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P R EF A CE  

The research work presented in this thesis is divided into eight chapters as follows. In 

chapter 1, motor imagery (MI)- based and steady-state visual evoked potentials (SSVEP)-

based brain-computer interfaces (BCIs) are introduced, incorporating the explanation of 

key components required to design a practical BCI device. The objectives of this thesis 

are briefly explained. Chapter 2 reviews state-of-the-art signal processing techniques in 

MI and SSVEP EEG-based BCIs a with specific attention on the feature extraction, 

feature selection, and classification techniques used. The first objective of this thesis is 

covered in chapter 3. We have proposed the use of dual-tree complex wavelet transform 

(DTCWT) with quantum-inspired adaptive wavelet threshold algorithm for the 

elimination of OAs from single-channel EEG signal. Chapter 4 comprises the second 

objective of this work and proposes a novel method to regularize neighborhood 

component analysis (NCA) to select the MI data. In chapter 5, we covered the third 

objective and designed a dual-tree complex wavelet transform-based filter bank to filter 

the EEG into sub-bands instead of traditional filtering methods, which improved the 

spatial feature extraction efficiency. Chapter 6 covers the fourth objective and presents a 

novel multi-view feature selection method based on regularized neighbourhood 

component analysis to simultaneously optimize time windows and frequency bands. In 

chapter 7, we have presented the work for the fifth objective; we propose a class labeling 

method where a classifier is trained against the non-target class. Chapter 8- presents a 

summary and conclusions of the experimental work and suggests scope for further work. 
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