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C H AP TER  4  

4 Feature Selection using Regularized Neighbourhood Component Analysis to 

Enhance the Classification Performance of Motor Imagery Signals. 

4.1 Introduction 

Brain-computer interfaces (BCI) are a type of assistive technology that helps assist people 

with neuromuscular disorders. The BCI system establishes a direct communication 

pathway between the electrophysiological signals originated from the brain and the 

external devices, for instance, a robotic arm, prosthetic device, wheelchair, etc. [207]. It 

excludes the involvement of nerves and muscles which are damaged or not fully 

functional to perform movements. Electroencephalogram (EEG) is an 

electrophysiological signal generated from the brain of the human. In practice, to develop 

a BCI system, EEG signals of a subject are recorded while performing a specific task. 

These signals are originated from the different brain locations depending on the mental 

task performed by the subject, and thus these signals are converted into command signals 

for executing the control action of the external devices. Among many BCIs, Motor 

imagery (MI) based BCIs pick up the biopotential signals originated from the 

sensorimotor cortex area of the brain while a person imagines about the motor movements 

[208]. Event-related desynchronization (ERD) and event-related synchronization (ERS) 

patterns are observed in the mu rhythms (8-13 Hz) and beta rhythms (13-25 Hz) of the 

brain activity during motor imagery task [14]. 

Despite many feature selection techniques used in MI signal processing as discussed in 

section 2.4.2, there still exists a scope of reducing the high dimensionality of EEG training 

data. Yang et al. [128] proposed a new feature weighting approach based on 
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neighbourhood component analysis (NCA) which optimizes the nearest neighbour 

classifier performance to address the issue of the high dimensionality of the training data. 

It is notable that feature selection techniques can enhance the accuracy of the prediction 

model for the MI dataset. In this study, we have proposed a method to regularize the 

conventional NCA method and investigated the performance of regularized NCA 

(RNCA) as a feature selection technique on two public MI datasets. The effectiveness of 

the proposed feature selection RNCA algorithm is compared with other feature selection 

algorithms such as PCA, GA, and ReliefF. The RNCA is relatively a new approach and 

to the best of our knowledge has not been applied to MI dataset. In our approach, the 

fundamental steps followed to differentiate the mental tasks include various statistical, 

phase and frequency features extraction, selection of the best subset of features using the 

RNCA and classification using a support vector machine (SVM) classifier.    

The subsequent sections in this chapter are presented as follows. Section 4.2 describes 

the methods and materials used in this work such as dataset descriptions, feature 

extraction techniques, and various feature selection algorithms including the proposed 

RNCA feature selection method.  Further, results and discussion are presented in section 

4.3 and 4.4, respectively. Finally, the conclusion is drawn in section 4.5.  

4.2 Methods and Materials 

4.2.1 EEG Dataset and paradigm  

In this work, two EEG datasets provided by BCI completion II and IV are used. Brief 

descriptions of the used datasets are as follows.  

Dataset 1: The first dataset used in this work has been provided by BCI Competition II 

(Dataset III) [15]. Department of Medical Informatics, Institute for Biomedical 

Engineering, Graz University of Technology, (GertPfurtscheller, AloisSchlögl) 

experimented aiming to provide continuous control over a BCI- feedback system. This 
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dataset has been recorded from a 25 years old female while performing a motor imagery 

task of 2 classes (left-hand or right-hand movement) with a feedback session. The dataset 

contains three channels EEG from channel locations C3, CZ, and C4, sampled at 128Hz 

and bandpass filtered between 0.5 and 30 Hz. The subject was sitting comfortably in an 

armchair and was instructed to control a feedback bar by imagining about the right-hand 

or left-hand movement according to the displayed cue. Total 140 labelled training trials 

and 140 unlabelled test trails were recorded. Every trail consists of 9s EEG recording with 

initial 2s as a rest period, at the time, t=2s an acoustic sound indicating the start of the 

trial occurred for 1s. At t=3s, the subject started to see an arrow as a cue indicating either 

to the right or the left and the subject performed the motor imagery task by moving the 

feedback bar in the direction of the cue by imagining the right-hand or left-hand 

movement. 

Dataset 2: BCI competition IV (Dataset 2b) [16] provided the second dataset used in this 

work. Dataset 2b was recorded by the Institute for Knowledge Discovery (Laboratory of 

Brain-Computer Interfaces), Graz University of Technology, (Robert Leeb, Clemens 

Brunner, Gernot -Müller-Putz, AloisSchlögl, GertPfurtscheller). This dataset consists of 

3 bipolar EEG channels signals acquired from 9 subjects for two classes (Left and right-

hand motor imagery). Bandpass filtering is applied between 0.5 Hz and 100 Hz with a 

notch filter at 50 Hz to remove the power line noise. 

4.2.2 Preprocessing. 

The randomness and non-stationary nature of EEG time series emerge the need of 

preprocessing step, which helps in reduction of the noise and identification of the main 

components present in the EEG signal. Temporal characteristics of the EEG signal 

suggest that it varies significantly between different subjects and also between different 

training sessions with the same subject. To avoid such issues, time-frequency analysis of 
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the EEG signal is performed to extract features in time and frequency domain at the same 

time. To accomplish this, we have selected dual-tree complex wavelet transform 

(DTCWT) to decompose the EEG signal. DTCWT is an enhancement to a discrete 

wavelet transform (DWT). However, discrete wavelet transforms are widely used to deal 

with non-stationary signals like EEG, problems using DWT like aliasing and power losses 

at the transaction bands can be resolved using DTCWT [209].  

In EEG signal, ocular artifacts are more prominent up to 10 Hz. To remove ocular 

artifacts, an adaptive threshold presented by Zikov et al. [206] is applied to the 

coefficients of the sub-bands with decomposition level below 10Hz. In DTCWT, two 

DWTs work in parallel to compute the real and imaginary part of the transform. Figure 

4.1 shows the analysis and synthesis filter banks of DTCWT to analyze the EEG signal 

in the wavelet domain. In our method, the level of decomposition was selected to 4, and 

the signal is decomposed into four details, D1-D4, and one approximation A5. 

 

Figure 4.1 DTCWT (a) Analysis filter bank of DTCWT and (b) synthesis filter bank of 

DTCWT. 

4.2.3 Feature Extraction 

The EEG signal decomposed into frequency sub-bands after preprocessing results in 

increased dimensionality. Feature extraction is applied to reduce the high dimensionality 
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and improve the differentiable capacity of the dataset between the different motor 

imagery classes. In other words, feature extraction is to provide the primary information 

carried by the raw EEG signal that can easily distinguish between different mental states. 

The feature space is generated that contains the highlighted information. 

In this method, instead of using a wider frequency band we have used three frequency 

sub-bands to analysis the ERS/ERD patterns which are most prominent in mu and beta 

rhythms. From the preprocessing step wavelet coefficients of three decompositions, D2-

D4 are selected considering the frequency range of interest 4-30 Hz. The frequency range 

of D2 and D3 are 4-8Hz and 8-15 Hz, respectively. Thus, it gives only the mu rhythms of 

the brain activity and filters the other frequency components. However, for beta activity, 

we have used sub-band D4 ranging between 15 Hz and 30 Hz.  

Parameters used to create feature space are the combination of various statistical, 

frequency and phase information features of the EEG signal for each frequency sub-band. 

Parameters used in this work are as follows:  

a) Statistical features: Discriminatory information from the wavelet coefficients of the 

raw EEG signal can be defined and calculated using statistical analysis [210,211]. In 

our approach, five statistical features are evaluated including mean absolute values 

(MAV), standard deviation, variance, sample entropy, and root mean square (RMS) 

values of the coefficients of the details D2-D4 for channel location C3 and C4. 

b) Frequency features: Power spectral density (PSD) of the EEG signal describes the 

power carried by the signal as a function of frequency [212]. EEG signal of two 

channels C3 and C4 is filtered using DTCWT in three separate frequency bands 

ranging between 4 and 30Hz. PSD of each subband is evaluated.  

c) Phase features: Phase locking value is a method to measure the instantaneous phase 

relationship between two signals [213]. We use EEG signal from Channel location 
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CZ as a reference signal, and phase relationship of C3 and C4 is calculated with 

respect to reference CZ. The PLV is calculated for all three subbands. 

Considering three subbands and signal from two-channel locations with seven features 

extracted, the outcome dimension of the feature space is 3 × 2 × 7 = 42 features. Hence, 

the complete training set is a 42 × 𝑁 matrix where 𝑁 represents the total number of trails. 

Table 4 .1 lists the brief description of all the features. 

 

4.2.4 Feature Selection 

Feature selection is performed to convert the m-dimensional feature vector to a lower p-

dimensional feature vector by rejecting the redundant features. Also, the feature selection 

procedure plays a vital role in reducing the amount of data used for learning of the 

classifier. As a result, the execution speed of the classifier increases. Feature selection is 

said to be adequately performed if it enhances the generalization performance. Generally, 

feature selection methods are categorized into two groups: the wrapper approach and the 

filter approach. Wrapper methods evaluate the best subset of features by calculating the 

Table 4.1 Description of different features extracted using statistical, frequency and 

phase analysis. 

Feature Index Feature description 

1-6 MAV of the Details D2-D4 for two EEG channels (3 × 2 = 6) 

7-12 The standard deviation of the Details D2-D4 for two EEG channels 

(3 × 2 = 6) 

13-18 The variance of the Details D2-D4 for two EEG channels (3 × 2 =
6) 

19-24 Sample entropy of the Details D2-D4 for two EEG channels (3 × 2 =
6) 

25-30 Root mean square (RMS) of the Details D2-D4 for two EEG channels 

(3 × 2 = 6) 

31-36 PSD of the Details D2-D4 for two EEG channels (3 × 2 = 6) 

37-42 Phase locking value of the Details D2-D4 for two EEG channels (3 ×
2 = 6) 
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weights of all the features using a learning algorithm. On the contrary, the filter approach 

is a rank-based feature selection method that utilizes the predefined parameters to select 

the best features. In this section, four feature selection methods and the proposed 

algorithm has been explained in detail.  

4.2.4.1 Genetic Algorithm  

The theory of natural evolution given by Charles Darwin's inspired the Genetic 

Algorithms (GAs) [214]. GAs are computational models which replicate the natural 

process of selecting the fittest individuals to reproduce the best offspring of the next 

generation. As a feature selection technique, it works to preserve the critical information 

carried by the features. GAs solve the feature selection problem considering a 

chromosome-like data structure where a population of chromosomes is chosen, and each 

chromosome is encoded as an array of binary bits. The length of the array is taken 

equivalent to the size of the features set in the problem. Thus, each bit in the array 

represents one particular feature. Features with bit value ‘high' are selected for 

classification, and features with bit value ‘low’ are rejected. Hence, each chromosome 

represents one feature subset. Then, the fitness value of every chromosome from the 

population is measured as the kappa coefficient and classification accuracy using a 

learning algorithm. In our approach, population size was equal to the length of the features 

set, and tournament selection method was used with the elitist size set to two [215]. Also, 

arithmetic crossover function was applied to every generation for the creation of next-

generation offspring. The generation size was varied during the experiment. 

4.2.4.2 Principal Component Analysis  

Principal component analysis (PCA) is an unsupervised feature selection technique that 

can linearly transform a higher dimensional feature space into a lower dimensional feature 

space using the statistical approach [216]. Some of the variables in the original feature 
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space are correlated with one another, and there exists some redundancy. These correlated 

variables are linearly combined to a smaller number of principal components that preserve 

a maximum amount of variance in the variables. Principal components are orthogonal to 

one another to avoid the redundancy. 

For feature selection, we have evaluated the contributions of individual features to the 

principal components. Let the size of the training set 𝑆 is 𝑛 − 𝑏𝑦 − 𝑝, where rows of 𝑆 

correspond to trail observations and columns correspond to features. In PCA, 𝑆 is 

transformed to a coefficient matrix of size 𝑝 − 𝑏𝑦 − 𝑝 in which each column represents 

coefficients of one principal component and columns are arranged in descending order of 

features variance [217]. To evaluate each feature contribution, the original data set 𝑆 is 

multiplied with the PCA coefficient matrix, this will project the original data on the 

principal component vector space. In our method, we calculated the mean and variance 

of the columns of the projected data matrix to read the contribution of each feature to 

principal components. Thus, features with larger absolute mean compared with variance 

are selected for classification.  

4.2.4.3 ReliefF 

As a filter approach, ReliefF [125] is an effective algorithm to solve multiclass data 

problems. The algorithm randomly selects a sample x from the training set and searches 

for 𝑘 nearest neighbor samples of the same class and 𝑘 nearest neighbor samples of the 

non-similar classes. Using the Euclidean distance, closest nearest neighbor samples from 

each class are selected. A relevant weight is assigned to each feature by comparing 

interclass distance and intraclass distance from neighbor samples. This procedure is 

repeatedly performed on each feature sample, and each feature is assigned a weight. The 

features selected as best subset have weights larger to a predefined threshold.    

  



50 

 

4.2.5 Neighbourhood component analysis 

Neighbourhood component analysis (NCA) is a learning algorithm to measure the 

Mahalanobis distance used in the KNN classification algorithm [218]. NCA as a feature 

selection technique is a feature weighting scheme to select the best subset of features 

maximizing an objective function that evaluates the average leave one out classification 

accuracy over the training data [128]. The algorithm works to assess a weighting vector 

𝑤 corresponds to the feature vector 𝑥𝑖 optimizing the nearest neighbor learning classifier. 

In NCA framework, like 1-nearest neighbor classifier a reference sample point 𝑥𝑗 is 

selected for the sample 𝑥𝑖 from all the samples. The probability 𝑃𝑖𝑗 of 𝑥𝑗 being chosen as 

a reference point for 𝑥𝑖 from all the samples is higher depending on the closeness in the 

distance between the two samples. This distance can be measured by a weighted distance 

𝐷𝑤 defined as 

 
𝐷𝑤(𝑥𝑖, 𝑥𝑗) = ∑ 𝑤𝑚

2 |𝑥𝑖𝑚 − 𝑥𝑗𝑚|

𝑟

𝑚=1

 
(4.1) 

Where 𝑤𝑚 is the assigned weight of the 𝑚𝑡ℎ feature. The relation between the probability 

𝑃𝑖𝑗 and weighted distance 𝐷𝑤 can be established by introducing a kernel function 𝑘 which 

returns large values for small 𝐷𝑤. The 𝑃𝑖𝑗 can be defined as  

 
𝑃𝑖𝑗 =

𝑘(𝐷𝑤(𝑥𝑖, 𝑥𝑗))

∑ 𝑘(𝐷𝑤(𝑥𝑖, 𝑥𝑗))𝑛
𝑗=1,𝑗≠𝑖

 
(4.2) 

Also, if 𝑖 = 𝑗 then 𝑃𝑖𝑖 = 0. Where kernel function 𝑘 is defined as 𝑘(𝑧) = 𝑒𝑥𝑝(−
𝑧

𝜎
) and 

the parameter 𝜎 is the kernel width that affects the probability of a sample 𝑥𝑗 to be selected 

as a reference point. Now, the probability of 𝑥𝑖 being correctly classified can be written 

as 
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𝑃𝑖 = ∑ 𝑃𝑖𝑗𝑌𝑖𝑗

𝑛

𝑗=1,𝑗≠𝑖

 
(4.3) 

Where 𝑌𝑖𝑗 indicates one only if 𝑦𝑖 = 𝑦𝑗 . Hence, the average leave one out classification 

accuracy is the summation of 𝑃𝑖 over all the trails divided by the total number of trails, 

and that can be seen as an objective function which needs to be maximized. However, the 

objective defined by Equation (4.3) is prone to overfitting. A term regularization 

parameter 𝜆 is introduced in the final objective function to avoid overfitting of the NCA 

model [128]. Thus, the objective function can be expressed as   

 
𝐴 = ∑ 𝑃𝑖

𝑛

𝑖=1

− 𝜆 ∑ 𝑤𝑚
2

𝑟

𝑚=1

 
(4.4) 

The objective defined in Equation. (4.4) is known as regularized NCA (RNCA). The 

target of RNCA is to maximize the objective function 𝐴. To perform this; 𝐴 can be solved 

using the conjugate gradient approach. If 𝐴 is limited to be a diagonal matrix, then its 

diagonal values provide the weight of each feature. Based on the weights outcome best 

subset of features is selected.   

4.2.6 Proposed Method: RNCA as Feature Selection 

This work assesses the performance of feature selection on BCI dataset using RNCA. The 

idea of this method is to select the subset of features which gives the maximum 

classification accuracy or minimum generalization error. Further, this study presents a 

technique to regularize the NCA model of Equation (4.4) for feature selection of MI data. 

Our approach contains the following steps:    

Step1: To apply feature selection on BCI dataset we begin with considering the training 

set 𝑆 = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2, . . 𝑁} where, 𝑥𝑖 are the feature vectors, 𝑁 is the number of trails, 

𝑦𝑖 ∈ {1,2, . . 𝐶} defines its class label, and C is the number of class. In this work, 𝑥𝑖 

comprise 42 features explained in section 3 for two motor imagery classes. 
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Step2: Perform the 5-fold cross-validation on the training set 𝑆 and evaluate the 

generalization error, 𝑒𝑟𝑟 defined as 

 

𝑒𝑟𝑟 =
1

𝑛
∑ 𝐼(𝑘𝑖 ≠ 𝑡𝑖)

𝑁

𝑖=1

  
(4.5) 

Where 𝑘𝑖 represents the predicted class,  𝑡𝑖 is the true class, 𝐼(𝑥) returns 1 when 𝑘𝑖 is not 

equal to 𝑡𝑖 else it gives 0.  

Step 2 is executed to check if feature selection is required. Now fit the NCA model 

defined by Equation (4.4) keeping regularization parameter 𝜆 equals to zero and again 

calculate the generalization error. If the value of generalization error after fitting the NCA 

model is less than that of before fitting the model, then there is a requirement of feature 

selection. 

Step 3: Now, we tune the regularization parameter 𝜆 to obtain the minimum classification 

loss. To perform this, generate a uniformly distributed array 𝜆𝑣𝑎𝑙 of length 𝐿. Then, fit the 

NCA model for each 𝜆 and store the estimated generalization error in an array.   

Step 4: Step 2 is executed repeatedly for all folds and all values of 𝜆. Simultaneously, 

average classification loss is calculated from all the folds for each 𝜆 value. Subsequently, 

the value of 𝜆 corresponds to minimum average classification loss is selected as best 

lambda 𝜆𝐵𝑒𝑠𝑡.  

Step 5:  Using the 𝜆𝐵𝑒𝑠𝑡 value, the NCA model is performed on complete data and feature 

weights of each feature are evaluated. Features with weights higher than the 5% of the 

maximum feature weight are selected to classify the data. 

Step 6: Next, train the SVM classifier using the updated training set selected in the 

previous step. Calculate the evaluation parameters such as confusion metrics, kappa 

value, and classification accuracy. 
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Note: Classification accuracy (CA) is equal to 1 − 𝑒𝑟𝑟. Therefore, this algorithm works 

fine if we search for a subset with maximum CA instead of minimum classification error. 

The complete scheme of the proposed method has been summarized in Figure 4.2. 

4.2.7 Classification 

This work has implemented a support vector machine (SVM) as a classifier to perform 

the classification task on the two MI datasets used. SVM Classifier creates a discriminant 

hyperplane to improve the generalization capabilities by maximizing the margin between 

the classes. SVM is relatively a fast algorithm and capable of dealing with a large dataset 

[219]. Since the MI datasets used in this work have two classes (right-hand and left-hand 

motor imagery), SVM model creates a hyperplane to differentiate the two classes in a 

way that the gap between them is globally maximized. 

Figure 4.2 Workflow elucidates the proposed method used to reduce the high 

dimensionality of MI Dataset. 
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4.3 Results 

This section elucidates the feature selection, and classification performances of the 

proposed method in comparison with the baseline methods explained in this chapter. 

Algorithms used in this work were developed and implemented in a computer having 

12GB RAM and Intel Core i7 (@ 3.4 GHz) processor using the 64-bit version of Matlab 

R2018a software and applied on the two different BCI datasets explained in section II. 

Dataset 1 has EEG data from one subject for one training session. Whereas, dataset 2 

consists of EEG data from 9 different subjects for two training sessions of each subject. 

Hence, the EEG recording of 19 training sessions has been used in this work.   

4.3.1 Feature selection results: 

The selection of a particular feature is based on the weight of that feature calculated by 

the feature selection algorithm. To represent the results of feature selection methods we 

have taken data of subject id B0101T of BCI competition IV dataset2b. Specifically, 

preceded by preprocessing and feature extraction using DTCWT, a feature space of 

dimension 42 × 𝑁 features, is generated. Figure 4.3(a) illustrates the weights evaluated 

for each feature using ReliefF. It shows the feature weights in the descending order, and 

Figure 4.3  Weights assigned to different features using (a) ReliefF algorithm and (b) 

Principal Component Analysis (PCA). 
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accordingly, a rank is provided to each feature, i.e., the feature with the most significant 

weight has been assigned rank 1 and so on. For classification, we have only selected the 

features with positive weights. 

In PCA analysis, the contribution of each feature to principal components is evaluated by 

projecting the dataset on another coordinate, i.e., principal axis. Then, the absolute mean 

and variance of each feature in principal co-ordinate are calculated and plotted as shown 

in Figure 4.3(b). Features with absolute mean more than the variance are selected for 

classification. 

Performance of RNCA as feature selection is shown in Figure 4.4. First, the best 

regularization parameter was determined at 0.0077 with average classification loss of 

0.105. Using this value of regularization parameter weights of all the features were 

evaluated.  Subsequently, a threshold of 5% of the maximum weight is set to select the 

features. It is notable that only six features have weights significantly more than 5% of 

the maximum weight and hence, these features are selected for classification.  

Further, the Figures 4.3 and 4.4 show the feature selection procedure applied to EEG data 

of only one training session; the same methodology was applied to all the EEG data of 19 

Figure 4.4 Regularized Neighbourhood component analysis as feature selection (a) 

Estimation of the regularization parameter 𝜆𝐵𝑒𝑠𝑡 at minimum loss value. (b) feature 

weights calculated using  𝜆𝐵𝑒𝑠𝑡=0.0077. 
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training sessions. Figure 4.5 presents the comparison of the average number of features 

selected using RNCA with ReleifF, PCA and GA. Although all the algorithms 

significantly eliminate the irrelevant features, it is notable that RNCA outperforms the 

other algorithms for most of the training sessions data with an average of 6.6±1.88 

features selected. The number of features selected (FS) using various algorithms for each 

training session is listed in Table 4.2. However, the reduced number of features improves 

the execution speed of the classifier; it is also crucial that the selected subset of features 

must enhance the classification performance. The following section presents the 

classification results. 

 

Figure 4.5  Comparison of the average number of features selected between four feature 

selection algorithms: ReleifF, PCA, GA, and RNCA for 19 different training sessions of 

2 motor imagery datasets from BCI competition II (dataset III) and IV (dataset 2b). It 

also indicates the standard deviation from the mean value. 

4.3.2 Classification Performance: 

To compare the effectiveness of different feature selection approaches concerning 

classification performance, two evolution criteria [32]; classification accuracy and kappa 

coefficient has been chosen, which can be defined as 

 
𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑝0 =

∑ 𝑛𝑖𝑖
𝐶
𝑖=1

∑ ∑ 𝑛𝑖𝑗
𝐶
𝑗=1

𝐶
𝑖=1

 
(6) 
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Where 𝑛𝑖𝑖 and 𝑛𝑖𝑗 represent the elements of the confusion matrix and indicate how many 

times class 𝑖 has been predicted as class 𝑗. If 𝑖 = 𝑗 then a true class is predicted by the 

classifier. 𝐶 is the number of class, which is 2 for our case. 

 and, 𝑘𝑎𝑝𝑝𝑎 𝑐𝑜𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑝0−𝑝𝑒

1−𝑝𝑒
 (7) 

Where 𝑝𝑒 is the expected accuracy turns out to be 0.5 for a two-class problem. SVM is 

used as a classifier, and 5-fold cross-validation has been applied to divide the data into 

training and test sets. The comparison of classification accuracy, kappa coefficient and 

the number of features selected using feature selection techniques such as RNCA, PCA, 

ReliefF, and GA has been listed in Table 4.2. It is observable that the learning-based 

feature selection methods such as GA and RNCA perform better than rank- based feature 

selection methods such as ReliefF and PCA in terms of classification performance. Also, 

in learning based feature selection approaches, RNCA obtained better classification 

performance than the GA. The average classification accuracy and kappa achieved by 

RNCA was 80.7% and 0.615 which is better than that produced by GA 78.9% and 0.579. 

Best classification accuracy, 99.2% was made by subject id B0401T using RNCA. As 

seen from Table 4.2, by comparing the classification accuracy, and kappa coefficient, 

RNCA achieves the highest values for all subjects, except for subject IDs BCI1, B0302T, 

B0702T, B0801T, B0902T. 

Besides classification accuracy and kappa coefficient, the confusion matrix is further 

analyzed in detail and parameters such as precision, recall or sensitivity, specificity, and 

F1-score are evaluated for each subject and averaged over data of 18 training sessions of 

dataset 2. These parameters range between 0 and 1, with 1 indicating the highest 

classification performance. Table 4.3 lists the average values of confusion metrics 

obtained using different feature selection approaches. Obtained results suggest that the 
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Table 4.2 Comparison of classification accuracy (CA), kappa coefficient and the 

number of features selected (FS) between ReliefF, PCA, GA and RNCA for motor 

imagery data of 19 different training sessions of 2 different datasets from BCI 

competition II (dataset III) and IV (dataset 2b). Values in boldness indicate the 

largest value compared with all others. 

 Subject ID All Features ReliefF 

 CA Kappa FS CA Kappa FS 

Dataset 1 BCI1 

 

77.1 0.542 42 80.7 0.614 26 

 

 

 

 

 

 

 

 

 

Dataset 2 

B0101T 84.2 0.684 42 88.3 0.766 16 

B0102T 82.5 0.650 42 91.7 0.834 10 

B0201T 62.5 0.250 42 64.2 0.284 22 

B0202T 60.0 0.200 42 62.5 0.250 12 

B0301T 58.3 0.166 42 64.2 0.284 13 

B0302T 49.2 -0.016 42 51.7 0.234 33 

B0401T 87.5 0.75 42 80.0 0.600 10 

B0402T 92.1 0.842 42 91.4 0.828 38 

B0501T 75.8 0.516 42 90.0 0.800 11 

B0502T 73.6 0.472 42 72.1 0.442 13 

B0601T 79.2 0.584 42 80.8 0.616 30 

B0602T 76.7 0.534 42 85.0 0.700 12 

B0701T 67.5 0.350 42 65.8 0.316 19 

B0702T 61.7 0.234 42 65.8 0.316 23 

B0801T 67.5 0.350 42 73.1 0.462 13 

B0802T 75.8 0.516 42 65.8 0.316 7 

B0901T 67.5 0.35 42 85.0 0.700 8 

B0902T 73.3 0.466 42 81.7 0.634 25 

Mean Values 72.2 0.444    42  75.7 0.526    18 

Table 4.2 (continued) 

 Subject ID PCA GA RNCA 

 CA Kappa FS CA Kappa FS CA Kappa FS 

Dataset 1 BCI1 

 

69.3 0.586 11 81.4 0.628 7 80.7 0.614 11 

 

 

 

 

 

 

 

 

 

Dataset 2 

B0101T 72.2 0.444 15 91.7 0.834 19 93.3 0.866 6 

B0102T 65 0.300 12 91.7 0.834 8 92.5 0.850 7 

B0201T 57.5 0.150 12 72.5 0.450 8 73.3 0.466 16 

B0202T 56.7 0.134 15 70.8 0.416 8 73.3 0.466 7 

B0301T 54.2 0.084 11 66.7 0.334 4 67.5 0.350 7 

B0302T 50.8 0.016 10 54.2 0.084 4 49.2 -0.016 3 

B0401T 97.5 0.950 12 95.8 0.916 25 99.2 0.984 4 

B0402T 77.1 0.542 10 94.3 0.886 3 94.3 0.886 5 

B0501T 64.2 0.284 9 91.7 0.834 6 91.7 0.834 6 

B0502T 70.0 0.600 15 70.7 0.414 7 73.6 0.472 8 

B0601T 60.0 0.200 11 86.7 0.734 8 94.2 0.884 3 

B0602T 60.8 0.216 9 87.5 0.750 5 88.3 0.766 2 

B0701T 59.2 0.184 11 65.8 0.316 5 70.8 0.416 11 

B0702T 50.8 0.016 9 63.3 0.266 11 64.2 0.284 9 

B0801T 62.5 0.250 13 78.8 0.576 5 78.1 0.562 2 

B0802T 70.0 0.400 10 78.3 0.566 6 80.8 0.616 6 

B0901T 66.7 0.334 11 75.0 0.500 6 88.3 0.766 2 

B0902T 57.5 0.150 13 83.3 0.666 8 81.7 0.634 11 

Mean Values 64.3   0.307    11.52 78.9     0.579 8 80.7    0.615 6.6 
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RNCA improved the classification performance in comparison to the other compared 

feature selection algorithms.  

Further, we have performed the Friedman test and a Wilcoxon signed ranks test as the 

post hoc statistical test to statistically validate the results obtained in Table 4.2. The null 

hypothesis assumes that the performance of all the algorithms is identical. Preceded by 

ranking all the algorithms for each subject ID separately, the Friedman test, then averages 

the ranks over all the subject Ids and calculate the p-value. A low p-value indicates that 

the null hypothesis is rejected and there is a statistical difference. To find out which 

algorithm has the source of difference¸ the Wilcoxon signed ranks test as post hoc 

statistical test is conducted. The algorithm with the best rank is selected as the control 

algorithm, then a pairwise comparison of all the other algorithm and the control algorithm 

is performed. We applied the Friedman test on the classification accuracies obtained in 

Table 4.2 of dataset 2 and found that the null hypothesis was rejected (p=2.55e-9). The 

RNCA achieved the best rank, 1.33 and selected as the control algorithm to perform the 

Wilcoxon signed ranks as post hoc test. Table 4.4 shows the mean rank obtained across 

the 18 data of dataset 2. Whereas, Table 4.5 presents the p values obtained by pairwise 

comparison of the algorithms. Statistical test results indicate that the classification 

performance of SVM with RNCA as feature selection is better than that of without feature 

selection (p<0.05), feature selection with ReliefF (p<0.05), PCA (p<0.05) and GA 

(p<0.05).  

4.4 Discussion 

The present study analyzed the effectiveness of the proposed feature selection RNCA 

approach on MI EEG classification. Although comparison with some baseline feature 

selection methods has proven the superiority of RNCA, further discussion on the 



60 

 

mechanism of the algorithm is provided in this section declaring the potential advantages 

and limitations of the proposed method.  

4.4.1 Selection of optimal features by RNCA 

For MI EEG pattern recognition, sensory motor rhythms (SMR) are analyzed to 

discriminate between two classes of motor imagery [14]. In various studies, it is noted 

that the selection of an inappropriate frequency band leads to suboptimal classification 

performance; hence care has to be taken while selecting a frequency band [28,124]. In 

Table 4.3 Mean rank of feature selection methods for the Friedman test. 

Feature Selection Method All Features ReliefF PCA GA RNCA 

Mean Rank 3.83 2.97 4.52 2.33 1.33 

 

 

Table 4.5 Averaged classification performance metrics of SVM classifier on BCI 

competition IV dataset 2b present a comparison between compared feature selection 

methods. Values in boldness indicate the largest value compared with all others. 

 All 

Features 

ReliefF PCA GA RNCA 

Precision 0.7103 0.7518 0.6454 0.8277 0.8541 

Recall or Sensitivity 0.6836 0.7408 0.6287 0.7408 0.7895 

Specificity 0.7305 0.7483 0.6785 0.8224 0.8341 

F1 Score 0.6951 0.7419 0.6355 0.7625 0.8089 

 

Table 4.4 Statistical analysis of classification accuracy differences between the 

compared methods on BCI competition IV Dataset IIb: Results of Wilcoxon signed 

ranks test as post hoc with alpha=0.05. 

Hypothesis RNCA vs. All 

Features 

RNCA vs. 

PCA 

RNCA vs. 

ReliefF 

RNCA vs. 

GA 

P-value 

(alpha=0.05) 

0.000438 0.001169 0.000232 0.017135 
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our approach, filtering of EEG into three sub-bands of frequency ranges 4-8Hz, 8-15Hz 

and 15-30Hz, respectively is performed by DTCWT and accordingly, time, frequency, 

and phase features are extracted. Afterward, features with greater importance have been 

selected using RNCA. Results presented in Table 4.2, 4.3, 4.4 and 4.5 has shown that 

RNCA selects less number of features with increased classification performance 

compared to GA, ReliefF, and PCA. Another finding of the results is that the frequency 

domain feature, i.e., the power spectral density (PSD) of the channels C3 and C4 in the 

frequency range (8-15Hz) has high importance and been selected for 8 out of 10 subjects 

(see Figure 4.6). These results are backed by numerous studies [14,211,221] that have 

suggested that the PSD of the mu rhythm (8-13Hz) carries vital information about the 

motor imagery tasks. Furthermore, as we have used multiple feature extraction methods, 

our proposed algorithm RNCA has selected significant features which are different for 

different subjects, which shows that RNCA is a robust algorithm to be used for the design 

of a subject-specific BCI system. 

However, RNCA has shown potential in selecting optimal features from appropriate 

frequency bands, a few studies [28,169] have demonstrated the importance of choosing a 

potential time window, since neural response time to different MI task is subject specific. 

Therefore, use of a fixed time window may degrade the classification performance of MI 

BCI system, this worth our consideration. Keeping this in view our work can be further 

extended by using shifted and varying time windows but it will also increase the 

computational cost.  
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4.4.2 Configurable parameter 

By far, numerous wrapper structure-based feature selection approaches have been 

proposed to improve the classification performance of MI EEG [27,28,120,222]. 

Experimental results have found that the behavior of most of these algorithms is highly 

variant because of the diversity in the selection of the configurable parameters. The 

parameter controlling the nature of our approach is the length, 𝐿 of the uniformly 

distributed array 𝜆𝑣𝑎𝑙. We have investigated the classification accuracy against varying 

values of  𝐿. In particular, we varied the value of 𝐿 from 40 to 160 in steps of 20 and 

evaluated the classification accuracy for five subjects (see Figure 4.7). It should be noted 

that the stability of our proposed algorithm is affected by varying values of 𝐿 to some 

extent. For most of the subjects, CA is much stable over varying values of 𝐿 especially in 
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Figure 4.6 The number of times a feature is selected by RNCA for ten subjects. Results 

indicate that the RNCA feature selection method is capable of selecting optimal features 

that occur at different frequency bands for different subjects. 
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the range from 80 to 120. Although this range of the parameter 𝐿 has given a potentially 

improved classification accuracy, this method of selecting the optimal range of parameter 

𝐿 decreases the processing speed of the algorithm and also requires additional dataset. 

This limits the practicality of the proposed feature selection method to some level. 

Hyperparameter optimization techniques in BCI have been introduced in some of the 

recent studies [223,224] and have shown potential in automatic selection of the optimal 

hyperparameter. As an extension to the proposed feature selection approach, some 

parameter optimization methods can be used to improve the BCI performance, which 

worth our future considerations.  

4.4.3 Computational complexity 

The complexity of the feature selection algorithm increases the total processing time. 

Table 4.6 lists the processing time, training time, and testing time of the different 

algorithms used in our work. From the results, it can be observed that the feature selection 

methods such as RNCA and GA that use a learning algorithm to optimize the 

classification performance have higher computation time than PCA and ReliefF. On the 

whole, the processing time of PCA is the fastest, with an average time of 0.3984s, while 

Figure 4.7 Change in classification Accuracy (CA) with respect to parameter L of 

RNCA for five subjects BT102, BT301, BT502, BT702, and BT902, respectively. 
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the processing time of RNCA and GA is 22.16s and 38.94s, respectively. Although 

RNCA feature selection time is higher due to the inner loop for estimation of 

classification error, it is a one-time procedure and doesn't affect the testing time. Also, 

due to the exclusion of a higher number of irrelevant features, RNCA with SVM classifier 

built a prediction model that attains a faster classification speed compared with prediction 

models made using GA, PCA, and ReliefF as feature selection methods and SVM 

classifier.  

For the design of a practical BCI system, it is essential that the system must respond to 

different subjects with the same efficiency. Since neural response to MI task is subject 

and frequency band specific, with a fixed set of features high system performance can't 

be achieved. Hence, there lies the need for a practical feature selection approach capable 

of selecting an optimal subset of features for different subjects. This experimental study 

has demonstrated that the proposed RNCA feature selection method can efficiently be 

used for different subjects. Although the present study is conducted in an offline scenario, 

this work will be further extended to implement a real-time MI BCI system to control a 

prosthetic arm. 

Table 4.6 Comparison of the average processing time of four feature selection 

methods: ReliefF, PCA, GA, and RNCA. SVM. Values in boldness indicate the 

largest value compared with all others. 

 

ReliefF  PCA GA RNCA 

Algorithm Processing 

Time (s) 

1.257415  0.3984 38.9404 22.1616 

Training Time (s) 0.3478  0.3598 0.3758 0.3137 

Testing Time (s) 0.0392  0.0250 0.0183 0.0124 
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4.5 Conclusion 

This study presents the effectiveness of RNCA as a feature selection method to enhance 

the classification performance of the motor imagery tasks on datasets provided by BCI 

competition II and IV. For comparative study, we used two rank-based feature selection 

methods such as PCA and ReliefF and one learning-based method: GA. The SVM 

classifier has been used to evaluate the classification performance of each algorithm. We 

have investigated that the subset of features estimated by the proposed RNCA algorithm 

has successfully eliminated the irrelevant features and improved the overall classification 

performance of the SVM classifier for two class motor imagery problem. Results declare 

that the RNCA performed better feature selection task when compared with PCA, 

ReliefF, and GA. An important issue is the processing time of RNCA. Due to the diversity 

in the selection of configurable parameters that control the nature of RNCA and GA, the 

computational cost of these methods is higher than the rank-based feature selection 

methods. However, the execution time of the RNCA is faster than the GA. It is also 

concluded that due to the reduction in the feature space, the training and testing time of 

the prediction model was faster for RNCA than ReliefF, PCA, and GA. Further, this work 

can be extended by varying the feature space dimensions and optimizing the configurable 

parameters that control the nature of RNCA to attain a reasonable processing speed. This 

study concludes that to discriminate between different motor related mental tasks where 

high classification accuracy with a reasonable processing speed is required,  feature 

selection using RNCA is the best choice.  

 


