Chapter 4

New Lyapunov-Krasovskii functional
for Stability Analysis of Time-delay
System

4.1 Introduction

In many dynamical systems delays are usually time varying in nature. Two approaches
available for stability analysis for such systems are Liyapunov-Krasovskii (LK) and Lyapunov-
Razumikhin (LR). Both approaches can be useful to handle dynamical systems with time-
varying delay. Less conservative results can be obtained using LK method as compared to
LR one, since it takes the advantage of using additional information on the derivative of
time varying delay [76]. Therefore, in robust stability analysis of system with time-varying
delay using LK approach gets lot of attention.

With the aid of Linear matrix inequalities (LMIs), a variety of stability conditions
have been proposed to find larger upper bound delay value by ensuring negative definite-
ness of derivative of the LK functional (LKF). For obtaining less conservative stability
criteria of time-delay systems, it is crucial to find a precise bound of the quadratic integral
function in the derivative of LKF. For this purpose, there has been a great amount of
effort to find an effective inequality and as a result use of some inequalities have been pro-
posed in the literature such as the Jensen inequality [1], Wirtinger based inequality [77],
auxiliary function related inequality [78], Bessel’s-Legendre inequality [79] and free matrix

related inequalities [80,81].



Another way to obtain the allowable maximum time-delay value retaining stability is
to formulate a suitable LKF. Mainly, following types of functionals have been proposed to
contain more information such as (i) augmented LKF [77,82], where delay term is included
in the state vector (ii) delay partitioning approach [83|, which divides the delay interval
into several segments and (iii) Cross-term variables based LKF [84,85], where x(t), z(s)
and #(s) are used to create quadratic terms, and (iv) multiple integral LKF [86, 87].
These LKF's helps to obtain less conservative results to a certain extent. In addition
matrix based function is employed to the existing LKF have been developed, which leads
to provide fruitful results. Recently, delay product type LKF [88,89] have been introduced
such that the information of delays and its derivative has been fully utilized. In this DPF,
non-integral quadratic terms have been constructed by augmenting the state vectors used
in the WI to exploit newly introduced single integral states. Similar idea has been used
in [90] and [91] to form the functional by using the signals present in AFI by transforming
into delay and its inverse dependent matrices for passivity analysis. In [92] a new form of
functional has been reported in which the integral inequalities such as Jensen inequality
and Wirtinger inequality are utilized to form DPF, such that its derivative includes delay
variations based integral functions to yield better results.

On the basis of above discussion, this chapter further investigates delay-dependent
stability analysis for linear systems with time-varying delay. The contribution of this
chapter is that two new states are introduced in the augmented vectors of DPF and in
the Lyapunov matrix based quadratic term to formulate the LKF. Using this LKF and
second order BLI, two stability criteria are proposed.Finally, Two numerical examples are

provided to show the effectiveness of the proposed criteria.

4.2 System Description and Preliminaries

Consider the time-delay system as:
x(t) = Az(t) + Awx(t — T(t)), (4.1)

where z(t) € R™ is the state vector; A, A, € R™ " are the constant system matrices,
with continuously differentiable initial condition.The delay function t(¢) and its derivative
satisfy

0<7(t)<h, pp<1t)<puy<l1 (4.2)



where h, 1o and py are constants. To obtain the main results, the following lemmas are

needed.

Lemma 6 [82] For real scalar o € (0,1), symmetric matrices R;(i = 0,1) > 0, and any

matrices Sy and Sy such that the following inequality holds

éRO 0 RoJr (1 —OZ)X() (1 —a)50+a51

(4.3)
0 LR * R+ aX;

where Xo = Ry — S1R;'ST and X, = Ry — STRy'S,

Lemma 7 [93] For any symmetric matrices [R;(i = 0,1)],,xn and any matrices [Y;(i =

0, 1)]onxn, the following inequality holds o € (0, 1)

> Sym (Yo [I Ouen] Y1 [0 1)) = 0¥oRG ¥ — (1 - ViRV
(4.4)

Lemma 8 [94] For any constant matric R > 0, the following inequality holds for all

continuously differentiable function x € [a,b] — R";

b
(b—a) / 7 (s)Ri(s)ds > 0] RO, + 302 RO, + 503 RO (4.5)
b
(b— a)/ 27 (s)Rx(s)ds > 91 R, + 395 R, (4.6)
where
91 (b) (CI,) 92 = ZL'( )—|—IL' (b a) f
05 = x(b) — x(a) — T a) f dap(s)z(s)ds, ¥y = f s)ds, Vs = f dap(s)x(s)ds and
5a,b( ) 2 ( ) -1

Remark 5 The integral inequalities (4.5) is a particular case of second order Bessel-
Legendre inequality of [94]. This inequality overcomes the conservatism provides by Wirtinger-
based integral inequality by introducing an extra quadratic term 03 RO3. This additional
term gives improvement by considering a new state f; dab(8)z(s)ds, which contains both
single and double integral terms. In this paper this state is used to form the DPF defined

later.



4.3 Main Results

In this section, we construct a new DPF to derive a delay-dependent stability result
for Linear system with time varying delay (4.1) with constraints (4.2). To simplify the

representation, we introduce some notations as follows:

helt) = b — (t), (t) = 2t — T(0)), 0n(6) = 2(t — b), T =1 (1)
1 0 1 —1(t)
wy(t) = ﬁ/—w) x(s)ds, wo(t) = ™0 /_h x(s)ds
0 —1(t)
ws(t) = % /_ B, ) = hj(t) /_  d(s)a()ds

E(t) = col[x(t), z(t), xp(t), T(t), w1 (t), wa(t), ws(t), wy(t)]
€ = [Onx(i—l)a ]n; O'ILX(S—'L')]ai = ]-7 27 L) 87

es = Aey + Acey, €0 = Onxsn

According to the function 4, given in Lemma 3, the functions d;,7 = 1, 2 can be expressed

w0 =2 ) 1 s =2 ()

On the basis of above d;(s) and ds(s) as augmented terms, delay product type quadratic

as

terms has been constructed by extending the idea to construct LKF in [88]. Also based
on z(s),i(s) and [ o) & t(s)ds, a cross-term based quadratic term is being constructed
similar to [84]. Using the combination of these delay product type and cross-term based

terms a new candidate LKF is constructed as
V(t) = Vo(t) + Vi(t) + Va(t) + Va(t) (4.7)
where

Vo(t) = @y (t) Py (t)
Vi(t) = t(t)my () Qi (t) + he(t)ws () Qams(t)

t t—(t)
0 = [ =Te@mis+ [ a6 Ze(e)ds

0 t (t)
Vs(t) :/ / @7 (s)Ryi(s dsdu+/ / s)Rotdsdu
—1(t) Jt+u +u

0 ¢ —(t
/ / x(s)" (s) My (s dsdu+/ / s)Msx(s)dsdu
—1(t) Jit+u t+u

_|_



with

w1 (t) = col[x(t), x(t), T(t)wr, he(t)wa, T(t)ws, he(t)wy], wa(t) = collx(t), z(t), wy, ws]

ws(t) = col|x(t), v(t), wa, Wy, wa(s) = col[x(s),:t(s),/ x(s)ds]

t—(t)
Remark 6 The terms in V3(t) are similar to the [95]. The &(s) and x(s) dependent
double integral quadratic terms are considered separately for the intervals [t — T(t),t] and
[t —h,t—1(t)] respectively to exploit the delay range. The time derivative of V3(t) provides
T(t) and t(t) related single-integral functions. The estimation of these delay variation
based integral terms introduces new and more T(t) and t(t) dependent terms, which helps

to get improved result.

By employing LKF (4.7), a delay-dependent stability criterion for system (4.1) with con-
ditions (4.2) is as follows:

Theorem 4 For positive definite matrices 0 < P € R ( < Q,Q, € R4 ( <
Qs € R¥3n 0 < Z € R 0 < Ry, Ry, My, My € R™™, and matrices Sy, Sy € R3*3n
with given scalars h, o and py, system (4.1) is asymptotically stable, if following LMIs
satisfy for all ©(t) € [uo, pn] and i = 1,2.

Do (0, 1) — @1(0, i) Ef Sy

(4.8)

* _hRQ

Dy (h, ;) — P1(h, s EIST
o(h, 11:) 1(hs 12) 2 1 <0 (4.9)

* —hTi (i)
such that following conditions must satisfy

Ti(pi) > 0 (4.10)
Ty(pi) = 0 (4.11)

where
Do (T(t), (1)) = Sym{Gg PGy} + t(t)G5 Q1Ga + Sym{G5 Q1G3} — T(t)G{Q2G.
+ Sym{GZQgC%} + GgQgGG - TG$Q3G7 + Sym{GsT(T(t))Q3G9}

+ el Tt(#) Ry + he(t)Roles + ef [T(t) My + he(t) Mse (4.12)

2 —« 1+«
+ Eit(t)ToEs + El he(t) My E, (4.13)

@1 (1(1), 1(t)) = BY

2
RQEQ + EElTKl — CY)Sl + CYSQ]EQ



Go = [e1, e3,T(t)es , he(t)eg , T(t)er , he(t)eg "
G, = el el el —xe] Ted — ek el +7ed — (2 —1(t))el — t(t)el,
Ted + el — (2 —1(t))el + t(t)el]"
Gy=lef.e5,¢5.e7]", Ga=le], €3, e5,es]"
Gs = [t(t)el  t(t)Te] el — Teq —t(t)el el +Tel — (2 —1(t))el — 21(t)el]”

s

Gs = [he(t)eT

s

ho(t)Tel et — el +t(t)el Ted + ek — (2 —1(t))es + 2t(t)es "
G6 = [6,{7 637 6? - eg]Ta G? = [egu 6?;, OSHXn]Ta
Gs = [t(t)es ,ef —e5,T(t)(e5 —e2)"]", Go = [Onxn, Osnxn, —Teg]"

Proof : The derivative of fST(t) d1(8)x¢(s)ds and f:,:(t) da(8)x¢(s)ds can be expressed as

%[/j(t) 01(8)x(s)ds] = x(t) + Ta(t) — (2 — T(t))w1(t) — T(t)ws(t) (4.14)
d —1(t) - ' .
E[/;h da(8)x(s)ds] = Ta(t) + xp — (2 — T(t))wa(t) + T(t)w4(t) (4.15)

Similarly, the derivative of Q1,Qs and @3 dependent quadratic terms in (4.7) can be

obtained as

d
%[T(t)wrf (1) Qw2 ()] = T(t)wy () Qreos(t)
_ " _
. Ti(t)
+ 21(t) s (1) Qs r(t)_mgg_w)m (4.16)
(1) +Tx- (t) — (2—1(t))w1 —2T(¢)ws
i ) |
d
%[hr(t)wg (t)Q2wm3(t)] = —t(t)w; (1) Q2wws(?)
_ " -
Ti(t)
+ 2h ()t (1) Q; wt)_whr,(t)w (4.17)
h(t
Tr.(t)+ap—(2—1(t))wa+27(t)wa
i 0] |
d ! T T - T
S| [ 60 = et - w6 - ) umte - <(0)
t—1(t)
’t(t)w1 0n><1
+2 1 z(t)—a:(t) | Q3| Onxs (4.18)

(1) (wr — (1)) —Ti(?)



The differentiation of V3(¢) can be expressed as

Va(t) = & (O)[T(t) By + he(t) Rl (t) + a7 (8)[t(8) My + he(t) Moz (t) — 01(t) — pa(t)

(4.19)
where
ot = [ e+ [ @R
gmoaiwﬂ@mﬁ@n@@+ljmf@Mﬂ@@
Ty((t)) = TR + A(t) Ry, andTy(t(t)) = T, + £(t)M, (4.20)

Then, using (4.14)-(4.19) one can write derivative of V() with respect to time along the
trajectory of system (4.1) as

V(t) = Vo(t) + Va(t) + Va(t) + Va(t) = €T () Po(t(t), T(1))E(T) — pu(t) — pa(t)  (4.21)

where ®¢(T(t),T(t)) is defined in (4.12).
The condition (4.10) ensures the positive definiteness of T7(t(¢)), then by applying integral
inequality (4.5) of Lemma 8 to approximate the integral terms in @ (¢), one can write

or(t) = €7 (1) %EfﬂE1+%(t)EQTRzEQ (1) (4.22)

where

Ey = col{e; — e, e1 + €5 — 2e5, €1 — e3 — Ger}
Ey = col{ey — e3,e9 + e3 — 2eq, 69 — e3 — Geg}
Ti = diag{T, 311,511}, Ry = diag{ Ra, 3R>, 5Ry}

By using Lemma 6 with a = %, ©1(t) can be expressed as

1

—aBy S{ T S1Ey — (1 — @) Ef $yR5 'S5 ErJE(t) (4.23)

Similarly, the condition (4.11) guaranteed the positive definiteness of T5(t(¢)), hence uti-

lizing inequality (4.6) of Lemma 8, (o(t) can be estimated as

oty = | |0 Bl ey (4.24)
E4 X hT(t)Mg E4



where
Es=ler,et]", Ey = [ef . e§]", Tz = diag{Ts,3To}, My = diag{M,,3M,}
Replacing (4.24) and (4.25) in (4.22) one can write

V(t) < €7 ()[@o(t(t), T(t)) — @a((t), T(t)) + I (x(t), T(1)]E(1)
= T (t)we(t) (4.25)

where ®q(t(t),7(t)) is defined in (4.13).

1—
%EQTKS*ITT;IM2 LU= prg rogT,

H:
h

and

W = o (T(t), H{t)) — B (x(t), T(t)) + 1T

Finally, V(t) < 0, if the matrix W is negative definite for all T(¢) € [0, k] and ©(¢) € [0, 1]
It is clear that the matrix ¥ in (4.26) is linear with respect to t(t) and t(t). So, if the
condition (4.26) is satisfied at the vertices [0, po], [0, p1], [h, to] and [h, p1], then it can also
satisfy at all the vertices of (t(t),T(¢)) € [0, h] X [uo, p1]. Then using Schur complement
the condition (4.26) can be transformed into linear matrix inequalities of (4.8) and (4.9).
This completes proof. [J

The criterion of Theorem 4 are obtained by utilizing Lemmas 6 and 8. Alternatively, a
similar criterion can be developed by using Lemma 7 instead of Lemma 6, which results

in next theorem.

Theorem 5 For positive definite matrices 0 < P € R™ %" (0 < Q,,Q, € R4 0 <
Qs € R34 0 < Z € RY™™,0 < Ry, Ry, My, My € R™™, and matrices Y;,Y, € R83"
with given scalars h, pg and py, system (4.1) is asymptotically stable,such that following
LMIs satisfy for i =0, 1.

B0 (0, 1) — B1(0, 1) Y
(0 1s) = @10, 1) ¥ <0 (4.26)

(I)O(hﬁvbi) - (T)l<h7,ui) YlT

<0 (4.27)
* —hT(ps)



with conditions

Ty (pi) = 0,T3(pi) = 0 (4.28)

where Oo(T(t),T(t)) is defined in Theorem J and

1
P ((t), T(1)) =7 Sym (V1 By + Yoo} + E3w(t)TaBs + E{ he(t) Mo (4.29)

Proof : The proof follows the same lines of reasoning as the proof of Theorem 4. The
main modification is the application of Lemma 7 in place of Lemma 6 for estimation of

©1(t) term in (4.22). So, based on Lemma 7, p;(t) can be expressed as
1 _ _
p1(t) = 3 [Sym Yy + Yo B} — aV'T7V1 — (1 - )YaR, 1YY (4.30)
Substituting (4.31) and (4.25) in (4.22), one can write

- : = . 1 y 1 -
V(1) < €7 () [Bole(t), £(1)) — Bi(x(0), £(1) + 3V TV + 11— a)VaRs Vi l(r)
(4.31)
Then using Schur complement the condition (4.31) can be transformed into linear matrix

inequalities of (4.27) and (4.28). This completes the proof. [J

Table 4.1: Possible upper bound delay h with a variety of u

o= —po = pt
Methods v NLVs

0.1 0.2 0.5 0.8

Theorem 1 [96] 48313 4.1428 3.1487 27135 142n% + 18n
Theorem 8(N=2) [79] 493 422 309 266  67n>+5n
Proposition 1 [82] 4.910 4.2166 3.233  2.789 57.5n*+ 17n

Theorem 2(N=2) [97]  4.9036 4.1906 3.1652 2.7357 6512+ 8n
Proposition 1(N=1) [98] 4.9192 4.2116 3.1978 2.7656  72n® +9n
Proposition 2(N=2) [08] 4.9217 4.2157 3.2211 2.7920 104n2 + 9n

Theorem 4 4.9229 4.2205 3.2059 2.7678  58n% + 10n
Theorem 5 4.9301 4.2361 3.2396 2.8072 88n* + 10n

4.4 Illustrative examples

In this section, two numerical example are considered to show the improvement made in

the proposed Theorems.



Example 1 Consider the system (4.1) with

—2 0 1 0
A= ;A= (4.32)
0 —09 -1 -1

The system (4.33) has analytical bound hpye, = 6.17258 for constant delay (t(t) = 0,Vt >
0) case [1]. The largest upper bound h for different y using theorem 4 and 5 are listed in
Table 4.1 along with similar existing approaches in the literature. Moreover, the number
of LMI variables (NLVs) involved in solving stability criterion are shown in Table 4.1. It
is observed that Theorem 4 yields better results than all the others except Theorem §(N=2)
of [79] for slow varying delays (1 = 0.2). However, for fast varying delays Theorem 4
provides better results except Proposition 2(N=2) of [98]. But Theorem 8(N=2) of [79]
and Proposition 2(N=2) of [98] utilizes more LMI variables as compared to Theorem 4.

Theorem & provides better results in comaprison to all the approaches listed in Table 4.1.

Table 4.2: Possible upper bound delay h with a variety of u

= —'LL e
Methods s o NLVs

0.1 0.2 0.5 0.8

Theorem 1 [80] 7.148 4466 2352 1768 650+ lln

Theorem 1 [96] 7167 4517 2415 1.838  142n% + 18n
Theorem 2(N=2) [97] 7.2633 4.5914 2.5750 2.0115  65n + 8n

Proposition 1 [82] 7.230  4.556  2.5090 1.940 57.5n*+ 17n
Theorem 1 7.2477 4.5571 2.5266 2.0018  57n%+9n
Theorem 2 7.2707 45979 2.5885 2.0441  87n*+9n

Example 2 Consider the system (4.1) with

0 1 0 0
A= , A= (4.33)
1 -2 ~1 1

For ex. 2, the obtained values of h for p € [0.1,0.2,0.5,0.8] are tabulated in Table 4.2.

One can observed that Theorem 1 gives better results as comparison to all approaches of

Table 4.2 except Theorem 4 [96]. But Theorem 5 provides less conservative resulls than

all approaches in Table 4.2.



4.5 Summary

The problem of stability analysis of linear systems with time-varying delay has been
investigated. By constructing a new delay product type Lyapunov-Krasovskii functional
using the state vectors of second order Bessel-Legendre integral inequality, two stability
criteria have been derived for the system under study in combinations with reciprocal
convex approaches. Two examples has been considered to validate the improvement
offered by the proposed criteria.

Further study focus on the comparative analysis between the first and second or-
der polynomial based stability criteria, derived based the on application of Lyapunov-

Krasovskii functional approach.



