ACKNOWLEDGEMENTS

Through this page, I offer my salutation to Mahamana Pt. Madan Mohan Malviya Ji, the creator of this pious seat of learning.

It is indeed my proud privilege to express my deep sense of gratitude, respect, indebtedness and sincere regards to my Supervisor, **Dr. Shiru Sharma**, for her excellent supervision, skilled and valuable guidance, stimulating discussion, unfailing support, immense help, and constant encouragement over the entire period of my association with her. I am grateful to her for her sincere concern both for academics and personal welfare and parental care throughout the research period that she has extended to me for the successful completion of my research work. I can never forget her affectionate, caring nature and moral support which provides the feeling of being at home always. I have no words in my dictionary to explain about her. I am proud to have a teacher like her who is always motivative and supportive, even in most adverse situations. In fact, she has been a source of inspiration for me to have an optimistic approach in life and do my best.

I wish to express my heartfelt thanks to **Prof. Prasun Kumar Roy**, the Coordinator, of School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, School of Biomedical Engineering, IIT (BHU) for his constant support and blessings.

It is a profound privilege to be a student of School of Biomedical Engineering. I would like to express my thanks to the faculty members of the school to **Prof. Neeraj** Sharma, Retired Prof. Ranjana Patnaik, Retired Prof. Nira Misra, Retired Prof. A.K. Ray, Dr. Sanjay Kumar Rai, Dr. Sanjeev Kumar Mahto, Dr. Marshal, Dr. Pradip Paik and Dr. A. R. Jac Fredo who have helped me a lot in overcoming the bottlenecks I encountered during my studies with their valuable advice. I am thankful to **Prof. Sanjay Kumar Singh**, my external RPEC member, Department of Computer Science and Engineering, IIT (BHU) for giving me valuable suggestions throughout my research period.

I am highly thankful to my lab mates Dr. Anuranjeeta, Dr. Hemlata Shakya, Mr. Alok Prakash, Mr. Romel Bhattacharjee, Mr. Alok Tiwari, Mr. Taresh Sarvesh Sharan, Mr. Neeraj Sharma, Mr. Sharique Ahmed, and Mr. Soni Deep. for their affection and support during whole journey.

I have been highly blessed with a friendly and cheerful group of fellow research scholars. I would like to express my heartfelt gratitude to especially **Mr. Alok Tiwari**, **Ms. Neelima Varshney, Mr. Rahul Kumar, and all my seniors and juniors** who directly or indirectly supported my research work. Their companionship and lively discussions in and outside the laboratory were great sources of inspiration.

I am also grateful to the non-teaching staff members Dr. Anuj Srivastava Mr. Avinash Kumar Srivastava, Mr. Divyanshu Singh, Mr. Vipin Kumar Verma, Mr. Ajay Kumar, Mr. Bhuwaneshwari Sharan, Mr. Bharat Kumar Vishwakarma, Mr. Kishori Lal, Mr. Parmatma Nand Singh, Mr. Suresh Kumar, Mr. Sri Prakash Sharma for their support and cooperation during my research work.

Words plunge insufficient to express my regards and deep emotions to my beloved parents **Mr. Hamvir Singh Malan & Mrs. Rekha Rani Malan** and my sister **Ms. Ruchika Chaudhary** for being the source of unconditional love and inspiration to move on the way to my goal of achieving higher education. Their everlasting encouragement, patience, sacrifice, and blessings have brought me up to this stage. Parents being earthly God deserve much more than what I can express in words. I would like to express my gratitude towards the departments of IIT (BHU), Varanasi for providing me the necessary

vi

facilities for conducting my research work smoothly. School of Biomedical Engineering for providing the lab facilities like Computer, CRO, EEG acquisition Device, GPU, NI ELVIS-II Board, and the softwares like LabView, and MATLAB.

I take this occasion to acknowledge the financial assistance provided by the Ministry of Human Resource and Development in the form of Teaching Assistantship.

Again, I wish to express a word of thanks to all those hands that helped me in some way or the other in pursuing my research work and for the completion of the thesis. I apologize unreservedly for any mistakes, omissions or failure to acknowledge fully.

Finally, I bow my head humbly before the almighty **God** without whose consent and blessings, this work would have been impossible.

Date:

Place: IIT (BHU), Varanasi

(Nitesh Singh Malan)

LIST OF ABBREVIATIONS AND SYMBOLS

ABC	Artificial Bee Colony
BSC	Bayesian Classifier
BCI	Brain-Computer Interface
CCA	Canonical Correlation Analysis
CCA	Canonical Correlation Analysis
CNS	Central Nervous System
CAR	Common Average Reference
CSSSP	Common Sparse Spectral Spatial Pattern
CSP	Common Spatial Pattern
CSSP	Common Spatio-Spectral Pattern
CFS	Correlation-based Feature Selection
DE	Differential Evolution
DFBCSP	Discriminative Filter Bank Common Spatial Pattern
DTCWT	Dual-Tree Complex Wavelet Transform
ECoG	Electrocorticography
EEG	Electroencephalogram
ERD	Event-Related Desynchronization
ERP	Event-Related Potentials
ERS	Event-Related Synchronization
EB	Eyeblink
FFT	Fast Fourier Transform
FBCSP	Filter Bank Common Spatial Pattern
FIR	Finite Impulse Response

FA	Firefly Algorithm	PSD	Power spectral density
fNIRS	Functional Near-Infrared Spectroscopy	PSDA	Power Spectrum Density Analysis
GA	Genetic Algorithm	PCA	Principal Component Analysis
HMM	Hidden Markov model	RNCA	Regularized NCA
ICA	Independent component Analysis	SMR	Sensorimotor Rhythms
IT-CCA	Individual Template-based CCA	STFT	Short-Time Fourier Transform
ITR	Information Transfer Rate	SSA	Singular Spectrum Analysis
IPD	Instantaneous Phase Difference	SCP	Slow Cortical Potentials
KNN	K-nearest neighbours	SLAP	Small Laplacian Derivation
LLAP	Large Laplacian derivation	SSVEP	Steady-State Visual Evoked Potential
LDA	Linear Discriminant Analysis	SBCSP	Sub-Band Common Spatial Patterns
LR	Logistic Regression	SVM	Support Vector Machine
MEG	Magnetoencephalography	SLD	surface Laplacian derivation
MD	Mahalanobis distance	VEP	Visually Evoked Potentials
MPD	Mean Phase Difference	WPD	Wavelet Packet Decomposition
MWT	Morlet Wavelet Transform	Ø	Hilbert Transform
MI	Motor Imagery	ω	Wavelet Coefficient
Multi-set CCA	Multi-set CCA	Т	Threshold Value
MwayCCA	Multi-way CCA	λ	RNCA Regularization Parameter
NN	Neural network	p_0	Classification Accuracy
OAs	Ocular Artifacts	L	RNCA Hyperparameter
PSO	Particle swarm optimization	mV	mili Volts
PCCA	Phase Constrained CCA	uV	micro Volts
PLV	Phase Locking Value		
PET	Positron Emission Tomography		

LIST OF FIGURES

Figure No.	Figure description	Page
		No.
Figure 1.1	International 10-20 system.	2
Figure 1.2	Block diagram representing the components of an MI-based BCI	5
	Device.	
Figure 1.3	Basic building blocks in SSVEP based BCI.	7
Figure 3.1	(a) Analysis Filter bank of DTCWT and (b) Synthesis Filter bank	32
	of DTCWT.	
Figure 3.2	Labview Model for the generation of synthetic clean EEG signal.	37
Figure 3.3	The clean EEG signal (upper graph). EOG signal (middle graph)	38
	and Contaminated EEG signal (lower graph).	
Figure 3.4	Comparison of Clean EEG, Contaminated EEG, and DTCWT-	38
	QAT corrected EEG.	
Figure 3.5	RRMSE curves for corrected EEG signal using (a) DTCWT-	39
	QAT (b) DWT-QAT (c) DWT soft threshold, and (d) DWT hard	
	threshold.	
Figure 3.6	EEG signal from c3 Channel acquired while performing motor	40
	imaginary task with two eyeblinks at 0.6 sec and 1.8 sec.	
Figure 3.7	Comparison of real EEG signal from c3 Channel with eyeblink	41
	artifacts and DTCWT-QAT corrected EEG.	
Figure 4.1	DTCWT (a) Analysis filter bank of DTCWT and (b) synthesis	45
	filter bank of DTCWT.	

- Figure 4.2 Workflow elucidates the proposed method used to reduce the 53 high dimensionality of MI Dataset.
- **Figure 4.3** Weights assigned to different features using (a) ReliefF 54 algorithm and (b) Principal Component Analysis (PCA).
- Figure 4.4 Regularized Neighbourhood component analysis as feature 55 selection (a) Estimation of the regularization parameter λ_{Best} at minimum loss value. (b) feature weights calculated using λ_{Best} =0.0077.
- Figure 4.5Comparison of the average number of features selected between56four feature selection algorithms: ReleifF, PCA, GA, and RNCAfor 19 different training sessions of 2 motor imagery datasetsfrom BCI competition II (dataset III) and IV (dataset 2b). It alsoindicates the standard deviation from the mean value.
- Figure 4.6 The number of times a feature is selected by RNCA for ten 62 subjects. Results indicate that the RNCA feature selection method is capable of selecting optimal features that occur at different frequency bands for different subjects.
- Figure 4.7 Change in classification Accuracy (CA) with respect to 63 parameter L of RNCA for five subjects BT102, BT301, BT502, BT702, and BT902, respectively.
- Figure 5.1
 Workflow presents the working of the proposed MI spectral 73

 spatial feature optimization algorithm.
 73
- Figure 5.2 Dispersion of the best two features in 2-D, selected by the 84 FBCSP (MI), DFBCSP (MI), and the proposed DTCWT-CSP (NCA) for (a) subject "B0503T" from BCI Competition IV

(Dataset 2b), (b) subject "k6b" from BCI competition III Dataset IIIa right hand vs. left hand MI, and (c) subject "L1b" from BCI competition III Dataset IIIa for tongue vs. foot MI.

- Figure 5.3 Time-frequency plots and averaged subband power topographic head plots estimated after filtering using (a) DTCWT based filter bank, (b) Butterworth filter, (c) Elliptical Filter, and (d) Chebyshev Type II filter. Filter of frequency band 8-32Hz filtered the EEG for time-frequency analysis. Whereas topographic head plots present averaged band power at 8-16Hz during MI task. Red lines indicate start and end of the cue at t=3s and t=4s, respectively. MI tasks started with the cue at t=3s.
- Figure 5.4 Spatial filters at feature indices for (a) Subject "K3b" of BCI 89 competition III Dataset IIIa and (b) subjects "B0103T" and "B0603T" of BCI Competition IV (Dataset 2b). Corresponding feature weights estimated by the proposed method are listed in Table IV and V.

90

86

- Figure 5.5 Classification accuracies obtained by each subject from BCI Competition IV (Dataset 2b) for varying number of trials. Note: the trend line shows the linear degradation in the average classification accuracy as the length of the trials decreases.
- Figure 6.1
 Illustration of multi-view feature extraction from MI-related
 99

 EEG dataset for classification. Naturally, EEG data has three modes: channels, time, and trials. In the first stage, EEG time
 99

series of each trial is segmented into K multiple time windows. Next, each time window is filtered at three frequency bands using DTCWT filter bank. Afterward, CSP is executed on filtered EEG to evaluate MI-related features. The final feature space has K matrices. Columns of each such matrix have DTCWT CSP features, and rows represent trials.

- Figure 6.2 Flow chart presents the approach of tuning the regularization 103 parameter within the NCA framework for optimal feature selection.
- Figure 6.3 The workflow elucidates the proposed feature selection method 105 to optimize time windows and frequency band CSP features of MI-related EEG. Optimization is performed under a structured-based multi-view learning environment where RNCA is applied on each of the matrices of feature space (extracted in Figure 6.1) for optimal feature selection. Subsequently, all the selected features are combinedly used to train an SVM classifier. During the test phase, similar multi-view features are extracted from the Test data and predict the MI class.
- Figure 6.4 Performance of the proposed method for time window optimization: a), Pictorial representation of the feature space learned by the proposed method for subject A05T. In each time window, we have three frequency bands, each of which contains 4 CSP features. Blue boxes show the selected features at different time windows and frequency bands. b) Presents the feature weights assigned to all the six time windows at CSP

114

feature index 11 (i.e., features marked by orange outline in 4.a). c) spatial filters all time windows (i.e., features marked by orange outline in 4.a). From spatial filters, it can be observed that the presence of ERD/ERS in sensorimotor cortex is strong at time windows -0.5s to 1.5s, 0.5s to 2.5s, and 2s to 4s, and that's why the proposed algorithm has chosen CSP features of these time windows.

- Figure 6.5 Performance of the proposed method for frequency band 115 optimization: a), Pictorial representation of the feature space learned by the proposed method for subject k6b. In each time window, we have three frequency bands, each of which contains 4 CSP features. Blue boxes show the selected features at different time windows and frequency bands for subject k6b. b) Presents the feature weights assigned to six frequency band csp features at time window 0.5s to 2.5s (i.e. features marked by red outline in 5.a). c) spatial filters of six frequency band csp features at time window 0.5s to 2.5s (i.e. features marked by red outline in 5.a). From spatial filters, it can be observed that the presence of ERD/ERS in sensorimotor cortex is strong for CSP feature index 3,4, and 6 and since the proposed algorithm selected only these features proves its robustness in optimizing frequency bands.
- Figure 6.6
 Average number of features selected by the RNCA for three BCI
 116

 datasets for different motor imagery tasks classification.

- **Figure 6.7** Feature optimization at a particular time window for subject k3b 117 from dataset 2 (right vs. left-hand MI task) (a) Estimation of the regularization parameter $\lambda = \lambda_{best}$ at minimum loss value. (b) Feature weights calculated using λ_{best} . Although these graphs show feature selection in single time window, with similar tuning and weight assigning technique CSP features at different time windows are optimized.
- Figure 6.8 Change in classification accuracies according to the varying 118 length of trials.
- **Figure 6.9** Computational time consumed by CSP, CSP_{STW}, FBCSP, 120 FBCSP_{STW}, DFBCSP, and DFBCSP_{STW}, and the proposed algorithm for best feature space generation.
- Figure 7.1 Workflow of the proposed method. 125
- Figure 7.2 Framework of experiment performed. 127
- Figure 7.3 Comparison of SSVEP detection between three methods: CCA 129 with threshold, FFT, and proposed training method for (a) subject 1 (b) subject 2, and (c) Subject 3. Zero detected frequency corresponds to idle-state.
- Figure 7.4 Real-time control of a LED panel using the proposed method. 130

xvii

LIST OF TABLES

Table No.	Table description	Page
		No.
Table 2.1	Comparison of Different modalities used for the recording of the	12
	Brain activities.	
Table 2.2	Signal processing algorithms in pre-processing.	17
Table 2.3	Feature extraction methods in MI signal processing.	20
Table 2.4	Classification methods in MI signal processing.	24
Table 2.5	Spatial filtering-based models in MI signal processing.	26
Table 2.6	Advance CCA methods in SSVEP signal processing.	29
Table 4.1	Description of different features extracted using statistical,	47
	frequency and phase analysis.	
Table 4.2	Comparison of classification accuracy (CA), kappa coefficient	58
	and the number of features selected (FS) between ReliefF, PCA,	
	GA and RNCA for motor imagery data of 19 different training	
	sessions of 2 different datasets from BCI competition II (dataset	
	III) and IV (dataset 2b). Values in boldness indicate the largest	
	value compared with all others.	
Table 4.3	Mean rank of feature selection methods for the Friedman test.	60
Table 4.4	Statistical analysis of classification accuracy differences between	60
	the compared methods on BCI competition IV Dataset IIb:	
	Results of Wilcoxon signed ranks test as post hoc with	
	alpha=0.05.	

- Table 4.5
 Averaged classification performance metrics of SVM classifier
 60

 on BCI competition IV dataset 2b present a comparison between
 60

 compared feature selection methods. Values in boldness indicate

 the largest value compared with all others.
- **Table 4.6**Comparison of the average processing time of four feature64selection methods: ReliefF, PCA, GA, and RNCA. SVM. Valuesin boldness indicate the largest value compared with all others.
- Table 5.1 Comparison of classification accuracies (CA) (in %) achieved by 81 the CSP (7-30 Hz), CSP (7-13 HZ), FBCSP (MI), DFBCSP (MI) and the proposed DTCWT-CSP (NCA) method respectively. CA is evaluated using an SVM classifier for BCI Competition IV (Dataset 2b). For each subject, Values in boldness indicate the largest value compared with all others. Further, p-values are obtained by the paired t-test between the results of DTCWT-CSP (NCA) and each of the other methods.
- Table 5.2 Comparison of classification accuracies (%) achieved by the CSP 82 (7-30 Hz), CSP (7-13 HZ), FBCSP (MI), DFBCSP (MI) and the proposed DTCWT-CSP (NCA) method respectively. CA is evaluated using an SVM classifier for BCI competition III Dataset IIIa. For each subject, Values in boldness indicate the largest value compared with all others. Further, p-values are obtained by the paired t-test between the results of DTCWT-CSP (NCA) and each of the other methods.

- Table 5.3 Lists the classification accuracies (CA) (in %) achieved by 83 feature selection methods: ReliefF, Mutual Information, Genetic Algorithm, and NCA for BCI Competition IV (Dataset 2b). The number of features selected (FS) by the algorithms are written in brackets. The feature extraction method used for all these algorithms is DTCWT-CSP and SVM classifier is trained to evaluate classification accuracies using k-fold cross validation. Values in boldness indicate the largest value compared with all others. Further, p-values are obtained using paired t-test between the results of DTCWT-CSP (NCA) and each of the other methods.
- Table 5.4Feature weights estimated by the proposed algorithm for87Dataset2. Boldface values indicate selected features. Threshold
value for the selection of a feature is 5% of the maximum feature
weight in each subject.
- **Table 5.5** Feature weights estimated by the proposed algorithm for88Dataset1. Boldface values indicate selected features. Threshold
value for the selection of a feature is 5% of the maximum feature
weight in each subject.
- Table 6.1 Classification accuracies (CA) (%) achieved using CSP, CSP_{STW}, 110
 FBCSP, FBCSP_{STW}, DFBCSP, and DFBCSP_{STW}, and the proposed algorithm on BCI competition IV dataset 2a (between two classes Left Hand vs. Right Hand, Left Hand Vs. Foot, and Right Hand vs. Foot). SVM classifier is learned and CA is calculated using 10-fold Crossvalidation. The highest CA

obtained is marked in boldface for each subject. In addition, pvalues are calculated using paired t-test between the proposed method and each of competing methods.

- **Table 6.2**Classification accuracies (CA) (%) achieved using CSP, CSP_{STW},111FBCSP, FBCSP_{STW}, DFBCSP, and DFBCSP_{STW}, and the
proposed algorithm on BCI competition III dataset IIIa. SVM
classifier is learned and CA is calculated using 10-fold
Crossvalidation. The highest CA obtained is marked in boldface
for each subject. In addition, p-values are calculated using paired
t-test between the proposed method and each of competing
methods.
- Table 6.3 Classification accuracies (CA) (%) achieved using CSP, CSP_{STW}, 111
 FBCSP, FBCSP_{STW}, DFBCSP, and DFBCSP_{STW}, and the proposed algorithm on BCI Competition IV dataset 2a. SVM classifier is learned and CA is calculated using 10-fold Crossvalidation. The highest CA obtained is marked in boldface for each subject. In addition, p-values are calculated using paired t-test between the proposed method and each of competing methods.
- **Table 7.1** Details of the subjects who performed the SSVEP task.127
- Table 7.2Comparison of classification accuracy, confusion matrices and128ITR between three methods: CCA with threshold, FFT, andproposed CCA+LDA training method.

TABLE OF CONTENTS

PREFACE

The research work presented in this thesis is divided into eight chapters as follows. In chapter 1, motor imagery (MI)- based and steady-state visual evoked potentials (SSVEP)based brain-computer interfaces (BCIs) are introduced, incorporating the explanation of key components required to design a practical BCI device. The objectives of this thesis are briefly explained. Chapter 2 reviews state-of-the-art signal processing techniques in MI and SSVEP EEG-based BCIs a with specific attention on the feature extraction, feature selection, and classification techniques used. The first objective of this thesis is covered in chapter 3. We have proposed the use of dual-tree complex wavelet transform (DTCWT) with quantum-inspired adaptive wavelet threshold algorithm for the elimination of OAs from single-channel EEG signal. Chapter 4 comprises the second objective of this work and proposes a novel method to regularize neighborhood component analysis (NCA) to select the MI data. In chapter 5, we covered the third objective and designed a dual-tree complex wavelet transform-based filter bank to filter the EEG into sub-bands instead of traditional filtering methods, which improved the spatial feature extraction efficiency. Chapter 6 covers the fourth objective and presents a novel multi-view feature selection method based on regularized neighbourhood component analysis to simultaneously optimize time windows and frequency bands. In chapter 7, we have presented the work for the fifth objective; we propose a class labeling method where a classifier is trained against the non-target class. Chapter 8- presents a summary and conclusions of the experimental work and suggests scope for further work.

List of Figu	resxiii
List of Tab	les xix
List of abbi	reviations and symbolsxxiii
Preface	xxvi
Chapter 1.	
1 Introdu	action and Objectives1
1.1 Ba	ckground1
1.2 Mo	otor Imagery (MI)-based BCI
1.2.1	Block Diagram of an MI-Based BCI Device4
1.2.2	MI task
1.3 Ste	ady state visual evoked potentials (SSVEPs)-based BCI6
1.4 Ch	allenges
1.4.1	Removal of Ocular artifacts from single-channel EEG:
1.4.2	Feature selection of MI-EEG signals:
1.4.3	Spectral- Spatial feature optimization of MI-EEG signals:
1.4.4	Multi-view MI-EEG classification9
1.4.5	Improving recognition rate of SSVEP in real-time
1.5 Ob	jectives9
Chapter 2.	
2 Literat	ure Review
2.1 Ba	ckground11
2.2 Br	ain Signals Recording12
2.3 Sig	nal processing in BCI
2.3.1	Pre-Processing: Removal of artifacts and noises14
2.4 Sig	nal processing in MI-based BCI
2.4.1	Feature Extraction in MI-BCI
2.4.2	Feature Selection
2.4.3	Classification
2.4.4	Spatial filtering-based models in MI-BCI:
2.4.5	Time- window optimization models in MI-BCI:
2.5 Sig	nal processing in SSVEP-based BCI
Chapter 3.	

3 Removal of Ocular artifacts from Single channel EEG signal using DTCWT with Ouantum inspired Adaptive Threshold		
3.1 Introduction	30	
3.2 Materials and methods	31	
3.2.1 Dual-Tree Complex Wavelet Transform (DTCWT)	31	
3.2.2 Thresholding	32	
3.2.3 Quantum inspired adaptive threshold (QAT)	34	
3.3 Application of DTCWT-QAT for removal of ocular artifacts from EEG 3	35	
3.4 Results and Discussion	37	
3.4.1 EEG simulation	37	
3.5 Application to Real EEG data4	10	
3.6 Conclusion4	11	
Chapter 44	12	
4 Feature Selection using Regularized Neighbourhood Component Analysis to		
Enhance the Classification Performance of Motor Imagery Signals4	12	
4.1 Introduction	12	
4.2 Methods and Materials	13	
4.2.1 EEG Dataset and paradigm	13	
4.2.2 Preprocessing4	14	
4.2.3 Feature Extraction	15	
4.2.4 Feature Selection	17	
4.2.5 Neighbourhood component analysis	50	
4.2.6 Proposed Method: RNCA as Feature Selection	51	
4.2.7 Classification	53	
4.3 Results	54	
4.3.1 Feature selection results:	54	
4.3.2 Classification Performance:	56	
4.4 Discussion	59	
4.4.1 Selection of optimal features by RNCA	50	
4.4.2 Configurable parameter	52	
4.4.3 Computational complexity	53	
4.5 Conclusion	5 5	
Chapter 5	56	
5 Motor imagery EEG spectral-spatial feature optimization using Dual-Tree		
Complex wavelet and Neighbourhood Component Analysis)6	
5.1 Introduction)6	

5.2	Methods and Materials	68
5.2	.1 Notations	68
5.2	.2 Band Pass Filter design using dual-tree complex wavelet transform	n 68
5.2	.3 Common Spatial Patterns	69
5.2	.4 Neighbourhood Component Analysis	71
5.2	.5 Proposed spectral-spatial feature optimization approach	72
5.3	Experimental study	75
5.3	.1 Datasets	75
5.3	.2 Competing Methods	76
5.3	.3 Performance measures	78
5.4	Results	79
5.5	Discussion	84
5.5	.1 Time- frequency analysis of DTCWT-filtered EEG	84
5.5	.2 Spectro-spatial feature optimization	86
5.5	.3 Training with different length of trial data	90
5.5	.4 Extension	91
5.6	Conclusion	91
Chapte	r 6	93
·		
6 Tir	ne window and frequency band optimization using regularized	
6 Tir neighbo	ne window and frequency band optimization using regularized ourhood component analysis for Multi-View Motor Imagery EEG	02
6 Tir neighbo classifio	ne window and frequency band optimization using regularized ourhood component analysis for Multi-View Motor Imagery EEG cation	93
6 Tir neighbo classifio 6.1	ne window and frequency band optimization using regularized ourhood component analysis for Multi-View Motor Imagery EEG cation Introduction	93 93
6 Tir neighbo classifie 6.1 6.2	ne window and frequency band optimization using regularized ourhood component analysis for Multi-View Motor Imagery EEG cation Introduction Methods	93 93 95
6 Tir neighbo classifie 6.1 6.2 6.2	ne window and frequency band optimization using regularized ourhood component analysis for Multi-View Motor Imagery EEG cation Introduction Methods	93 93 95 95
6 Tir neighbo classifie 6.1 6.2 6.2 6.2	ne window and frequency band optimization using regularized ourhood component analysis for Multi-View Motor Imagery EEG cation Introduction Methods .1 Preprocessing of EEG .2 Feature extraction from Multi-view EEG data	93 93 95 95 96
6 Tir neighbo classifie 6.1 6.2 6.2 6.2 6.2 6.2	ne window and frequency band optimization using regularized ourhood component analysis for Multi-View Motor Imagery EEG cation Introduction Methods .1 Preprocessing of EEG .2 Feature extraction from Multi-view EEG data .3 Multi-view Feature selection approach: Regularized Neighbourho nponent analysis.	93 93 95 95 96 od .100
6 Tin neighbo classifie 6.1 6.2 6.2 6.2 6.2 6.2 cor 6.2	ne window and frequency band optimization using regularized ourhood component analysis for Multi-View Motor Imagery EEG cation Introduction Methods 1 Preprocessing of EEG 2 Feature extraction from Multi-view EEG data 3 Multi-view Feature selection approach: Regularized Neighbourho nponent analysis	93 93 95 95 96 od . 100
6 Tin neighbo classifie 6.1 6.2 6.2 6.2 6.2 cor 6.2 cor 6.2	ne window and frequency band optimization using regularized ourhood component analysis for Multi-View Motor Imagery EEG cation Introduction Methods 1 Preprocessing of EEG 2 Feature extraction from Multi-view EEG data 3 Multi-view Feature selection approach: Regularized Neighbourho nponent analysis	93 93 95 95 96 od .100 .105
6 Tir neighbo classifio 6.1 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.3 6.3	ne window and frequency band optimization using regularized ourhood component analysis for Multi-View Motor Imagery EEG cation Introduction Methods 1 Preprocessing of EEG 2 Feature extraction from Multi-view EEG data 3 Multi-view Feature selection approach: Regularized Neighbourho nponent analysis 4 Classification Experimental study	93 93 95 95 96 100 105 106
6 Tir neighbo classifie 6.1 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.3 6.3 6.3 6.3	ne window and frequency band optimization using regularized ourhood component analysis for Multi-View Motor Imagery EEG cation Introduction Methods 1 Preprocessing of EEG 2 Feature extraction from Multi-view EEG data 3 Multi-view Feature selection approach: Regularized Neighbourho nponent analysis 4 Classification 1 Dataset description	93 93 95 96 od 100 105 106 106
6 Tir neighbo classifie 6.1 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.3 6.3 6.3 6.3 6.4	ne window and frequency band optimization using regularized ourhood component analysis for Multi-View Motor Imagery EEG cation	93 93 95 95 96 od 100 105 106 106 107 108
6 Tir neighbo classifio 6.1 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.3 6.3 6.3 6.3 6.3 6.4 6.5	ne window and frequency band optimization using regularized burhood component analysis for Multi-View Motor Imagery EEG cation Introduction Methods 1 Preprocessing of EEG 2 Feature extraction from Multi-view EEG data 3 Multi-view Feature selection approach: Regularized Neighbourho nponent analysis 4 Classification Experimental study 1 Dataset description 2 Performance evaluation Discussion	93 93 95 96 od 100 105 106 106 107 108
6 Tir neighbo classifie 6.1 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.3 6.3 6.3 6.3 6.3 6.3 6.4 6.5 6.5	ne window and frequency band optimization using regularized burhood component analysis for Multi-View Motor Imagery EEG cation	93 93 95 95 96 od 100 105 106 106 107 108 112
6 Tin neighbo classifie 6.1 6.2 6.2 6.2 6.2 6.2 6.2 6.3 6.3 6.3 6.3 6.3 6.3 6.4 6.5 6.5 win	ne window and frequency band optimization using regularized ourhood component analysis for Multi-View Motor Imagery EEG cation Introduction Methods 1 Preprocessing of EEG 2 Feature extraction from Multi-view EEG data 3 Multi-view Feature selection approach: Regularized Neighbourho nponent analysis 4 Classification Experimental study 1 Dataset description 2 Performance evaluation 1 Selected spatial patterns at multiple frequency bands and time ndows	93 93 95 96 od 100 105 106 107 108 112

6.5.3	Performance with different trial length	
6.5.4	Limitations and Future scope	119
6.6	Conclusion	121
Chapter	7	
7 CCA	Model with Training Approach to Improve Recognition Rate o	f SSVEP
in Real T	ìme	
7.1	Introduction	123
7.2	Methods and Materials	124
7.2.1	Canonical Correlation Analysis (CCA)	124
7.2.2	Linear Discriminant Analysis (LDA)	124
7.2.3	Proposed Method	
7.3	Experimental Setup	126
7.3.1	Generation of visual stimulus	126
7.3.2	Data Acquisition	126
7.3.3	Experiment paradigm	127
7.4	Result and Discussion	
7.5	Conclusion	130
Chapter	8	
8 Con	clusion and Summary	
8.1	Scope for Further Work	
Referenc	es	136
List of P	ublications	