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C H AP TER  5  

5 Motor imagery EEG spectral-spatial feature optimization using Dual-Tree 

Complex Wavelet and Neighbourhood Component Analysis. 

5.1 Introduction 

Brain-computer interface (BCI) is a communication technique that builds a direct 

pathway between the human brain and an external device [1]. BCI systems recognize 

electroencephalogram (EEG) patterns, originated from the neural responses to different 

stimulus, using pattern recognition method [67]. In the past few years, BCI finds 

application in rehabilitation of stroke patients by facilitating them to communicate with 

surrounding environment [225]. The popular EEG patterns in BCI are the mu and beta 

rhythms, steady-state visual evoked potentials (SSVEP), and event-related potentials 

(ERP) [9,226–228]. 

In all the CSP based algorithms discussed in section 2.5, filter -- used for filtering the 

EEG into multiple sub bands -- was one from finite impulse response (FIR) or Infinite 

impulse response (IIR) filters. In EEG signal processing, filter type and properties (ripple, 

cut-off frequency, roll off, and attenuation) affect the temporal structure of the filtered 

EEG [231]. Although, there cannot be a certain recommendation on choice of a given 

filter type, properties or parameters, but to avoid filter artifacts and effects, it is 

recommended to analyse the effect of different filters on the EEG data and then cautiously 

select the filter [232].  

In many studies [233–237], wavelets decomposed the EEG signals into details of different 

frequency range and then reconstructed the EEG using details of a particular frequency 

band of interest. This provides filtering on the EEG. However, wavelets suffer with 



67 

 

problem of power loss and aliasing at transition states [238]. Dual tree complex wavelet 

transform (DTCWT) overcomes these shortcomings of wavelet and provides nearly 

perfect reconstruction of the signal [209]. Moreover, with properties such as 

multidimensional direction selectivity and shift invariance, DTCWT is suitable for 

biomedical signal processing. In this study, we designed a DTCWT based filter and 

compared its ERD/ERS detection effectiveness on MI EEG data with three IIR filters: 

Butterworth, elliptical, and Chebyshev Type II. 

Further, fisher score, and mutual information-based feature selection approaches are 

categorized under filter feature selection methods. A comparison, between filter and 

wrapper based algorithms, presented in [121], suggested the superiority of wrapper 

methods over filter methods in rejecting irrelevant features. A popular fast supervised 

learning based feature optimization algorithm namely, neighbourhood component 

analysis (NCA) is proposed in [239]. More recently, many MI feature optimization 

algorithms [28,240] are presented based on supervised learning and promised better 

classification performance than that by filter methods.  

This work proposes a robust feature selection approach based on NCA for frequency band 

optimization to enhance the classification performance of MI signals. Further, a filter 

bank using DTCWT is designed to filter the EEG, instead of traditional filtering 

techniques. The DTCWT filter bank filters the EEG at three frequency bands 8-16 Hz, 

16-24Hz and 24-32Hz. Then, CSP extracts the spatial features from EEG at multiple 

frequency bands. Afterwards, NCA with a regularization parameter evaluated the most 

relevant spatial features. Subsequently, selected features are fed into a support vector 

machine (SVM) to perform the MI classification task. Public BCI datasets (BCI 

Competition IV (Dataset 2b), and BCI completion III Dataset IIIa) validated the proposed 

method. A comparative study, with standard MI EEG feature extraction algorithms such 
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as CSP with a filter of 8-13 Hz, CSP with a filter of 8-30Hz, filter bank CSP (FBCSP), 

discriminative FBCSP (DFBCSP), shows that the proposed algorithm achieved a higher 

classification performance.  

Following sections in this chapter are organized as: first, elaborating the methods used 

for MI classification, followed by a brief description of the experimental study conducted 

on MI dataset; second, results and discussions are presented in the subsequent sections. 

Finally, last section presents the conclusion.  

5.2 Methods and Materials 

5.2.1 Notations 

In this work, the following notations are used to represent scalers, vectors and matrices. 

1. Scalers are denoted as italic letters. 

2. Vectors are presented by uppercase letters, The ith element of a vector X is 

denoted as 𝑋(𝑖) 

3. Matrices are indicated by boldface uppercase letters. The ith row and jth column 

of a matrix 𝐗 = 𝑥𝑖,𝑗 are denoted as 𝒙𝑖 and 𝒙𝒋 respectively. 

5.2.2 Band Pass Filter design using dual-tree complex wavelet transform 

In this work, we designed a bandpass filter bank using a dual-tree complex wavelet 

transform (DTCWT) to avoid the artifacts and effects of filter. The DTCWT utilizes two 

discrete wavelet transforms (DWT) working in parallel to provide the real and imaginary 

coefficients of the transform. In DTCWT, a signal is decomposed using high pass and 

low pass filters simultaneously. The output gives coefficients of details (from high pass 

filter) and approximation (from low pass filter). The approximation is repeatedly 
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decomposed into high and low pass filters after each level, whereas the details coefficients 

are the output coefficients. 

Since ERD/ ERS patterns are prominently observed in mu (8-13Hz) and beta (13-30Hz) 

frequency ranges [14], we design a DTCWT filter bank to filter the EEG into three sub 

bands that has frequency ranges 8-16 Hz, 16-24 Hz, and 24- 32 Hz.  For the filter design, 

we first decomposed the EEG using five-level DTCWT into four details (D4, D3, D2, and 

D1), and one approximation (A1). For first sub band filtering, we selected the DTCWT 

coefficients with sub band frequency between 8 and 16 Hz and omitted the other 

coefficients by setting zero in their position. Then we performed inverse DTCWT to 

reconstruct the filtered EEG signal. Similarly, we filtered the EEG into two more sub 

bands: 16-24Hz and 24-32 Hz. 

The effective strength of ocular artifacts is up to 10 Hz [206]. In this study, we used an 

adaptive threshold method for removing ocular artifacts presented in [234]. 

5.2.3 Common Spatial Patterns 

The commonly used technique for feature extraction in motor imagery based BCI 

research is common spatial patterns (CSP). Spatial filters of CSP extract spatial features 

for binary MI classification. To compute spatial features for the 𝑖𝑡ℎ trial EEG 𝐗𝑖 ∈ ℝ𝐶×𝑇, 

we consider input parameter 𝐗𝐿 and 𝐗𝑅 representing the EEG matrices for the left-hand 

and right-hand MI task, respectively. Where 𝐶 is the total number of channels and 𝑇 is 

the total time points. First, normalized covariance EEG matrices 𝐑𝐿 and 𝐑𝑅 are evaluated 

as 

 
𝐑𝐿 =

𝐗𝐿𝐗𝐿
𝑇

𝑡𝑟𝑎𝑐𝑒(𝐗𝐿𝐗𝐿
𝑇)

            𝐑𝑅 =
𝐗𝑅𝐗𝑅

𝑇

𝑡𝑟𝑎𝑐𝑒(𝐗𝑅𝐗𝑅
𝑇 )

   
(5.1) 
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Where 𝐗𝑇 gives the transpose of 𝐗 and 𝑡𝑟𝑎𝑐𝑒(. ) returns the sum of the diagonal values. 

Second, the sum of the covariance matrices 𝐑𝐿 , 𝐑𝑅 is decomposed to obtain eigenvector 

matrix 𝑈0, which is defined as 

 𝐑 = 𝐑𝐿 + 𝐑𝑅 = 𝐔0𝐄𝐔0
𝑇 (5.2) 

Where 𝐄 is the diagonal eigenvalue matrix. Third, the whitening transformation matrix 𝐏 

is generated as 𝐏 = 𝐄−1
2⁄ 𝐔0. Fourth, the covariance matrix 𝐒𝐿 and 𝐒𝑅 are calculated as 

 𝐒𝐿 = 𝐏𝐑𝐿𝐏𝑇               𝐒𝑅 = 𝐏𝐑𝑅𝐏𝑇  (5.3) 

Also, 𝑆𝐿 and 𝑆𝑅 always have the same eigenvector matrix 𝐔 and the sum of their 

eigenvalues is unity. In last, the spatial filter is designed as 𝐀 = 𝐔𝑇𝐏. The 𝑖𝑡ℎ trial EEG 

data matrix 𝐗𝐢 is projected using spatial patterns as  

 𝐙 = 𝐀𝐗 (5.4) 

In general, the designed spatial filter consists of 2m columns selected from the first and 

last m columns of 𝐀, which maximizes the variance of one class whereas minimizes the 

variance of the other class. Thus, the final feature vector has spatial features defined as 

logarithmic values of normalized variance of 𝑝 row of 𝐳𝑝, where 𝑝 = 1, … . 2𝑚. The 

generated CSP feature for 𝑖𝑡ℎ trial EEG is written as  

 
𝑓𝑝 = log (

𝑣𝑎𝑟(𝐳𝑝)

∑ (𝑣𝑎𝑟(𝐳𝑝))2𝑚
𝑝=1

) 
(5.5) 

Where 𝑣𝑎𝑟(. ) computes the variance. By applying filter bank before extracting CSP 

features, we created a feature set consisting of CSP features for all the trials and is defined 

as  
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𝐅𝐕 = (

𝑓1,1 ⋯ 𝑓1,𝑁

⋮ ⋱ ⋮
𝑓𝑅,1 ⋯ 𝑓𝑅,𝑁

) 

 

(5.6) 

Where 𝑅 is the total number of trials, and 𝑁 is the product 2𝑚 × 𝐽, where 𝐽 is the total 

number of filters in the filter bank.  

5.2.4 Neighbourhood Component Analysis 

Neighbourhood Component Analysis learns the Mahalanobis distance metric to linearly 

transform the training dataset to a subspace such that the average leave-one-out 

classification accuracy gets maximized. Let W be the feature vector needs to be learned, 

like 1-nearest neighbour classifier, the probability 𝑝𝑖𝑗 of 𝑥𝑗 being chosen as a reference 

point for 𝑥𝑖 from all the samples is given as  

 

𝑝𝑖,𝑗 = {−
exp (−‖W𝑥𝑖 − W𝑥𝑗‖

2
)

∑ exp(−‖W𝑥𝑖 − W𝑥𝑘‖2)𝑘
, 𝑗 ≠ 𝑖

0                      , 𝑗 = 𝑖

 

 

(5.7) 

Now, the probability of 𝑥𝑖 accurately classified as its true class is expressed as 

 

𝑝𝑖 =
1

𝑅
∑ 𝑝𝑖𝑗𝑦𝑖𝑗

𝑅

𝑗=1,𝑗≠𝑖

 

 

(5.8) 

where 𝑦𝑖𝑗 returns one for 𝑦𝑖 = 𝑦𝑗  else its value is zero. Mathematically, Equation (5.8) 

defines the average leave-one-out classification accuracy evaluated over the train set. 

Since the target is to attain a higher classification accuracy, solve for transformation 

matrix W which maximizes Equation (5.8). When maximized, this objective function 

attains a higher classification accuracy. As can be seen from Equation (5.8), it can subject 

to overfitting for higher dimension data. In the work of [128] a regularization parameter, 
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𝜆 is induced to stabilize the NCA objective function. With regularization parameter, 𝜆 

and to solve for transformation matrix W the Equation (5.8) can be rewritten as  

 

 

Ŵ = argmax
𝑤

1

𝑅
∑ 𝑝𝑖

𝑅

𝑖=1

 −𝜆 ∑ 𝑤𝑚
2

𝑁

𝑚=1

 

 

(5.9) 

Where 𝑤𝑚 are the feature weights and 𝑅 represents the total number of trials. The 

objective defined in Equation (5.9) is termed as the regularized NCA (RNCA). To solve 

the objective function defined by Equation (5.9) for Ŵ, the conjugate gradient approach 

can be utilized. The argument of the maximum Ŵ, is the weight vector that provides 

maximum classification accuracy. Based on the outcome of the weights, the best subset 

of features is selected by comparing the weights of each feature with a threshold value. 

5.2.5 Proposed spectral-spatial feature optimization approach  

Apart from frequency band optimization, application of proper filtering on the MI EEG 

is also very important to attain optimal classification performance. In this study, we devise 

an improved filtering method using DTCWT and features optimization approach using 

NCA with a regularization parameter to improve the classification performance of the MI 

based BCIs. Figure 5.1 shows an illustration of the proposed algorithm and Algorithm 1 

elucidates the pseudocode of the proposed approach. First, we filtered the EEG dataset 

into three sub bands using the DTCWT and applied k-fold cross validation to generate 

train and test sets. The frequency ranges of the selected sub bands are 8-16 Hz, 16-24 Hz, 

and 24-32 Hz. Second, CSP extracted the spatial features from each sub band in train set. 

Considering three sub bands and CSP parameter, 𝑚, the dimension of the feature set is 

3 × 2 × 𝑚 = 6𝑚 features. Finally, we applied a feature optimization algorithm based on 
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NCA with a regularization parameter on the feature set to select the best subset of 

features. The target of the proposed approach is to select a subset of features which will 

maximize the classification accuracy or minimize the generalization loss. Following 

presents further details of the feature optimization algorithm. 

Assume 𝐅𝐕 ∈ ℝ𝑅×𝑁 is the feature set evaluated from CSP with filter bank according to 

Equation (5.6). Using k-fold cross-validation, calculate the generalization loss given by 

 

𝐺𝐿𝑜𝑠𝑠 =
1

𝑅
∑ 𝐶(𝑘𝑖 ≠ 𝑡𝑖)

𝑅

𝑖=1

  
(5.10) 

Where 𝑘𝑖, and 𝑡𝑖 represents the predicted class, and the true class, respectively. Further, 

𝐶(𝑥) is a conditional function which gives 1 when 𝑘𝑖 is not equal to 𝑡𝑖 else 0. The next 

Figure 5.1 Workflow presents the working of the proposed MI spectral-spatial feature 

optimization algorithm. 
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step is to evaluate the feature weights using Equation (5.9), with 𝜆 value set to zero. Select 

the features with weights more than a threshold value 𝑇 (we choose 𝑇 as 5% of the 

maximum calculated feature weight). Create a new feature set with selected features only 

and again compute generalization loss given by Equation (5.10) using k-fold cross-

validation. If the loss value with selected features is less than that achieved with all the 

features, it indicates that there is a need to optimize the features and further improve the 
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classification accuracy otherwise select all the features. In this work, the features are 

optimized by tuning the regularization parameter using the following steps.  

Step 1: Generate a linearly spaced vector of 𝜆 values, we used 20 values ranging from 0 

to 2.  

Step 2: For each value of 𝜆, compute the feature weights using Equation (5.9), then 

compare the weights with the threshold 𝑇 to select a subset of features. In parallel, using 

the selected features compute the generalization loss defined by Equation (5.10) and store 

its value for each 𝜆 value. 

Step 3: Plot the stored generalization loss values versus the 𝜆 values to select 𝜆 = 𝜆𝐵𝑒𝑠𝑡 

at which the generalization loss is minimum.  

Step 4: Finally, use 𝜆𝐵𝑒𝑠𝑡 value in Equation (5.9) to compute the final feature weights. 

Compare the feature weights with the threshold 𝑇 and select the features. These selected 

features make the best subset of features. Next, train an SVM classifier using these 

features and then use the trained SVM classifier to identify motor imagery class of the 

test data. In the rest of the chapter, we have named this proposed method as DTCWT-

CSP (NCA).  

5.3 Experimental study 

5.3.1 Datasets  

The performance of the proposed method is validated on public EEG dataset, BCI 

Competition IV (Dataset 2b) [241]. The dataset consists of EEG signals acquired from 

nine subjects (named as B0103T, B0203T,…., and B0903T) while performing one of the 

motor imagery task from two classes: left-hand and right-hand. Total three sessions were 

recorded for each subject; however, this work used dataset from the third training session 

only. Further, Dataset consists of EEG from three channel locations, namely C3, CZ and 

C4. The sampling frequency is 250Hz. The total number of trials for each subject is 160, 
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(80 for each class). The length of each trial is 7.5s. At time t=3s, a cue is presented on the 

screen for 1s. The cue indicated one of the class of MI task and subjects performed the 

MI task for that class for 4.5s. The dataset is pre-processed using a bandpass filter of 

passband range 0.5 to 100 Hz and a notch filter at 50 Hz.  

The second dataset used in this study is Dataset IIIa from BCI Competition III [242]. It 

comprises of 60-channel EEG from three subjects named “K3”, “K6”, and “L1”, 

performing cue-based motor imagery task of left hand, right hand, tongue, or foot 

movement. The sampling frequency of the recording device was 250 Hz. The total 

number of trials for subject K3 is 180 (45 for each class), whereas that for K6 and L1 is 

120 (30 for each class). The length of each trial is 7s. At time t=3s, a cue indicated one of 

the class of MI task on the screen and subjects performed the MI task for that class for 4s. 

The dataset was bandpass filtered between 1 and 50 Hz and a notch filter was applied to 

avoid power line noise.  

5.3.2 Competing Methods 

The aforementioned datasets are used to conduct an extensive experimental comparison 

among the following standard algorithms with the parameter settings as explained below.  

• CSP (8-13 Hz): The EEG signals are bandpass filtered between 8 and 13 Hz, and 

spatial features are computed using CSP. Since ERD patterns are observed in mu 

rhythms (8-13Hz) of EEG during a motor imagery task, we opted this method to 

compare with the proposed algorithm. However, beta band also has MI task 

related information which can be used to further improve MI signal classification.  

• CSP (8-30 Hz): The EEG signals are bandpass filtered between 8 and 30 Hz, and 

spatial features are computed using CSP.  In this method, we analysed the 

ERD/ERS patterns of mu (8-13Hz) and beta (13-30 Hz) rhythms of EEG using a 
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wider fixed frequency band (8-30Hz), such that the extracted CSP features can be 

used for classification task. However, use of wider band may result in suboptimal 

classification results because neural response to MI tasks are subject and 

frequency specific. 

• FBCSP (MI): As in [173], six non-overlapped bandpass filters with frequency 

range 4-40 Hz and bandwidth 6 Hz are designed. The spatial features from each 

filter are extracted using CSP. For features selection mutual information is used. 

Only four best features evaluated by mutual information-based feature selection 

are used for classification. Mutual information-based feature selection method is 

a filter feature selection approach. Studies related to MI- EEG feature selection 

[121,240] suggest that the learning-based feature selection methods are efficient 

than the filter methods. Hence, use of learning-based feature section method can 

further improve the MI classification performance. 

• DFBCSP (MI): As in [178], instead of using a wider range bandpass filter we 

designed a shifted bandpass filter bank with a frequency range of 4-40Hz. In the 

designed filter bank, each filter has a passband frequency width of 4 Hz and is 

shifted by 2 Hz. CSP is applied to each filter separately. The top four spectral-

spatial features are selected using mutual information-based feature selection 

approach. 

• Proposed Method: Spectral- spatial features are optimized using the 

aforementioned DTCWT-CSP (NCA) method on motor imagery EEG dataset. 

Instead of using traditional filtering methods, we filtered the MI-EEG using an 

improved filtering method based on DTCWT and thus spatial features are 

extracted using CSP.  Then, we optimized features using proposed algorithm 

based on NCA with a regularization parameter to improve the classification 
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performance of MI signals. Since our algorithm operates in a supervised 

framework hence it is more effective in selection of relevant MI task related 

spatial features than the mutual information-based feature selection algorithm 

used in methods: FBCSP (MI) and DFBCSP (MI). 

Note: In the above competing methods (1-4), Chebyshev type II filtered the EEG data. 

The CSP parameter, m was set to 1 for BCI Competition IV (Dataset 2b) (because this 

dataset has only three electrodes, hence, 2×m cannot exceed 3, since in this case, the size 

of CSP matrix, A is 3×3) and 2 for Dataset IIIa from BCI Competition III. Further, an 

SVM classifier with a linear kernel is used to conduct MI classification task for all the 

algorithms.  

5.3.3 Performance measures 

The performance of the proposed method is assessed using the following popularly used 

measures in BCI systems [243]. 

• Classification accuracy: is defined as the rate of number of trials being correctly 

classified with respect to the total number of trials. CA is derived from the 

confusion matrix as follows   

𝐶𝐴 =
∑ 𝑛𝑖𝑖

𝐶
𝑖=1

∑ ∑ 𝑛𝑖𝑗
𝐶
𝑗=1

𝐶
𝑖=1

 

Where 𝑛𝑖𝑗 represents elements of the confusion matrix. When 𝑖 = 𝑗, the classifier 

has predicated the true class otherwise prediction is wrong. 𝐶 is the total number 

of classes.   

• Kappa Coefficient: It is a statistical estimator to test the classification performance 

in BCIs. It is defined as  

𝑘𝑎𝑝𝑝𝑎 =
𝐶𝐴 − 𝑝𝑒

1 − 𝑝𝑒
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Where 𝑝𝑒 is the probability of occurrence of a class, which is 0.5 for two-class MI 

task classification. 

5.4 Results  

This section presents the result obtained by all the competing algorithms described in 

previous section. We develop all the algorithms presented in this work, on a 64-bit version 

of Matlab R2018a software installed in a computer having 12 GB of RAM and an Intel 

Core i7 (@ 3.4 GHz) processor and were applied to two different BCI datasets explained 

in Section II.  

Tables 5.1-5.2 present the comparison of the classification accuracies and the kappa 

coefficient values achieved by the CSP (8-30Hz), CSP (8-13Hz), FBCSP (MI), DFBCSP 

(MI), and the proposed DTCWT-CSP (NCA) approaches, for BCI Competition IV 

(Dataset 2b), and BCI competition III Dataset IIIa. It can be seen from the results Tables 

that the mean classification accuracy achieved by the proposed method is improved by 

6.92%, 6.5%, and 3.65% for BCI Competition IV (Dataset 2b) and 4.2%, 5.87%, and 

4.54% for BCI competition III Dataset IIIa compared to that of the CSP, CSP (8-30Hz), 

CSP (8-13Hz), FBCSP (MI), and DFBCSP (MI), respectively. For BCI Competition IV 

(Dataset 2b), out of nine subjects, eight times the highest classification accuracy is 

obtained by the proposed method, whereas for five out of six runs (three subjects and two 

MI classification tasks -- Right-hand vs left-hand MI and tongue vs foot -- for each 

subject) greater results are obtained for BCI competition III Dataset IIIa using our 

approach compared to that using other methods. 

The kappa coefficient is the second method that verified the reliability of the proposed 

method. Tables 5.1 and 5.2 list the obtained kappa coefficient for BCI Competition IV 

(Dataset 2b) and BCI competition III Dataset IIIa, respectively. It is notable that the 
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proposed method achieved the best mean kappa coefficient of 0.680±0.24, and 

0.782±0.15 for BCI Competition IV (Dataset 2b), and BCI competition III Dataset IIIa, 

respectively. The largest kappa coefficient is evaluated as 0.988 for subject “B0403T” for 

BCI Competition IV (Dataset 2b) and that as 0.978 for subject “K3b” for BCI competition 

III Dataset IIIa, utilizing the proposed method. Further, Paired t-test (p<0.01) is 

conducted on both the datasets to verify the statistical significance difference of 

classification accuracy between the proposed approach and each of other approaches. The 

results shown in Tables 5.1-5.2 indicate that the proposed method is performing better 

than the competing methods. 

To investigate the effectiveness of NCA as a feature selection method, we compared the 

classification accuracies achieved and the total number of features selected by standard 

feature selection methods popularly used in various BCI studies such as ReliefF [244], 

Mutual information [245], and Genetic algorithm [246] with that by the proposed 

algorithm (see Table 5.3). We used BCI Competition IV (Dataset 2b) for this comparison. 

As can be seen in Table 5.3, NCA has not only selected a lesser number of features but 

also achieved a higher average classification accuracy in comparison with standard 

feature selection methods. Also, paired t-test is conducted between NCA and each of the 

competing feature selection algorithm to see statistical significance of the proposed 

feature selection method. Statistical results show that NCA is performing better than other 

feature selection methods (p<0.01).  
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Table 5.1 Comparison of classification accuracies (CA) (in %) achieved by the CSP 

(7-30 Hz), CSP (7-13 HZ), FBCSP (MI), DFBCSP (MI) and the proposed DTCWT-

CSP (NCA) method respectively. CA is evaluated using an SVM classifier for BCI 

Competition IV (Dataset 2b). For each subject, Values in boldness indicate the 

largest value compared with all others. Further, p-values are obtained by the paired t-

test between the results of DTCWT-CSP (NCA) and each of the other methods. 

 CSP 8-30 CSP 8-13 FBCSP (MI) 

 CA kappa CA kappa CA kappa 

B0103T 70.6 0.412 73.8 0.476 76.3 0.526 

B0203T 62.5 0.25 63.1 0.262 55.6 0.112 

B0303T 63.4 0.268 68.1 0.362 69.4 0.388 

B0403T 94.6 0.892 96.3 0.926 91.9 0.838 

B0503T 77.5 0.55 72.5 0.45 78.9 0.578 

B0603T 74.0 0.48 72.9 0.458 75.6 0.512 

B0703T 80.0 0.6 81.0 0.62 84.4 0.688 

B0803T 86.3 0.726 85.6 0.712 82.3 0.646 

B0903T 85.0 0.7 84.4 0.688 81.2 0.624 

Mean 77.1±10.7 0.542±0.21 77.52±10.2 0.550±0.20 77.3±10.2 0.545±0.20 

p-value  p<0.01  p<0.01  p<0.01  

 

Table 5.1 (Continued) 

 DFBCSP (MI) DTCWT-CSP (NCA) 

 CA kappa CA kappa 

B0103T 80.3 0.606 85.6 0.712 

B0203T 61.1 0.222 66.3 0.326 

B0303T 59.3 0.186 63.7 0.274 

B0403T 98.8 0.976 99.4 0.988 

B0503T 86.3 0.726 91.3 0.826 

B0603T 73.1 0.462 79.2 0.584 

B0703T 85.0 0.7 86.9 0.738 

B0803T 93.1 0.862 94.4 0.888 

B0903T 86.3 0.726 89.4 0.788 

Mean 80.37±13.5 0.607±0.27 84.02±12.2 0.680±0.24 

p-value  p<0.01  --  
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 CSP(8-30Hz) CSP(8-13Hz) FBCSP (MI) 

 CA kappa CA kappa CA kappa 

Left hand vs 

Right hand 

      

K3b 90.0 0.8 90.3 0.806 96.0 0.92 

K6b 75.0 0.5 75.0 0.5 65.8 0.316 

L1b 90.0 0.8 89.1 0.782 94.2 0.884 

Tongue vs foot       

K3b 91.1 0.822 90.0 0.8 86.8 0.736 

K6b 78.3 0.566 71.7 0.434 82.3 0.646 

L1b 85.0 0.7 83.3 0.666 74.7 0.494 

Mean 84.90±6.81 0.698±0.13 83.23±8.13 0.667±0.16 83.3±11.6 0.666±0.23 

p-value p<0.01  p<0.01  p<0.01  

Table 5.2 (Continued) 

 DFBCSP (MI) DTCWT-CSP (NCA) 

 CA kappa CA kappa 

Left hand vs Right hand     

K3b 96.7 0.934 98.9 0.978 

K6b 68.3 0.366 76.7 0.534 

L1b 84.7 0.694 88.8 0.776 

Tongue vs foot     

K3b 91.1 0.822 92.2 0.844 

K6b 88.3 0.766 92.3 0.846 

L1b 78.3 0.566 85.7 0.714 

Mean 84.56±10.1 0.691±0.2 89.1±7.5 0.782±0.15 

p-value p<0.01  --  

 

 

Table 5.2 Comparison of classification accuracies (%) achieved by the CSP (7-30 Hz), 

CSP (7-13 HZ), FBCSP (MI), DFBCSP (MI) and the proposed DTCWT-CSP (NCA) 

method respectively. CA is evaluated using an SVM classifier for BCI competition III 

Dataset IIIa. For each subject, Values in boldness indicate the largest value compared 

with all others. Further, p-values are obtained by the paired t-test between the results of 

DTCWT-CSP (NCA) and each of the other methods. 
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Figure 5.2 shows the dispersion of features on a 2-D plot between the two best features 

selected by FBCSP (MI), DFBCSP (MI) and DTCWT-CSP (NCA) approaches for subject 

“B0503T” of BCI Competition IV (Dataset 2b) (left hand vs right hand MI), “k6b” of 

BCI competition III Dataset IIIa (left hand vs right hand MI), and “l1b” of BCI 

competition III Dataset IIIa (tongue vs foot MI). It can be seen that the features dispersion 

is more discriminative using the proposed approach in all three cases. 

  

Table 5.3 Lists the classification accuracies (CA) (in %) achieved by feature 

selection methods: ReliefF, Mutual Information, Genetic Algorithm, and NCA for 

BCI Competition IV (Dataset 2b). The number of features selected (FS) by the 

algorithms are written in brackets. The feature extraction method used for all these 

algorithms is DTCWT-CSP and SVM classifier is trained to evaluate classification 

accuracies using k-fold cross validation. Values in boldness indicate the largest value 

compared with all others. Further, p-values are obtained using paired t-test between 

the results of DTCWT-CSP (NCA) and each of the other methods. 

 ReliefF 

Mutual 

Information 

Genetic 

Algorithm NCA 

 CA (FS) CA (FS) CA (FS) CA (FS) 

B0103T 81.9 (3) 80.6 (4) 83.1 (3) 85.6 (3) 

     

B0203T 56.3 (5) 60.6 (4) 60.1 (5) 66.3 (1) 

B0303T 58.8 (6) 53.8(4) 59.7 (3) 63.7 (2) 

B0403T 98.8 (5) 98.6 (4) 98.1 (5) 99.4 (3) 

B0503T 72.5 (5) 71.3 (4) 86.7 (5) 91.3 (3) 

B0603T 73.8 (4) 70 (4) 74.3 (6) 79.2 (2) 

B0703T 84.4 (5) 84.4 (4) 85.8 (4) 86.9 (2) 

B0803T 75 (2) 93.1 (4) 85.6 (4) 94.4 (1) 

B0903T 85.6 (2) 83.8 (4) 86.3 (3) 89.4 (1) 

Mean 76.3 (4.1) 77.4 (4) 80.0(4.2) 84.02 (2) 

p-value p<0.01 p<0.01 p<0.01  
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5.5 Discussion  

5.5.1 Time- frequency analysis of DTCWT-filtered EEG 

Motor imagery classification performance highly depends on feature extraction methods. 

So far, common spatial patterns and its advance variants are investigated for MI 

classification in most of the literature. A few studies [177,178,247] have suggested that 

Figure 5.2 Dispersion of the best two features in 2-D, selected by the FBCSP (MI), 

DFBCSP (MI), and the proposed DTCWT-CSP (NCA) for (a) subject “B0503T” from 

BCI Competition IV (Dataset 2b), (b) subject “k6b” from BCI competition III Dataset 

IIIa right hand vs. left hand MI, and (c) subject “L1b” from BCI competition III Dataset 

IIIa for tongue vs. foot MI. 
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the performance of CSP is prone to selection of proper frequency bands. Spatial features 

are extracted at different frequency bands. For division of raw EEG into various sub 

bands, digital filters are employed. However, the temporal structure of the filtered EEG 

depends on filter parameters: roll off, cut off frequency, ripple, stop band attenuation, 

order and type. Before implementing a filter on EEG data, it is recommended to analyse 

its effects on the data [232]. In this study, we designed a filter bank using DTCWT for 

division of MI EEG into sub bands, instead of using digital filtering methods. 

Subsequently, we compared the SMR recognition effectiveness of the designed filter with 

three IIR filters: Butterworth, elliptical and Chebyshev type II, using time-frequency 

analysis and averaged sub band power.  

Figure 5.3 shows time-frequency plots of average of all the left-hand epochs and right-

hand epochs of BCI Competition IV (Dataset 2b) (subject B0803T). Where each epoch 

represents a single trial for either of the class. In this dataset, there are 160 trials and 80 

epochs for each class. In Figure 5.3, the first red line at time, t =3 s represents the start of 

the cue and the MI task. The cue was presented for 1s. Before averaging, we filtered the 

epochs using DTCWT based filter bank, and three IIR filters: Butterworth, elliptical and 

Chebyshev type II in frequency band between 8 and 32 Hz. Time-frequency plots 

represent significant SMRs during the MI task in 8-16 Hz (see Figure 5.2). Notice that 

the power in C3 channel is higher than that in C4 channel during left -hand MI task. 

Whereas, power in C4 channel is higher than that in C3 channel during right-hand MI. 

Further, in Figure 5.3, coloured topographic head plots show the averaged power in the 

frequency sub band (8-16Hz) during MI task (3-7.5 s). It is notable that the SMRs are 

more significant in first sub band of DTCWT based filtered EEG (8-16 Hz) than that in 

IIR (8-16Hz) filtered EEG.  
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5.5.2 Spectro-spatial feature optimization 

In recent studies, features - extracted after the spectral and spatial filtering - are optimized 

by feature selection algorithms based on mutual information, fisher score, and L1-norm 

Figure 5.3 Time-frequency plots and averaged subband power topographic head plots 

estimated after filtering using (a) DTCWT based filter bank, (b) Butterworth filter, (c) 

Elliptical Filter, and (d) Chebyshev Type II filter. Filter of frequency band 8-32Hz 

filtered the EEG for time-frequency analysis. Whereas topographic head plots present 

averaged band power at 8-16Hz during MI task. Red lines indicate start and end of the 

cue at t=3s and t=4s, respectively. MI tasks started with the cue at t=3s. 
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regularization to improve the MI task classification performance [178,248,249]. In [250], 

the researcher compared the mutual information, and fisher ratio-based feature selection 

methods applied on DFBCSP and showed the superiority of the mutual information over 

fisher score. In this work, we investigated the use of NCA with a regularization term to 

optimize the spectral-spatial features.  

In most of the literature, for feature selection using mutual information, four best features 

are used, but in proposed NCA based method we selected features based on the features 

weight values compared to a threshold. The proposed algorithm evaluated the feature 

weights, as listed in Tables 5.4 and 5.5 for each subject from BCI Competition IV (Dataset 

2b), and BCI competition III Dataset IIIa, respectively. Boldface values indicate the 

selected features. The proposed algorithm selected an average of 3.83 features (out of 

Table 5.4 Feature weights estimated by the proposed algorithm for Dataset2. Boldface 

values indicate selected features. Threshold value for the selection of a feature is 5% of 

the maximum feature weight in each subject. 

 Left-Hand vs Right-Hand 

Frequency band Feature index B0103T B0203T B0303T B0403T 

 

8-16 Hz 

1 3.08 9.86e-05 9.91e-05 3.7 

2 3.60 0.37 0.00013 3.57 

 

16-24 Hz 

3 4.21e-05 0.00033 0.1157 0.91 

4 2.60 0.00043 7.919e-05 0.0004 

 

24-32 Hz 

5 5.37e-06 1.71e-05 0.0001 0.0001 

6 3.61e-05 0.00024 2.072 0.0005 

 No. of features selected 3 1 2 3 

 

Table 5.4 (Continued) 

  Left-Hand vs Right-Hand 

Frequency 

band 

Feature index B0503T B0603T B0703T B0803T B0903T 

 

8-16 Hz 

1 0.68 4.07 4.71e-05 7.55e-05 5.19e-05 

2 9.77e-06 6.63e-06 3.65 4.98 0.0001 

 

16-24 Hz 

3 1.95e-05 2.60e-06 0.0061 8.65e-05 0.0004 

4 4.52 5.76 0.72 0.0002 4.093 

 

24-32 Hz 

5 3.37e-05 3.48e-05 9.58e-05 5.16e-05 0.0004 

6 4.10 4.66 0.0001 1.82e-05 0.0003 

 No. of features 

selected 

3 2 2 1 1 
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twelve features) from BCI competition III Dataset IIIa and 2 features (out of six features) 

from BCI Competition IV (Dataset 2b), which are less than four best features that we 

choose in mutual information method (as suggested in literature). Therefore, the proposed 

algorithm is producing higher classification accuracy with lesser number of features. The 

reduced number of features increases the classification speed of the classifier and reduces 

the computational cost. To show the effectiveness of the selected features on the MI 

classification, in Figure 5.4, we presented all the twelve spatial filters of subject “k3b” 

Table 5.5 Feature weights estimated by the proposed algorithm for Dataset1. Boldface 

values indicate selected features. Threshold value for the selection of a feature is 5% of 

the maximum feature weight in each subject. 

  Left-Hand vs Right-Hand 

Frequency band Feature index K3b K6b L1b 

 

8-16 Hz 

1 1.40 1.40e-06 4.46e-05 

2 2.35e-05 3.84e-06 1.50e-05 

3 4.86e-05 2.34 2.63 

4 3.38 2.60e-06 2.93e-05 

 

16-24 Hz 

5 3.82e-05 2.20 3.08e-05 

6 2.57 5.66e-06 2.14e-05 

7 4.45 1.14e-05 2.75 

8 1.77e-06 4.01e-07 2.40 

 

24-32 Hz 

9 3.19e-06 1.31e-06 1.18e-05 

10 6.03e-05 2.68e-06 8.12e-06 

11 2.70 5.22e-06 1.78e-06 

12 1.20e-05 1.65 2.26e-05 

 No. of features selected 5 3 3 

 

Table 5.5 (Continued) 

  Tongue vs Foot 

Frequency band Feature index K3b K6b L1b 

 

8-16 Hz 

1 2.75e-06 2.07 2.74e-05 

2 2.45 7.27e-06 2.69 

3 2.73e-06 1.80 2.47e-05 

4 1.35e-05 2.00 2.63e-05 

 

16-24 Hz 

5 1.85 2.28 6.29e-06 

6 1.87e-05 2.56 2.24e-05 

7 1.59e-06 1.55e-06 1.09e-05 

8 1.39 2.47e-06 0.58 

 

24-32 Hz 

9 0.55e-05 6.58e-07 2.83e-06 

10 1.39e-05 1.46e-05 1.45e-05 

11 1.53e-05 1.78 5.31e-05 

12 1.67e-05 0.035 2.41 

 No. of features selected 3 6 3 
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from BCI competition III Dataset IIIa (left-hand vs right-hand) and six spatial filters of 

subjects “B0103T” and “B0403T” from BCI Competition IV (Dataset 2b). Spatial filters 

selected by the proposed algorithm are outlined by green colour. It can be observed that 

in most of the cases, for instance, spatial filters 4, 6, 7 and 11 of subject ‘K3b’ from BCI 

competition III Dataset IIIa, show significant SMRs over sensory motor cortex and these 

filters are successfully selected by our proposed approach. In few cases, for instance, 

spatial filter 3 of subject “B0603T” from BCI Competition IV (Dataset 2b) which shows 

significant SMR, is not selected by our approach. However, in this case also, the proposed 

algorithm selected other significant filters (1, 2, and 4). Hyperparameter, length of array 

of lambda values (L) (see algorithm 1), controls the feature selection performance of the 

proposed algorithm. In this approach, we chose this value (L=20, line spaced between 0 

and 2) based on experiments. To further improve feature selection capability of the 

proposed method, hyperparameter optimization algorithms can be used to achieve an 

optimal value of L. However, this will increase the cost of computation. The L value we 

used is capable enough of extracting the most significant features in most of the cases.  

 

Figure 5.4 Spatial filters at feature indices for (a) Subject “K3b” of BCI competition III 

Dataset IIIa and (b) subjects “B0103T” and “B0603T” of BCI Competition IV (Dataset 

2b). Corresponding feature weights estimated by the proposed method are listed in 

Table IV and V. 
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5.5.3 Training with different length of trial data 

MI data recording from the subjects is a very time-consuming process due to the 

involvement of multiple training sessions. Each subject undergoes for long and tiring 

training sessions to collect the MI EEG data Sometimes it is not possible to collect a good 

amount of data. Hence, it is important to analyse the performance of MI classification 

algorithm on smaller dataset. In this work, we further investigated the effectiveness of the 

proposed algorithm by evaluating the classification accuracies achieved by the proposed 

method for varying length of trials. Figure 5.5 shows the classification accuracies 

achieved by each subject from BCI Competition IV (Dataset 2b) for different number of 

trials. The average classification accuracy for 20 trials is 77.78%, which is degraded by 

6.24% from that achieved for 160 trials. This degradation shows that our algorithms is 

slightly affected by decreasing the number of trials.  

  

Figure 5.5. Classification accuracies obtained by each subject from BCI Competition 

IV (Dataset 2b) for varying number of trials. Note: the trend line shows the linear 

degradation in the average classification accuracy as the length of the trials 

decreases. 
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5.5.4 Extension 

Recent models presented in [169,251], added one more dimension to the structure of the 

MI data by using the sliding time windows. The sliding time window approach is 

performed to identify the beginning of the neural response to the MI task because the 

human brain responses differently in time for different subjects. Although, sliding time 

window improves the classification accuracy but adds more complexity and makes the 

solving model very time-consuming. However, our proposed optimization algorithm is 

only tested to optimize the spectral-spatial features, present algorithm can be further 

improved by also considering automatic selection of the best relevant time window. This 

will add more dimensions to the present model and require structural tensor data analysis. 

A few studies have suggested the use of structural tensor data decomposition and 

multiway learning to optimize a higher order dimensional problem [187,252,253]. Hence, 

EEG classification can further be benefited by 1) considering the temporal analysis in the 

presented algorithm, and 2) utilizing the supervised multiway learning approaches to 

optimize the MI structural data. 

5.6 Conclusion 

In this chapter, we proposed a novel algorithm, DTCWT-CSP (NCA), for the 

optimization of spectral-spatial MI features to enhance the classification performance of 

a two-class MI tasks. Specifically, time-frequency analysis using the designed DTCWT 

based filter provided more band power compared to traditional bandpass filters such as 

Butterworth, Elliptical, and Chebyshev. We then divided the MI EEG data into multiple 

sub bands and extracted spatial features using conventional CSP. Next, we applied a 

feature weighting algorithm based on neighbourhood component analysis under a 

supervised framework to optimize extracted spectral-spatial features. An SVM with linear 

kernel is trained using the optimized EEG feature set and perform the MI classification 
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tasks. An experimental study is conducted using two public motor imagery datasets, BCI 

Competition IV (Dataset 2b), and BCI completion III Dataset IIIa, to validate the 

effectiveness of the proposed work in comparison with the various competing algorithms. 

The proposed method obtained superior classification accuracy and kappa coefficient 

compared to standard methods. Achieved results suggest that the proposed algorithm can 

be implemented for the design of an enhanced performing MI BCI device. 


