatory features 

to classify motor imagery tasks. Another important point to mention here is that the 

feature weight assigned by the proposed method for the time window 2s to 4s is highest 

(Figure 6.4(b)). This is verified from topoplots of Figure 6.4(c), it can be seen that the 

ERD/ERS patterns in sensorimotor areas are more significant in time window 2 to 4s than 

other time windows. However, the spatial filter of time window 0.5s to 2.5s also shows 

significant ERD/ERS patterns, but interference from other unrelated brain regions is also 
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present; that's why the proposed algorithm assigns a lower feature weight to time window 

0.5s to 2.5s than that to time window 2s to 4s.  

Performance of the proposed method for frequency band optimization: We 

investigated the frequency band optimization ability of the proposed algorithm on subject 

"k6b" of BCI competition III dataset IIIa as shown in Figure 6.5. Figure 6.5 (a) presents 

how the proposed method has learned features at different time windows and frequency 

bands for subject k6b. The selected features are shown using blue color and rejected using 

no color. CSP feature indices from 1 to 6 at time window 0.5s to 2.5s as marked by red 

outline in Figure 6.5(a) are selected to create topoplots of spatial filters in Figure 6.5(c). 

Figure 6.4 Performance of the proposed method for time window optimization: a), 

Pictorial representation of the feature space learned by the proposed method for subject 

A05T. In each time window, we have three frequency bands, each of which contains 4 

CSP features. Blue boxes show the selected features at different time windows and 

frequency bands. b) Presents the feature weights assigned to all the six time windows at 

CSP feature index 11 (i.e., features marked by orange outline in 4.a). c) spatial filters all 

time windows (i.e., features marked by orange outline in 4.a). From spatial filters, it can 

be observed that the presence of ERD/ERS in sensorimotor cortex is strong at time 

windows -0.5s to 1.5s, 0.5s to 2.5s, and 2s to 4s, and that’s why the proposed algorithm 

has chosen CSP features of these time windows. 
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Feature weights estimated by the proposed method for CSP indices 1 to 6 are shown in 

Figure 6.5(b). It can be observed from Figure. 6.5(c) that the spatial features are 

inconsistent with changing frequency bands. The proposed algorithm has selected the 

CSP feature indices 3, 4, and 6 (marked by orange outline in Figure 6.5(c)). To verify that 

the proposed method's selected features are the most significant, notice in Figure 6.5(c) 

that the ERD/ERS patterns in the sensorimotor area are more significant in CSP feature 

indices 3, 4, and 6 than in other CSP indices. 

 

Figure 6.5 Performance of the proposed method for frequency band optimization: a), 

Pictorial representation of the feature space learned by the proposed method for subject 

k6b. In each time window, we have three frequency bands, each of which contains 4 

CSP features. Blue boxes show the selected features at different time windows and 

frequency bands for subject k6b. b) Presents the feature weights assigned to six 

frequency band csp features at time window 0.5s to 2.5s (i.e. features marked by red 

outline in 5.a). c) spatial filters of six frequency band csp features at time window 0.5s 

to 2.5s (i.e. features marked by red outline in 5.a). From spatial filters, it can be 

observed that the presence of ERD/ERS in sensorimotor cortex is strong for CSP 

feature index 3,4, and 6 and since the proposed algorithm selected only these features 

proves its robustness in optimizing frequency bands. 
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6.5.2 Feature dimensionality reduction 

The proposed feature selection method assigns a weight to each of the extracted features 

and then select or reject it by comparing its weight with a threshold. In the proposed work, 

the dimension 𝐷 of the final feature space is given by  

 𝐷 = 2 ∗ 𝑚 ∗ 𝐽 ∗ 𝐾 (6.17) 

Where m, J, and K represents CSP parameter, number of filters in the designed DTCWT 

filter bank, and number of shifted time windows, respectively. In our approach, four CSP 

features are extracted from each of the three frequency bands, and six time windows are 

used. Hence the dimensionality of the generated feature space is seventy-two, which is 

reduced by the proposed method. In this section effectiveness of the proposed method in 

dimensionality reduction is assessed using the three MI datasets presented in this work. 

Figure 6.6 shows the average number of features selected by the proposed method. The 

average is calculated for all the subjects from three BCI datasets for different motor 

imagery tasks. It can be observed that the dimension of the feature space is significantly 

reduced by the proposed method. Also, the number of features selected by the proposed 

Figure 6.6 Average number of features selected by the RNCA for three BCI datasets for 

different motor imagery tasks classification. 
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method are less compare to other aforementioned time window optimization methods 

such as 𝐶𝑆𝑃𝑆𝑇𝑊, 𝐹𝐵𝐶𝑆𝑃𝑆𝑇𝑊, and 𝐷𝐹𝐵𝐶𝑆𝑃𝑆𝑇𝑊. Since in these methods, we selected four 

frequency band optimized CSP features from each time window. Hence, the dimension 

of the feature space used in these methods is twenty-four.  

To explain how the algorithm is tuning the regularization parameter for optimal feature 

selection in a single time window, we used EEG data of subject "A02T" from BCI 

competition IV dataset 2a for left-hand vs. right-hand classification. In Figure 6.7(a), the 

λbest at minimum classification loss, is chosen to solve the RNCA objective function for 

feature subset selection from a particular time window. Figure 6.7(b) shows the weights 

estimated by the RNCA. The criteria for selecting a particular feature are set by a 

threshold, taken as 5 % of the maximum feature weight. Similarly, we applied RNCA on 

(a)                                                             (b) 

Figure 6.7 Feature optimization at a particular time window for subject k3b from 

dataset 2 (right vs. left-hand MI task) (a) Estimation of the regularization parameter 

λ=λbest at minimum loss value. (b) Feature weights calculated using λbest. Although 

these graphs show feature selection in single time window, with similar tuning and 

weight assigning technique CSP features at different time windows are optimized. 
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each time window, and then all the selected features are fed into a linear kernel SVM for 

classification. 

6.5.3 Performance with different trial length  

Particular motor imagery task-oriented training of the subjects is usu ally exhausting and 

time-consuming [273]. During the experiment, the subjects undergo mantle and physical 

fatigue such as neck pain due to sitting on an armchair for longer hours, eye stress by 

looking at the cue-displaying screen, and mantle stress. Hence, it is impossible to perform 

enough trials in few cases, especially when recording from a paralyzed subject for 

rehabilitation. Therefore, the performing algorithm efficiency mustn't vary with the 

number of trials. To investigate the effect of using a lesser number of trials on the 

performance of the proposed algorithm, we varied the trial length of the five subjects 

"B0203T", "B0403T", "B0603T", "B0803T", and "B0903T" of BCI Competition IV 

dataset 2a and evaluated classification accuracies (see Figure 6.8).  It can be observed that 

the classification accuracies achieved by the proposed method are degrading as the length 

of the trials is reducing. This limits the performance of the proposed algorithm to some 
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Figure 6.8 Change in classification accuracies according to the varying length of trials. 
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extent. However, the obtained classification accuracies do not degrade much for four 

subjects other than B0603T.  

Further, we tuned the λ using a fixed length (𝐿=100) uniformly distributed array between 

0 and 2. In this work, we opted 𝐿 based on experiment. This array length 𝐿 should be 

optimized according to the changing number of trials to further enhance the classification 

accuracy. As an extension to the present study, hyperparameter optimization can select 

the best 𝐿, but that will also increase the computational cost. 

6.5.4 Limitations and Future scope 

Figure 6.9 shows the average computational time consumed during the optimization of 

CSP features by the proposed algorithm and other competing methods. It can be noted 

that the computational time of the proposed method is more than that of the CSP, CSPSTW, 

FBCSP and DFBCSP. The computational time taken by these algorithms is less because 

these algorithms can optimize either frequency bands (FBCSP and DFBCSP) or time 

windows (CSPSTW) only, but our algorithm is optimizing both frequency bands and time 

windows simultaneously. Other competing algorithms such as DFBCSPSTW and 

FBCSPSTW are optimizing frequency bands and time windows but are consuming more 

computational time than the proposed algorithm. Further, this time is the training run time 

for optimal feature selection, which is a one-time process and does not affect the test time 

or real-time classification. Hence, the proposed algorithm enhanced the motor imagery 

classification performance without degrading the computation efficiency for any BCI 

based system. 

Further, we explored the effect of time window optimization in conventional methods 

such as FBCSP and DFBCSP by applying shifted time window approach. For feature 

creation in DFBCSPSTW and FBCSPSTW , we unfolded the time window segmented data 
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and created a larger matrix, and then applied the same feature selection approaches as 

used in DFBCSP and FBCSP, such as fisher's ratio (for DFBCSPSTW) and mutual 

information (for FBCSPSTW). However, this conversion of a multi-view matrix into a 

single large matrix causes the loss of internal structure of high-order data. It is important 

to preserve the internal structure of the EEG data during the analysis to minimize the loss 

of useful information [274]. Our proposed algorithm optimized the multi-view MI data 

in a multi-task learning framework without losing the internal structure of the multi-view 

MI data. The study presented in [251] proposed a method, namely, Temporally 

Constrained Sparse Group Spatial Pattern algorithm (TSGSP), to jointly optimize time 

windows and frequency bands by formulating a multitask-learning framework. As 

reported in [251], TSGSP is computationally expensive because of the inner loop runs for 

three hyperparameters optimization. Instead, our proposed method is based on RNCA, 

which is relatively faster because we only need to regularize parameter 𝜆 for feature 

optimization.  

Figure 6.9 Computational time consumed by CSP, CSPSTW, FBCSP, FBCSPSTW, 

DFBCSP, and  DFBCSPSTW, and the proposed algorithm for best feature space 

generation. 
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Besides frequency bands and time windows optimization, trial optimization is also 

important. Since ERD/ERS patterns changes when the same subject performs the same 

MI task again. Hence, use of a fixed set of selected time windows and frequency bands 

CSP features for different trials can reduce the efficiency of the MI classification. In the 

work of J. Feng et al. [169], a correlation-based relationship between each trail and a 

reference signal is explored to select significant time window from each trial. With a 

greater number of constraints (i.e., frequency bands, time windows, and trials), 

optimizing the higher order feature space requires higher-order multi-task learning 

approaches. Many subspace regularization algorithms have been finding wide 

applications in image processing, event-related potential (ERP) analysis in brain signals, 

BCI rehabilitation systems, and electromyogram (EMG) classification for prosthetic 

control [275–283]. Besides, tensor algebra and linked feature analysis have shown 

potential to deal with complex relations in feature space of biomedical signal [274,284–

287]. Although we considered only three-dimensional feature space optimization in this 

study, we consider implementing more advanced structure-preserving multi-view 

optimization approaches to deal with higher dimensional feature space.  

6.6 Conclusion 

This work presents a novel feature optimization algorithm based on RNCA for 

simultaneous selection of the most relevant CSP feature at multiple frequency bands and 

time windows. In the experiment, multiple overlapped time windows are extracted from 

MI-related EEG using sliding time window segmentation approach. Then, DTCWT filters 

each time window into specific frequency subbands, and CSP features are extracted. This 

created a three-dimensional feature space, which is optimized by the proposed feature 

selection algorithm. The optimized CSP features trained an SVM classifier for the 

classification of MI tasks. Further, a comparative study is conducted to investigate the 
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proposed method's effectiveness in comparison with standard feature optimization 

algorithms. Obtained superior results suggest that the proposed algorithm shows potential 

to identify true MI tasks in a practical BCI device. 


