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C H AP TER  2  

2 Literature Review 

2.1 Background 

In recent years, advancements in medical and computational sciences have developed a 

communication pathway between the human brain and external devices; such methods 

are popularly referred as Brain-computer interfaces (BCIs) [20]. As a medical application, 

BCI devices are widely used to assist people with neuromuscular disorders. Various 

control signals, such as Visually Evoked Potentials (VEP), Slow Cortical Potentials 

(SCP), p300 evoked potentials, Sensorimotor rhythms, etc., have been used to design 

BCIs [21]. 

Among many types of BCIs [22–24], motor imagery (MI) based BCI uses brain signals 

associated with the imagination of motor movement-related tasks [9]. Various studies 

have suggested that when a subject thinks about a specific motor movement, there are 

significant relative power changes that occur in the mu (8-13 Hz) and beta (13-30 Hz) 

rhythms of EEG acquired over the sensorimotor cortex area of the brain [14,25,26]. 

Subsequently, these power changes in EEG are processed and classified using pattern 

recognition methods to control external devices [27,28]. The power changes in EEG occur 

due to imagination of limb movements, are referred as event-related desynchronization 

(ERD)/ event-related synchronization (ERS), which can be further processed to control 

an external device [14]. However, EEG time series are highly contaminated by body 

motion artifacts and environmental noises, due to which distinguishing between different 

motor movements is a challenging exercise to perform [29]. Hence it is essential to 

employ preprocessing methods to suppress artifacts and noises before extracting useful 

information from the EEG signals [30]. 
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In BCI systems, another popularly used control signal is Steady-State Visually Evoked 

Potentials (SSVEP). SSVEPs are highly used due to high signal-to-noise ratio and 

robustness [31]. SSVEP is a resonance phenomenon that is primarily observed in the 

occipital lobe of brain when the subject is focusing on a light source flickering at a 

constant frequency [17]. 

This chapter of the thesis presents a brief survey of the state-of-the-art signal processing 

methods used in various studies for MI and SSVEP-based BCIs. Section 2.2 describes 

popular brain signal recording methods. Section 2.3 gives a literature survey on signal 

processing methods applied to EEG for noise and artifact reduction. Section 2.4 and 2.5 

literature reviews signal processing methods in MI-BCI and SSVEP-BCI, respectively.    

2.2 Brain Signals Recording 

The neural oscillations or brain waves are continuous time-varying patterns that originate 

due to the mental activities in the central nervous system (CNS). During a mental activity, 

a neuron interacts with another neuron in the brain, which induces an electrical current. 

The naturally induced brain current produces electric and magnetic fields, which can be 

recorded using different modalities. The commonly used modalities to map brain 

activities are magnetoencephalography (MEG) [32], Electroencephalography (EEG) 

[33], positron emission tomography (PET) [34], Electrocorticography (ECoG) [35], and 

Functional Near-Infrared Spectroscopy (fNIRS) [36]. A comparison of these acquisitions  

Table 2.1 Comparison of Different modalities used for the recording of the Brain 

activities. 

 Year Portability Temporal 

Resolution 

Spatial 

resolution 

Invasive/ non-

invasive 

EEG 1924 Yes High Low Non-invasive 

MEG 1968 No High Low Non-invasive 

PET 1977 No Low High Non-invasive 

fNIRS 1985 Yes Low High Non-invasive 

ECoG early 1950s No High Very high invasive 
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devices are drawn in Table 2.1.  

2.3 Signal processing in BCI 

EEG time series is a nonstationary and random signal; thus, its study requires various 

mathematical and signal analysis tools. It is also highly prone to noises and body artifacts. 

The types of noises mostly found in acquired EEG are power line 50 Hz noise, 

environment electromagnetic waves, and thermal noise of the electronic components 

present in the EEG acquisition device. Most of the noises are rejected by the hardware 

module of the EEG recorder. Moreover, digital filters are employed at the software level 

to eliminate the remaining noises. On the other hand, body artifacts are the muscle signals 

that contaminate the raw EEG data. Some of these body artifacts originate due to the 

motion of various body parts and can be avoided by instructing the subject not to make 

any motions while recording EEG. However, artifacts from non-voluntary motions cannot 

be avoided, such as cardiac signals. Blinking and movement of eyes, popularly referred 

as ocular artifacts, highly affect EEG, and the subject cannot completely avoid eyeball 

movements during the acquisition of EEG.  For these artifacts, signal processing of the 

contaminated EEG is done. Another need for signal processing is to extract only the useful 

information from EEG and eliminate redundant data points. In general, there are three 

types of analysis required to get useful information from the EEG signal, namely 

temporal, spectral and spatial analysis. The temporal resolution of EEG is high and 

provides good features [37]. However, the frequency and the spatial resolution of EEG 

are poor. Since EEG signal carries vital information in both frequency and time domain, 

there is a requirement of signal analysis tools that can extract time and frequency 

information at the same time. The Fast Fourier Transform (FFT), Short-Time Fourier 

Transform (STFT), and Wavelet transform have been introduced in most of the studies to 

analyze EEG [38–40]. The FFT represents the spectral component present in the 
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frequency domain but does not provide any time-domain information about the signal. 

On the other hand, STFT overcomes the problem of FFT and provides information in both 

time and frequency domain. But the shortcoming of STFT is that it does not provide 

multi-resolution information of the signal. Wavelet transform shows high multi-

resolution properties and is considered as one of the most potent tools for time-frequency 

analysis of complex signals like EEG.  

2.3.1 Preprocessing: Removal of artifacts and noises 

The brain activities generate EEG in the frequency range of 0.5-30 Hz. As explained 

earlier, noises are the unwanted signals added with the raw brain activities during EEG 

acquisition and need to be eliminated at the preprocessing stage. Digital bandpass filter 

designed with a passband frequency between 0.5 and 30 Hz suppresses the dc values and 

noises with higher frequency components. Also, a 50 Hz notch filter removes the power 

line noise. However, the body movement artifacts have frequency ranges that coincide 

with that of EEG. For instance, ECG and EMG frequency range is 0-100 Hz, and ocular 

artifacts frequency range lies between 0 and 10 Hz. Thus, motion artifacts cannot be 

removed by directly applying the bandpass filtering on the contaminated EEG.  

To serve this purpose spatial filtering methods for example, Independent component 

analysis (ICA), surface Laplacian derivation (SLD), and common average reference 

(CAR) have been proposed. Spatial Filtering requires multi-channel EEG for denoising. 

ICA is proposed for the separation of eye motion artifacts from the EEG signal in [41,42]. 

To enhance the performance, an adaptive filter was used in combination with the ICA 

[43]. SLD is generally called Laplacian filter or surface Laplacian [44–47]. SLD is 

derived by subtracting the target channel from the weighted mean of four neighbouring 

channels. Small Laplacian derivation (SLAP) and Large Laplacian derivation (LLAP) are 

the two subdivisions of SLD. SLAP takes the average of the closest four neighbouring 
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channels whereas, LLAP takes the average of the next four close channels. CAR is equal 

to denoising channel minus average of all other channels [48,49].  These techniques 

require multi-channel EEG signals for processing. However, most BCI systems are based 

on MI and Event-related potential; for such systems, single-channel EEG signal 

processing is essential. In the work of M. Davies et al. [50], ICA algorithm was used on 

single-channel signals for the first time. In this work, sources were assumed as stationary 

and discontinuous in their frequency spectrum. As all biomedical signals are 

nonstationary, these assumptions may not hold. Therefore, noise suppression in single-

channel EEG time series is an important issue for detecting accurate brain activities.  

Decomposition methods such as singular spectrum analysis (SSA), and wavelet transform 

decomposition have been used for denoising of Single EEG channel. The singular 

spectrum analysis (SSA) is an extensive method for non-linear time series analysis. SSA 

decomposed the EEG into distinct spectrums and applied thresholding to remove noises 

[51]. Compared with conventional methods, as an effective analysis technique, wavelet 

transform is a frequently used tool for nonstationary signal processing in many fields. It 

is notable that for denoising non-linear and nonstationary signals, wavelet decomposition 

[52–54] and signal separation algorithm [55,56] have been recognized as powerful tools. 

In many works, multi-resolution property of wavelet transform has been used to eliminate 

the OAs [57–60]. In general, wavelet functions are used to decompose contaminated EEG 

signal into different levels. Then a wavelet shrinkage function is used to adjust the 

threshold value, which is compared with the decomposed wavelet coefficients and 

eliminates the OA components. After that, the clean EEG time series data is reconstructed 

using inverse wavelet transform. Some of the popular shrinkage strategies in the wavelet 

domain are VisuShrink, SureShrink, BayesShrink, and NeighShrink. Dual-tree complex 

wavelet transform (DTCWT) with NeighCoeff shrinkage has been proposed in [61] as a 
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denoising algorithm for nonstationary mechanical vibration signals. The work of Miao et 

al. [62] indicates that the DTCWT based decomposition method for EEG signals is 

effective compared to those DWT-based. Decomposition of the signal using discrete 

wavelet transform (DWT) results in energy losses at the transition band of adjacent scales 

[63]. At the same time, the DWT shows a large aliasing phenomenon [64].  DTCWT can 

resolve the energy losses and aliasing problem and has some advantages, for instance, 

nearly shift-invariance, multidimensional direction selectivity, and perfect reconstruction 

[65]. Table 2.2 provides a brief description and references of signal processing methods 

in preprocessing.  

2.4 Signal processing in MI-based BCI 

MI-BCI systems have been used in medical applications, for instance, neuro-

rehabilitation of stroke patients. In the work of Jessica Cantillo-Negrete et al. [66], a 

scheme has been proposed to couple MI-BCI with a robotic orthosis device to rehabilitate 

human upper extremity post-stroke. In general, the raw EEG data of the patients are 

analyzed using computational models to classify various mental tasks. This EEG pattern 

classification can be performed using pattern recognition methods such as feature 

extraction, feature selection, and classification or regression [9,67]. 

In the case of MI EEG feature extraction, the selection of an appropriate frequency band 

is a very crucial step as most of the information lies in a particular band of frequency. In 

[14], it has been shown that the motor-related mental tasks generate event-related 

desynchronization (ERD) and event-related synchronization (ERS) patterns in two 

frequency bands, namely mu (8-13 Hz) and beta (13-30 Hz). It was reported that when 

the subject thinks about the movement of his limbs, average power in the mu rhythms 

attenuates and that in the beta rhythms increases. Therefore, for the classification of MI 

tasks, the EEG signal must be bandpass filtered in mu and beta rhythms frequency ranges.  
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Table 2.2 Signal processing algorithms in pre-processing. 

Algorithms Descriptions References 

Band-pass 

filtering and 

Notch 

filtering 

Band-pass filters are applied during the signal 

processing of EEG to suppress the dc values and 

noises with higher frequency components. Hence, 

it is important to employ band pass filtering before 

spatial filtering. The disadvantage is that some 

useful information gets eliminated. 

Notch filtering is usually implemented to remove 

the power line noise (50/60 Hz). 

[31–33,49–

54,54,54–76] 

 

ICA ICA method separates the mixed signal into 

independent components. It is capable of removing 

body artifacts such as EOG, EMG artifacts from 

EEG signal. Advance variant of ICA, namely, Fast 

ICA is popular because it converges faster than 

ICA. 

[32,49,63,74, 

77–81] 

CAR CAR considers the average activity of other 

channels as noise and thus subtract it from the 

target channel. CAR improves the signal to noise 

ration of EEG. 

[28,32,33,56, 

58,60,63,65, 

78,82–86] 

Surface 

Laplacian 

derivation 

(SLD) 

SLD finds the difference between the target 

channel and weighted mean of four neighbouring 

channels. It is divided into SLAP and LLAP. SLAP 

uses average of nearest channels and LLAP uses 

average of next four nearest channels. 

[28–

31,61,65, 

74,84,85,87–

93] 

Singular 

Spectrum 

Analysis 

SSA decomposed the EEG into distinct spectrums. 

Then, it groups the decomposed coefficients into 

EEG and noises. Only EEG coefficients are used 

during the reconstruction phase. 

 

Wavelet 

transformation 

with 

thresholding 

DWT decomposed the EEG signal and then a 

threshold on the coefficients of kth scale, i.e., the 

scale which has a frequency range 0-10 Hz as the 

strength of ocular artifacts is strong in this range of 

frequency. Finally, regenerate the artifact-free 

EEG signal using inverse-DWT. 

[94] 

CSP CSP projects the EEG into a subspace where 

variance of one class is maximized and that of 

another class is minimized. Although it is used 

mainly for feature extraction, but some studies 

used it at preprocessing stage. 

[66,80] 
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Some of the bandpass filters used by researchers are elliptical filter, Butterworth, 

Chebyshev, and finite impulse response (FIR) filter [68,69]. A few have reported the use 

of wavelet transform [70] and wavelet packet decomposition [71] for bandpass filtering 

of the EEG.  

2.4.1 Feature Extraction in MI-BCI 

Once the EEG signal is filtered, various time, frequency, and phase features are 

calculated. Some of the features most generally used in MI BCI are explained below. 

Time features: Statistical analysis of EEG in time domain provides the main information 

that exists in the signal that can improve the discrimination scope between the different 

motor movements related to mental tasks [72]. In various studies, commonly extracted 

statistical features are wavelet domain energy, sample entropy, variance, root mean 

square, and maximum of the EEG signal [73]. Band power (BP) is commonly used for 

extracting ERD/ERS patterns [74]. It computes the average power of the bandpass filtered 

EEG signal. Basically, BP is evaluated by squaring the filtered EEG and then averaging 

it over all the trials. 

Frequency Domain features: Power spectral density (PSD) is commonly used to extract 

features from EEG in the frequency domain. ERD/ERS is the relative power of the EEG 

from the channel locations C3 and C4, which provide discriminatory information for two-

class motor imagery [14]. To evaluate EEG signal power in the frequency domain, 

Fourier transform is used. 

Phase Features: In order to extract phase features, the phase relation between the EEGs 

associated with the different tasks is studied. In MI-BCI literature, mainly used phase-

based features are phase-locking value (PLV), instantaneous phase difference (IPD), and 

mean phase difference (MPD). PLV computes the phase synchronization between the 

two signals using the Hilbert transform [75]. IPD is the instantaneous phase difference 
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between each pair of EEG channels [76,77]. MPD is defined as the mean of the IPD 

between a pair of EEG signals over the time window [75]. 

Time-frequency analysis: Most common time-frequency analysis methods applied in 

BCI research are Short–Time Fourier Transform (STFT), Morlet Wavelet Transform 

(MWT), Wavelet Filter Bank (WFB), and Wavelet Packet Decomposition (WPD). STFT 

divides the time-series signal into smaller windows and then computes Fourier transforms 

of the windowed signal [78]. MWT computes the magnitude and phase coefficients of a 

time-varying signal [79]. It is a continuous wavelet transform. Multi-resolution property 

of wavelet transform has been widely used in BCI research to analyze time-frequency 

relationship in EEG signals [70]. Wavelet functions are used to decompose EEG signals 

into different frequency coefficients of details and approximations. Then, coefficients of 

useful frequency bands are used to reconstruct the EEG signal. Moreover, there are a 

variety of mother wavelet basis functions used for decomposition. Selection of a mother 

wavelet is important as the outcome of different mother wavelets may vary for the same 

problem. Researchers select mother wavelet on an experiment basis. In WPD method, 

coefficients of specific frequency bands are used as features for classification. Table 2.3 

describes feature extraction methods in MI signal processing. 

2.4.2 Feature Selection 

Although many computational algorithms have been proposed to classify the mental tasks 

in different BCI applications [27,28,109–113], obtaining a higher classification 

performance is still a challenging task. High dimensions of features extracted from MI 

data make EEG a very complex signal to analyze. To address these issues, feature 

selection techniques are in use to reject the redundant features [114]. Numerous feature 

selection techniques are being employed in various studies, 
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including principal component analysis (PCA) [115], Independent component analysis 

[116], and Evolutionary algorithms such as Firefly Algorithm (FA) [117], Differential 

Evolution (DE) [118] Particle swarm optimization (PSO), and Artificial Bee Colony 

(ABC) Optimization [119,120]. However, in various literature, efforts are made to find 

the passable combination of feature selection methods and classifiers, a few compared an 

assortment of algorithms applied to the same MI dataset to analyze their performances in 

different classifiers. In the work of Ramos et al. [121], a comparison of five filter methods 

Table 2.3 Feature extraction methods in MI signal processing. 

Methods  Description References 

Statistical 

features 

Various statistical features such as wavelet domain 

energy, sample entropy, variance, root mean square 

value, and maximum of the time series EEG signal are 

evaluated to represent main information in the signal. 

[73] 

Band power 
(BP)  

BP is computed by band-pass filtering, squaring, and 

averaging over all the trials in time domain. In 

frequency domain it is sometimes calculated using 

Fourier Transform. It contains significant information 

and has been widely used in BCI research. 

[31,51,52,63, 

65,66,68,76, 

77,81,84,88, 

89,109–113] 

Power 
spectrum 
density (PSD) 

Parametric estimation methods such as autoregression 

(AR) mode and non-parametric are used for 

calculating PSD. Other PSD methods such as 

Spectrogram, Welch, and Periodogram are calculated 

using Fast Fourier transform. PSD shows significant 

features but consumes relatively more time. 

[54,58,69,78, 

82,83,85,87, 

90,114] 

Phase 

features: PLV, 

IPD, and MPD 

Phase locking value (PLV) evaluates the phase 

synchronization between the two signals using the 

Hilbert transform [107]. The PLV range is [0-1], with 

value 0 indicating no synchrony between the signals, 

whereas 1 indicates the relative phase between the 

signals is identical.  

[75] [76,77] 

MWT and 

STFT 

STFT computes the Fourier transform on shifted time 

windowed signal. MWT, as continuous wavelet 

transform, computes the magnitude and phase 

coefficients of a time-varying signal.  

[78] [79] 

Wavelet 

packet 

decomposition 

WPD evaluates coefficients from sensorimotor 

rhythm frequency bands and uses them for 

classification. 

[71,108] 
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(Correlation-based Feature Selection (CFS), ReliefF, Consistency, mRmR, and C4.5) and 

one wrapper method (Genetic Algorithm(GA)) as a feature selection technique is drawn 

in terms of classification accuracy and kappa value in different classifiers, declaring that 

GA with linear discriminant analysis (LDA) classifier outperforms all the other 

combinations. In a study [122], a hybrid model, GA-PSO, is implemented for a two-class 

MI problem. It is reported that GA-PSO outperformed GA and PSO. 

Based on the framework, feature selection methods are categorized into three groups: the 

wrapper approach, the filter approach, and the embedded approach. The following 

paragraph defines the three approaches in detail. 

• Wrapper methods use a fitness evaluation model to select feature subsets by assigning 

a score. The subset with the best score is chosen for the classification task. The score 

of each subset is evaluated using a learning classifier. Each subset trains the classifier 

and tests using a hold-out test set. The generalization error of the outcome provides 

the score for that subset. Due to the separate learning of all the subsets, wrapper 

methods are time-consuming and computationally expensive but generally select the 

best subset of features and enhance the classification performance for a particular 

classification problem.  

• On the contrary, filter methods calculate the best subset of features without using any 

classification algorithms. There are two stages involved in filter algorithm. In the first 

stage, features are assigned a rank based on certain performance measuring methods. 

In the second stage, the higher-performing features, i.e., features with ranks above a 

manually chosen threshold rank, are selected for classification. In recent studies, 

numerous performance measuring methods have been proposed, such as Fisher score 

[123], the mutual information between the features [124], and ReliefF and its 

advanced versions [125]. 
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• Filter models are computationally more efficient than the wrapper methods since they 

evaluate the subset without utilizing the classifier and cross-validation approaches. 

However, the performance of filter methods is low for some of the applications due 

to avoidance of the biases of the classifier. For instance, the outcome of ReliefF 

algorithm would not provide relevant subset of features for Naive-Bayes because it is 

observed that in most of the problems, the generalization performance of Naive-Bayes 

classifier enhances with the elimination of relevant features [126]. On the other hand, 

wrapper model quantifies the features using a predefined classifier and avoids the 

representational biases of the classifier but takes a longer execution time due to the 

involvement of cross-validation in its structure that makes it computationally 

expensive algorithm. Embedded Models incorporate the advantages of (1) wrapper 

models - they include the interaction with the classification model and (2) filter 

models - they are far less computationally intensive than wrapper methods. Examples 

of embedded methods include Lasso Regularization [127], neighborhood component 

analysis [128], recursive feature elimination using support vector machine (SVM) 

[129] , ID3 [130], and C4.5 [131]. 

2.4.3 Classification 

In the last stage of MI-BCI system, a decision is made by a classifier to distinguish 

between the different motor imagery classes correctly. A classifier is an algorithm that 

learns from the previous data to predict the true class of future data. In motor imagery 

classification, supervised learning is most commonly used as the training data is labeled. 

Numerous studies have experimented with the classification of MI data using different 

classifiers, but the most commonly used classifiers are Linear Discriminant analysis 

(LDA), support vector machine (SVM), Bayesian classifier (BSC), and logistic regression 

(LR). 
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In LDA framework, a hyperplane is created to separate different classes. For classification 

of two-class problem, it assumes that the data is linearly separable. SVM is very simple 

yet effective to solve the problem of classification associated with a small sample size of 

the dataset, non-linear relationship, and multi-class classification. The working of SVM 

is based on the building of an optimal hyperplane as the decision-making surface to 

discriminate between the different classes. The SVM model is a representation of the data 

values as points in space, mapped so that the data values of the different classes are 

distributed by a clear margin that is globally maximum. More than half of the BCI 

researches have used either LDA or SVM for classification [132]. Another commonly 

used classifier in MI tasks, BSC, is based on Bayes theorem. It is a statistical method that 

evaluates posteriori probability based on priori probability. BSC is relatively more time-

consuming. Other commonly used classifiers in MI BCI research are Neural network 

(NN), K-nearest neighbours (KNN), Mahalanobis distance (MD), and Hidden Markov 

model (HMM). NN is a combination of artificial neurons arranged in input layer, hidden 

layers, and output layer. NNs such as Linear vector quantization and backpropagation NN 

are used for MI task classification in some studies [133–136]. KNN is generally used for 

multi-class classification problems. It is prone to the curse of dimensionality and hence, 

rarely used for MI tasks classification [137,138]. MD is suitable for two-class and multi-

class and has been used to develop asynchronous BCI [139,140]. In a research [141], an 

online BCI system is developed using HMM classifier. However, the use of HMM is very 

limited in BCI field.  Other rarely used classifiers are Gaussian classifier and random 

forest [142,143]. Table 2.4 provides a brief description and references of classification 

methods in MI signal processing. 
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2.4.4 Spatial filtering-based models in MI-BCI: 

In recent years, various computational models based on pattern recognition techniques 

and machine learning are proposed for MI task classification [27,28,169–171]. Among 

them, common spatial pattern (CSP) is the most widely used algorithm for feature 

extraction from the raw MI EEG dataset [172]. CSP projects the MI EEG data recorded 

for two classes (left-hand and right-hand MI) into a subspace such that the data in new 

subspace become more discriminative between the two classes [172]. The variance of the 

Table 2.4 Classification methods in MI signal processing. 

Methods  Descriptions  References 

LDA LDA creates a hyperplane to separate different classes. 

It assumes that the data is linearly separable to solve a 

two-class problem. It is used frequently in BCI. 

[30,31,33,50, 

51,53,54,54, 

55,59,61, 

65–67,69–

73,77,81,84, 

87,88,109,112, 

113,140–142] 

SVM SVM builds an optimal hyperplane as the decision-

making surface to discriminate between the different 

classes. In SVM, the data values of the different classes 

are distributed by a clear margin that is globally 

maximum. SVM gives good classification performance 

in BCI field and is less prone to curse of dimensionality. 

[56,58,60, 

64,65,68,73, 

75,78,86,91, 

92,111,113, 

141,143–145] 

BSC BSC is a statistical method that calculates posteriori 

probability based on priori probability. This algorithm 

takes relatively more time. 

[52,63,72,85, 

93,146] 

NN NNs are suitable to train almost all kind of datasets. It 

uses an assortment of artificial neurons arranged in 

layers. For MI tasks classification, Linear vector 

quantization NN and backpropagation NN are used in 

some studies. 

[133–136] 

KNN KNN is seldomly used for MI classification because it is 

suitable for multi-class problems. 

[137,138] 
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projected data from one class gets maximized while that from the other class gets 

minimized. With these variance values, a feature set is generated to train a classifier. 

However, the performance of CSP is dependent on the choice of the frequency band. In 

general, CSP is applied on a wide frequency band of range 4-40 Hz. This manual selection 

of a fixed wide frequency band for different subjects leads to insignificant classification 

rate because the neural responses are subject-specific. To alleviate this issue, 

advancements have been made in conventional CSP algorithm by filtering EEG using 

different narrow frequency band filters and then applying frequency band selection 

algorithms to select subject-specific frequency bands automatically [68,173–175]. In the 

work of [173], a method, namely, common spatio-spectral pattern (CSSP), was proposed 

to enhance the CSP performance by optimizing a finite impulse response filter within 

CSP. An improved CSSP method, termed as Common sparse spectral-spatial pattern 

(CSSSP), was proposed by [176], which finds spectral patterns common to all the 

channels instead of finding different spectral patterns for each channel as in CSSP.  

Further, sub-band common spatial patterns (SBCSP) proposed in [177] used multiple 

narrow bandpass filters to filter the EEG before extracting the CSP features separately 

from each sub-band. After that, linear discriminant analysis (LDA) reduced the 

dimensionality of SBCSP extracted features. However, SBCSP attained a higher 

classification performance in comparison with CSSSP, CSSP, and CSP, but the mutual 

information between the CSP features from different sub-bands was ignored. The work 

proposed in [68] presented a filter bank common spatial pattern (FBCSP) to select optimal 

frequency band by measuring the correlation among the CSP features from multiple sub-

bands. Recently, discriminative filter bank common spatial pattern (DFBCSP), an 

advanced variant of FBCSP algorithm, was introduced [178], where only the most 
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discriminative sub bands were chosen by exploiting a fisher score. Table 2.5 gives brief 

description and references of spatial filtering-based models in MI signal processing. 

Table 2.5 Spatial filtering-based models in MI signal processing. 

Methods  Descriptions  References 

CSP CSP enhances the discriminating capabilities between 

the classes by maximizing the variance of one class 

while minimizing that of the other class.  

A bandpass filter with a wider frequency band (4-

40Hz) is applied to the EEG to extract CSP features. 

However, a fixed wide frequency band fails to provide 

optimal classification results because ERD/ERS 

patterns occur at different frequency bands in different 

subjects [179]. Hence, the performance of CSP is 

highly dependent on the choice of the frequency band 

in which MI-related EEG is filtered. 

CSP 

[50,51,53, 

54,71,75,146]; 

 

CSP-log 

[28,30,33,54, 

55,67,70,72, 

73,77,86,164, 

165] 

 CSSP CSSP enhanced the CSP performance by optimizing a 

finite impulse response filter within CSP.  

An improved CSSP method, termed as Common sparse 

spectral-spatial pattern (CSSSP), was proposed, which 

finds spectral patterns common to all the channels 

instead of finding different spectral patterns for each 

channel as in CSSP. 

CSSP [173] 

CSSSP [176] 

SBCSP In SBCSP, filters were utilized to filter the EEG, and 

thus CSP features were extracted. However, SBCSP 

achieved significant classification results but ignored 

the mutual information between the CSP features from 

various sub-bands. 

[177] 

FBCSP FBCSP used mutual information-based feature 

selection to optimize CSP features at different 

frequency bands. 

[68] 

DFBCSP As an advanced version of FBCSP, Discriminative 

FBCSP (DFBCSP) applied overlapped shifted filters 

on the EEG before extracting CSP features and selected 

the optimal sub-bands evaluating a fisher score 

[178] 
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2.4.5 Time- window optimization models in MI-BCI: 

Apart from optimizing the frequency bands, another critically important but very rarely 

investigated research area is the optimization of time windows of MI-related EEG. In 

most of the previous studies [68,182], the time segment used by feature extraction methods 

for MI classification is usually fixed (i.e., between 0.5 and 2.5 s after the cue), but the 

brain of different subjects shows different time latencies to given MI tasks [183]. MI 

paradigm generally has an imagination preparation period (0 to 1 s) and post imagination 

period (3.5 to 4 s) [183]. These intervals may not show the presence of MI-related patterns 

in all subjects. Moreover, a significant time window that captures discriminative features 

varies subject to subject [184]. Therefore, for each subject, it is important to select a time 

window that captures discriminative features. Hence, simultaneous optimization of time 

windows and frequency bands is crucial to further improve the MI classification. 

Basically, EEG is segmented into multiple time windows using sliding time window 

approach, then each time window is filtered at multiple frequency bands, and finally, 

discriminative features are extracted. With time windows and frequency bands, the 

extracted feature space becomes multi-view tensor data. Algorithms [184–186], which 

have used time window optimization and frequency band optimization for MI 

classification, converted the multi-view tensor EEG into a single large matrix by 

unfolding and concatenating the multiple matrices and then applying a feature selection 

method. However, this approach results in loss of internal structure of multi-view EEG 

data and degrades the BCI classification accuracy [187]. 

2.5 Signal processing in SSVEP-based BCI 

Numerous target identification techniques have been designed to identify SSVEPs in BCI 

[17,188,189]. The Power Spectrum Density Analysis (PSDA) – based methods such as 

Fast Fourier Transform (FFT) were primarily used for this purpose [17]. Feature 
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extraction method in SSVEP based BCI detects the frequency in EEG time series. PSDA 

uses the FFT spectral calculation method to identify the SSVEP frequency. The 

disadvantage of PSDA is prone to noise. To overcome that, superior methods are 

introduced. In the work of Lin et al. [190], canonical correlation analysis (CCA) is 

proposed for feature extraction in SSVEP. The CCA method evaluates the maximal 

correlation coefficient between the predefined sinusoidal reference signals and multi-

channel EEG signals filtered at simulation frequency. Thus, it recognizes the target 

frequency using the evaluated canonical correlation values. The CCA method has found 

wide applications in online SSVEP BCI research because of its advantages like 

superiority in performance, ease of execution, and no calibration[18,191–193]. CCA 

outperformed PSDA methods. Hence advanced variants of CCA were introduced aiming 

to further improve the classification accuracy [194–196]. Although CCA method is 

effective in identifying SSVEPs, its performance is limited by involvement of 

spontaneous EEG signals [197]. In some studies[194,198], Effects of spontaneous EEG 

signals on the performance of CCA-based SSVEPs detection are reduced by 

incorporating phase and latency information in CCA method. Some of the advanced 

versions of CCA are phase constrained CCA (PCCA), individual template-based CCA 

(IT-CCA), multi-way CCA (MwayCCA), L1-regularized multi-way CCA (L1-MCCA), 

and multi-set CCA (MsetCCA). Table 2.6 describes the advanced variants of CCA 

method. 

Kalunga et al. [188] presented the use of Riemannian geometry in online SSVEP-based 

BCI. However, all these methods do not incorporate learning algorithms, which have been 

used in various BCIs other than SSVEP-based BCI [199,200]. Also, these methods have 

shown good accuracy in target identification when the subject is actually focusing on the 

target, but they do not identify idle state, i.e., when subject is not targeting any frequency, 
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with the same accuracy. Hence increased number of False Positive outputs are often 

observed in these SSVEP-based BCIs.  

Table 2.6 Advance CCA methods in SSVEP signal processing. 

Method  Description References 

PCCA In PCCA approach, the phases of the sinusoidal 

reference signals were fixed according to the visual 

latency estimated from the calibration data.  

[194] 

CCA (IT-CCA) IT-CCA method, the reference signals were VEP 

templates obtained by averaging across multiple 

EEG trials in the calibration data from each 

individual.  

[198] 

MwayCCA MwayCCA method finds appropriate reference 

signals for SSVEP detection based on multiple 

standard CCA processes with the calibration data.  

[195] 

L1-MCCA L1-MCCA method optimizes the reference signals in 

SSVEP recognition.  

[201] 

MsetCCA MsetCCA method optimizes the reference signals 

from common features in multiple calibration trials.  

[196] 

 

 


