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C H AP TER  3  

3 Removal of Ocular artifacts from Single channel EEG signal using DTCWT 

with Quantum inspired Adaptive Threshold 

3.1 Introduction 

The electrical signals originated from the brain are called electroencephalogram (EEG) 

signals and can be recorded by placing electrodes over the scalp using the standard 

international 10-20 system. In practice, while acquiring EEG, biopotential signals with 

no cerebral origin often contaminate electrical signals of the brain. These contaminating 

biopotentials are mainly produced by eye blinks and movements, popularly referred as 

Ocular artifacts (OAs). OAs have larger amplitudes (in the order of mV) compared to that 

of EEG (amplitude in the order of uV). In many brain-computer interfaces (BCIs) 

applications, EEG signal of the subject is measured, and features are extracted to control 

the external devices. Thus, removal of OAs from the EEG signals plays a vital role in 

order to enhance the performance of the BCI system [202]. To reduce the EOG artifacts, 

one possible solution is directing the subject not to make eye blink and movement during 

the experiment. However, such instructions may not be practical in most cases. Hence the 

elimination of OA’s is an essential step in EEG signal analysis.  

It is notable that thresholding plays a vital role in all the wavelet de-noising techniques 

discussed in section 2.3.1 of chapter 2. To enhance the wavelet shrinkage’s performance, 

thresholding rules can be explored further. Quantum-inspired de-noising algorithm 

proposed by P. Wang et al. [203] shows effective and enhanced performance than 

conventionally used techniques like soft threshold and hard threshold.   

This work suggests the use of dual-tree complex wavelet transform for the 

decomposition of EEG in wavelet domain and quantum-inspired adaptive threshold 
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algorithm for suppression of ocular artifacts. The proposed algorithm is capable of 

altering the value of threshold and eliminating the eyeblink wavelet coefficients. The 

present work is organized as follows. Section 3.2 explains the Dual-Tree Complex 

Wavelet Transform and Quantum-inspired adaptive threshold algorithm. Steps followed 

to suppress OAs are elaborated in section 3.3. Results are further discussed in section 3.4. 

Finally, the conclusion has been drawn in section 3.5.   

3.2 Materials and methods 

3.2.1 Dual-Tree Complex Wavelet Transform (DTCWT) 

DTCWT is an improvement of the DWT. It computes the signal x(n) using two real 

DWTs in parallel to evaluate the real part and imaginary part of the transform. In the 

DTCWT structure, two different real filters for each DWT are designed in a specific way 

that the sub-bands of upper DWT and lower DWT are interpreted as real part and 

imaginary part of the transform, respectively, as shown in Figure 3.1.  

The expression of dual-tree complex wavelet transform can be written as  

 ∅(𝑡) = ∅ℎ(𝑡)+∅𝑔(𝑡) (3.1) 

Where,∅ℎ(𝑡) and ∅𝑔(𝑡)denote the two real wavelets, also ∅ℎ(𝑡) and ∅𝑔(𝑡) must be a 

Hilbert transform pair. 
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(a) 

 

(b) 

Figure 3.1 (a) Analysis Filter bank of DTCWT and (b) Synthesis Filter bank of 

DTCWT. 

3.2.2 Thresholding 

In de-noising of the signals, thresholding plays a vital role.  Wavelet transform has 

multi resolution property that decomposes the contaminated signals into low frequency 

and high-frequency sub-bands. Noise components are present in the wavelet coefficients. 

If we eliminate the noise components from the wavelet coefficient by comparing each 

coefficient with a threshold value, the original signal can be recovered. The model of 

contaminated EEG signal is written as 

 𝑦(𝑛) = 𝑥(𝑛) + 𝑝 × 𝑑(𝑛) (3.2) 
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where, 𝑦(𝑛)is Contaminated EEG, 𝑥(𝑛) is EEG Signal, 𝑑(𝑛) is EOG Signal, and 𝑝 is the 

scaling factor. De-noising is generally defined as recovery of unknown clean data from 

the contaminated signal. In [204,205] Donoho defined term “denoise” as the optimization 

of the mean-squared error. 

The two main thresholding methods in wavelet domain are soft threshold and hard 

threshold. Soft threshold is defined as 

 
𝜂𝑠(𝜔, 𝑇) = {

𝜔 − 𝑇
0

𝜔 + 𝑇
     

𝜔 ≥ 𝑇
|𝜔| < 𝑇
𝜔 ≤ −𝑇

 
(3.3) 

Hard threshold is defined as 

 
𝜂𝑠(𝜔, 𝑇) = {

𝜔, |𝜔| ≥ 𝑇
0, |𝜔| < 𝑇  

(3.4) 

Where 𝑇 is the threshold value, and 𝜔 is the wavelet coefficient. 

In hard threshold scheme, all the wavelet coefficients with values greater than the 

given threshold 𝑇 are chosen, and others are set to zero. However, soft threshold shrinks 

the wavelet coefficients by 𝑇 towards zero. Estimation of threshold value is an important 

step in the elimination of OAs from noisy EEG. In this work, we have used an adaptive 

threshold proposed by Zikov et al. [206]. In this method, Wavelet coefficients for each 

band k with decomposition below 16 Hz have been selected, and then estimated the 

maximum value 𝑀𝐾 of the selected coefficients. To make this threshold adaptive and to 

perform the algorithm to work in real-time, we have calculated 𝑀𝐾 for every second. The 

threshold 𝑇𝑘 can be expressed as 
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 𝑇𝑘 = 𝑚𝑒𝑎𝑛(𝑀𝐾) + 2. 𝑠𝑡𝑑(𝑀𝐾) (3.5) 

Where functions 𝑚𝑒𝑎𝑛(. ) and 𝑠𝑡𝑑(. ) computes the mean and standard deviation, 

respectively.  

3.2.3 Quantum inspired adaptive threshold (QAT) 

According to quantum theory of information, each wavelet coefficient of the 

contaminated signal is in the superposition state of noise and signal.  

 |𝜔𝑖,𝑗 >= 𝑠|0 > + 𝑛|1 > (3.6) 

This equation is in Dirac notation. Quantum state |0 > represents signal state whereas 

|1 > represents noise state. Also, s and n are the probability amplitudes of the two 

quantum states|0 > and|1 >, respectively. However,  |𝜔𝑖,𝑗 > is the quantum state that 

varies according to the change in s and n. It may be assigned either to signal state ‘0’ or 

to the noise state ‘1’ accordingly. 

The formulas for estimation of n and s are  

 𝑛 = 𝑘(𝜔) and 𝑠 = 1 − 𝑘(𝜔) (3.7) 

Where, 𝑘(𝜔) is a distribution function estimated by,  

 

𝑘(𝜔) =
1

1 + exp − (
(|𝜔𝑖,𝑗| − 𝑇𝑘)

𝐵
⁄ )

 

 

(3.8) 
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In the above expression, B represents a constant positive number. 𝜔𝑖,𝑗 is the wavelet 

coefficient and  𝑇𝑘 is the threshold defined in Equation (3.5).  

Once the values of s and n are calculated, state of the wavelet coefficient needs to be 

measured. According to quantum theory, until the nonstationary state is measured, it 

wouldn’t be assigned to one of the states. To measure wavelet coefficient quantum 

state|𝜔𝑖,𝑗 >, a variable number R is generated for each measurement, which is uniformly 

distributed in the range [0,1]. If the estimated value of R falls in the range [0,s], then 

|𝜔𝑖,𝑗 > is in the signal state, and if R projects in the range [s,1], then |𝜔𝑖,𝑗 > is in the 

noise state. Hence the wavelet coefficients of the noise state are removed by setting them 

to zero.   

3.3 Application of DTCWT-QAT for removal of ocular artifacts from EEG 

Ocular artifacts have frequencies up to 16 Hz and have significantly larger amplitudes 

than the raw EEG signal. Wavelet decomposition of contaminated EEG signal generates 

larger coefficients in the lower frequency band (0-16 Hz); this shows the presence of OAs. 

Applying an adaptive thresholding algorithm on these coefficients, in other words 

removing large OAs coefficients and then reconstructing the signal, will thus correct the 

EEG. In our work, we have decomposed the contaminated EEG signal using dual-tree 

complex wavelet transform (DTCWT) and therefore applied quantum information theory 

to eliminate OAs from the EEG signal. Major steps followed are as below  

Step1 EEG signal is added with EOG signal to make contaminated EEG using Equation 

(3.2).  

Step2 Calculate the input Signal to artifact (SAR) ratio using 
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𝑆𝐴𝑅 = (

∑ 𝑥(𝑛)2𝑁
𝑛=0

𝑝 × ∑ 𝑑(𝑛)2𝑁
𝑛=0

) 
(3.9) 

where, N represents the total number of samples. 

Step3 Decompose the input signal y(n) using DTCWT  

 𝑌(𝑛) = 𝑋(𝑛) + 𝐷(𝑛) (3.10) 

Where, 𝑌(𝑛), 𝑋(𝑛) and 𝐷(𝑛) are DTCWT coefficients of 𝑦(𝑛), 𝑥(𝑛), and 𝑑(𝑛), 

respectively. 

Also, 𝑌(𝑛) = 𝑌𝑟(𝑛) + 𝑖𝑌𝑖(𝑛) (3.11) 

Where, 𝑌𝑟(𝑛)and 𝑌𝑖(𝑛)are real and imaginary coefficients of 𝑌(𝑛). 

Step4 Applying Quantum inspired adaptive threshold (QAT) algorithm. 

Each wavelet coefficient with decomposition below 16 Hz of contaminated EEG signal 

may be assigned either to signal state or noise state according to quantum theory of 

information. Values of s and n are calculated using Equation (3.7) to every wavelet 

coefficient and measured the superposition state of each wavelet coefficient. The noise 

state is considered as artifact state and if the state is in noise state, set it to zero.  

Step5 Now apply the inverse DTCWT to get the corrected EEG signal in the time domain. 

The reconstructed signal 𝑥̂(𝑛) can be defined by 

 𝑥̂(𝑛) = 𝑑𝑑𝑡𝑟𝑒𝑒𝑐𝑓𝑠(𝑋̂(𝑛)) (3.12) 

Where function 𝑑𝑑𝑡𝑟𝑒𝑒𝑐𝑓𝑠(. ) computes the inverse DTCWT. 𝑋̂(𝑛) are the wavelet 

coefficients after quantum thresholding. 
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3.4 Results and Discussion 

3.4.1 EEG simulation 

Clean EEG simulated signal is generated using NI LABVIEW 2015 Biosignal toolkit. 

The LABVIEW block diagram is shown in Figure 3.2. Then, the generated signal was 

being written to excel sheet and loaded on MATLAB for signal processing. We generated 

a contaminated EEG signal using Equation (3.1) by adding Eyeblink artifacts in the clean 

EEG. The simulated EEG signal, Eyeblink artifact, and contaminated EEG signal are 

shown in Figure 3.3. Thus applied the Quantum inspired adaptive wavelet threshold 

algorithm to remove the ocular artifacts from the contaminated EEG. Figure 3.4 shows 

the comparison among clean EEG, Contaminated EEG, and the DTCWT-QAT extracted 

EEG signal. Figure 3.4 depicts that eyeblinks have been successfully eliminated without 

losing the raw EEG signal information. 

 

 

Figure 3.2 Labview Model for the generation of synthetic clean EEG signal. 
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Figure 3.3 The clean EEG signal (upper graph). EOG signal (middle graph) and 

Contaminated EEG signal (lower graph). 

 

Figure 3.4 Comparison of Clean EEG, Contaminated EEG, and DTCWT-QAT 

corrected EEG. 

For comparative study, we have performed some of the existing wavelet thresholding 

techniques popularly used for OAs removal. We have also drawn a comparison between 

DTCWT and DWT in terms of Relative Root Mean Square Error (RRMSE). We 

decomposed the contaminated EEG using DWT and applied soft threshold, hard 

threshold, and Quantum inspired adaptive threshold for removal of OAs. In DWT, 

Daubechies5 wavelet function was used with seven decomposition levels. The wavelet 
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coefficients of the added artifact signal (EOG) are eliminated by applying the hard 

threshold, soft threshold, and Quantum inspired adaptive threshold on the decomposition 

levels below 16 Hz. After thresholding, inverse DWT was performed; thus, we get the 

corrected EEG signal. 

To evaluate the comparative study of all these techniques, we have calculated the 

Relative Root Mean Square Error (RRMSE). The formula for the calculation of RRMSE 

is  

 

𝑅𝑅𝑀𝑆𝐸=
√

1

𝑁
∑ (𝑥̂(𝑛)−𝑥(𝑛))2𝑁

𝑛=0

1

𝑁
∑ 𝑥(𝑛)2𝑁

𝑛=0

× 100 

(3.13) 

The RRMSE is calculated in percentage. The accuracy of any model is considered as 

good if the value of RRMSE is low. The curves of RRMSE at different input SAR for 

various artifact removal techniques are shown in Figure 3.5. The overall performance of 

DTCWT-QAT is quite good. 

 

Figure 3.5 RRMSE curves for corrected EEG signal using (a) DTCWT-QAT (b) DWT-

QAT (c) DWT soft threshold, and (d) DWT hard threshold. 
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3.5 Application to Real EEG data 

For this work, the EEG dataset 2.1a from BCI Competition IV was used to be 

processed, which is available online at http://www.bbci.de/competition/iv/. The dataset 

consists of 22 channels of EEG recorded at a sampling frequency of 250 Hz with 3 EOG 

channels recorded simultaneously. A bandpass filter was applied to pre-process the EEG 

signal between 0.5 Hz to 100 Hz, and a notch filter was applied to eliminate line noise. 

The signal recording was performed by Institute for Knowledge Discovery (Laboratory 

of Brain-Computer Interfaces), Graz University of Technology.  

The EEG signal shown in Figure 3.6 is from channel location c3. Two eyeblinks can 

be observed at 0.6 sec and 1.8 sec. To remove these blinks, we applied DTCWT-QAT 

algorithm. Figure 3.7 shows the comparison between DTCWT-QT corrected signal and 

raw EEG signal. It can be observed that the eyeblinks have been removed successfully 

without altering the EEG signal information. 

 

Figure 3.6 EEG signal from c3 Channel acquired while performing motor imaginary 

task with two eyeblinks at 0.6 sec and 1.8 sec. 
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Figure 3.7 Comparison of real EEG signal from c3 Channel with eyeblink artifacts and 

DTCWT-QAT corrected EEG. 

3.6 Conclusion 

In this chapter, an effective adaptive threshold algorithm is proposed to address the 

issue of Ocular artifacts removal from the single-channel EEG signal. It is based on the 

quantum theory of information. We have used DTCWT for the decomposition of 

contaminated EEG. Unlike DWT, DTCWT is nearly shift-invariant and provides perfect 

reconstruction of the signal. Experiments are conducted to assess the performance of the 

proposed Quantum-inspired adaptive threshold algorithm in comparison with the soft 

threshold and hard threshold. It is shown that the RRMSE is reduced to a greater extent. 

Results obtained show that the proposed method suppresses the ocular artifacts 

successfully without affecting the EEG signal information.  


