Chapter 5

Interval Observer design

5.1 Introduction

The structure of interval observer comprises of two dynamical equations that estimate
upper and lower bounds (interval) of the state vector at all times when the initial con-
ditions are unknown and there are uncertainties present in the system, however, these

initial conditions and uncertainties are bounded.

In this chapter, an interval observer for nonlinear systems considering inputs, out-
puts, and disturbances is designed using vector framework based contraction theory. In
particular, this theory is utilized to prove the convergence property of the interval ob-
server through a comparison system with specified properties. It provides the advantage
over other existing approaches in the way that it does not require the formulation of error
dynamics and need not require the Lyapunov candidate function to show convergence.
In addition, this theory is exploited to design dynamic feedback control by the bounds
obtained from the constructed interval observer and the system outputs to make the in-
terval observer to be globally asymptotically stable. In the end, several examples with
simulation outcomes are illustrated to validate the developed results. It can be observed
that many practical systems such as TORA ( [111]) and electromechanical system ( [113])
belong to the family of systems affine in the unmeasured part of the state variables.

The further part of this chapter is framed as follows. Section 5.2 provides the main results
of interval observer design. Examples with respective simulations are presented in Section

5.3. Finally, the conclusions end this chapter in Section 5.4.



5.2 Main Results of Interval Observer design

This section provides the main results. We consider following class of nonlinear systems

for our development.

&= A@y)z+ f(y,u) + Bd(t) (5.1)

y=Cx
where x € R" represents the states, u € R? is the control input, y € RP? is the system
output, f is a general smooth nonlinear function, d(t) € R! is the unknown bounded
disturbance with d(t) << d(t) << d(t) and initial conditions are also unknown but
bounded between two bounds, that is, z, << xy << Tp. A(y), B and C are the matrices
with appropriate dimensions with A(y) as a Metzler matrix for all y € R?, B > 0 and
C' > 0. Let x(t) be the unique solution of system (5.1).

Lemma 5.1 (Framer design) Consider two dynamics

T=AWT+ Ky -39 + fly,u) + Bd, T(t) =T (5:2)

Aly)z + K(y —y) + f(y,u) + Bd, z(ty) =z, (5.3)

z

where y = CT, y = Cx and K is a gain matriz with appropriate dimension such that
—KC > 0. Let ©(t) and x(t) be the unique solutions of the systems (5.2) and (5.3)
respectively, then T(t) and x(t) are the upper and lower bounds for the state x(t).

Proof: Let € =T — x and e = v — x be the upper observation and lower observation
errors, respectively. The aim is to prove that (¢) and e(t) are non-negative. The dynamics

of the upper error follow

€= (A(y) — KC)e+ B(d —d). (5.4)
Similarly, the dynamics of the lower error are described by

¢ = (Aly) — KC)e+ B(d — d). (5.5)

Because d << d << d and B > 0, we have B(d —d) >> 0 and B(d — d) >> 0. Bearing
in mind A(y) Metzler for all y € R? and —KC > 0, we deduce that A(y) — KC Metzler
for all y € RP. Moreover, from the fact that €y =7y — 9 >> 0 and ¢, = 29 — 25 >> 0,
it follows that, for all ¢ > 0, €(t) >> 0 and ¢e(t) >> 0. Thus, 2(¢) << z(t) << Z(t). This
allows us to conclude that (5.2)-(5.3) is a framer for (5.1). O



Remark 5.2 If A(y) is not a Metzler matriz, we can use a change of coordinates or any
other transformations existing in the literature to make it Metzler as shown in particular
in ([55,57,58]). We illustrate the case where A(y) is not a Metzler matriz in Ezample
5.8 of Section 5.3.

Usually, it is not very difficult to achieve the framer property, which is the notion
of providing intervals in which state variables stay, if one does not care the length of
estimated intervals. In fact, one can use an artificial system that over-bounds terms to
secure the positivity (non-negativity, more precisely) ensuring the framer property [114].
Therefore, tools and component ideas of the framer design are not necessarily novel. The
framer design proposed in Lemma 5.1 is the same as in [57] and as in many other studies
on interval observers for nonlinear systems in the literature. The goal of this work is to
present a reasonable convergence property of the interval, which is not always clear. In
Assumption 3 of [57], the authors clarify how they can qualify the convergence property
by employing Lyapunov stability, which requires complex and difficult computations, as
the authors illustrated them in the numerical example. The approach we propose in the
present work is very different from [57] since it is based on ideas from contraction theory,
and hardly any computation is needed to expose it.

We introduce the following theorem as guidelines for selecting K in Lemma 5.1
to make framer (5.2)-(5.3) become interval observer (i.c., framer satisfies a convergence

property) for (5.1).

Theorem 5.3 Consider the system (5.1) without disturbance d(t). Let us suppose that
there exists the gain matriz K in Lemma 5.1 such that the squared vector-valued distance

derivative along virtual dynamics of the system (5.2) follows
d o N2
ST << 6 (P (dingl0m)1), V1210

for a nonzero matriz P = [p;j|lnxn with all real p;; > 0, function ¢ € C'[R", R"| satisfies
the quasi-monotonicity non-decreasing property, and the comparison system obtained from
this inequality is contracting, then the error ||e(t)|| = ||T(t) —x(t)|| converges exponentially

to zero, that is, for some constants s >0 and k > 0

le(t)|I < ket~ le(to)l].



Proof: Consider the squared vector-valued distance function as defined by (4.1) for the
system (5.2). The squared vector- valued distance derivative along the virtual dynamics

of the system (5.2) is given by
d .
%(H(%Hz) = 2P diag(67) (diagdz)1

The gain matrix K is designed such that the above equality transforms to the fol-

lowing inequality
d
Z(1572) << 6 (P (diag(6m)?1) Vit (5.6)

where ¢ is a quasi-monotone non-decreasing function and the comparison system obtained
from this inequality (5.6), let’s say, w = ¢(w),w € R" is contracting. Hence, from
Theorem 4.2, the distance between any pair of trajectories ||0Z| of the estimated system
(5.2) converges exponentially to zero since the comparison system trajectories converge
exponentially to zero (comparison system is contracting). This means that, for some

constants k > 0 and s > 0, we have
[72(t) = Z2()]| < ke T[T (o) = Ta(to) ||, ¥t > to, (5.7)

for any two solutions 7;(t) and T»(t) of the system (5.2). Furthermore, when d(t) = 0,
x(t) is a particular solution of the system (5.2) since system (5.2) and (5.1) only differ
in the correction term. Hence, the correction term vanishes when x(t¢) is the solution of
(5.2). Thus, Z»(t) and Z;(t) can be replaced by x(t) and Z(t) respectively, therefore the

above equation (5.7) becomes
le®)]l = [Iz(t) — 2(t)]| < ke le(to)].

Hence, it is proved that the error of estimation converges exponentially to zero. This
completes the proof. l

In a similar way, one can prove the exponential convergence of the error |le(t)|| =
||x(t) —z(t)|| to zero. The proposed method has the advantage that it does not require the
error dynamics formulation to show that the estimation error |le(t)]| = ||Z(t) — z(t)| =
|x(t) — x(t)|| converges exponentially to zero, when the disturbance d(t) = 0. It only
requires the virtual dynamics of the estimation dynamics (5.2)-(5.3) to show that the
derivative of the squared vector distance along this virtual dynamics follows (5.6).

Now, we provide a result to design feedback control u(y,Z) to make the interval

observer (5.2)-(5.3) to be asymptotic stable when d, d and d are zero.



Theorem 5.4 Consider the system (5.1) (5.2) (5.3) with d(t) =0, d and d = 0. Let us
assume that the origin is an equilibrium point of the system (5.1). Suppose there ezists
the control u(y,x), u(0,0) = 0, u is a general smooth nonlinear function, such that the
derivative of squared vector-valued distance along virtual dynamics of the system (5.1)

follows
d
Z(I9zl5) << ¢ (P (diag(dz))L, z) Yt >t

for P = [Dijlnxn, pij = 0, ¢ € C[R™ x R™, R™] satisfies the property of quasi-monotonicity
non-decreasing, and the comparison system obtained from this inequality is contracting.
Then, the origin of the system (5.1) is globally asymptotically stable. Further, an interval
observer (5.2)-(5.3) is asymptotically stable with the control u(y,T), when d and d are

ZETO.

Proof: The virtual dynamics of the system (5.1) with the control u(y, z) at fixed time ¢

is obtained as

0A 0 af o

o = ( (y)x + A(y) + of + _f_u> oz (5.8)
ox x

Consider the squared vector-valued distance function as defined by (4.1) for the system

(5.1). The squared vector-valued distance derivative along the trajectories of system (5.8)

is given by

d . o . 10A(y) of  Of u
(ll62]2) = 2P ding(d2) (diag(Z5 P + A(y) + 5=+ S22 ) o)1

Now, the control u(y,z) is designed such that the above squared vector valued distance

derivative follows the inequality
d
Z(lo2]l}) << ¢ (P (diag(ow))1,x) V1=t

where ¢ is a quasi-monotone non-decreasing function and the comparison system obtained
from this inequality, let’s say, w = ¢(w,x), w € R™ is contracting. Thus, from the results
of Theorem 4.2, the distance between any pair of trajectories [[0z|| of the system (5.1)
converges exponentially to zero, that is, the trajectories converge indeed to an equilibrium
point (origin). Hence, it is proved that with the control u(y,x), the origin of the system
(5.1) is globally asymptotically stable. Now, the proof goes in a similar way to show
that the interval observer (5.2)-(5.3) is also asymptotically stable with the control u(y, @),

when d and d are zero. O



5.3 Simulation Examples

Example 5.5 Consider the system
1= o(xe + 1) + d(t)
Ty = — nwy +sin’(zy)as + 27 sin®(zy — 23) + d(t) (5.9)
i3 = frs + cos®(x) — x3)T9 + pr1 + d(1)
with outputs y; = x1 and Yy, = x1 — x3, where v = [xl,gcg,:cg]T € R? is the state vector,
d(t) is the unknown disturbance with d < d(t) < d. Parameter values are given as
c=1n=5p=>5and f=5.

We write the above system in the form

i = Ay) + f(y) + Bd(t) (5.10)
with
o o 0 0
Al) =10 - sin*(y)|, FY) = |yisin®(y)
0 0082(92) p PY1

and B = [1,1,1]7. It can be observed that A(y) is Metzler for all y, and yy since cos?(y2)
and sin*(y,) are always non-negative for all yy and yo, but not Hurwitz matriz. Now, an

interval observer is designed as follows

T= AT+ Ky -7 + fly) + Bd (5.11)
= Ay)z+ K(y—y) + f(y) + Bd (5.12)
K, 0
1 0 0
where K = | () 0 is the gain matriz and y = Cx, C = . We use
1 0 —1
0 —K,

vector-based contraction approach with d(t) = 0 to prove the convergence property of the
designed interval observer as the construction of the Lyapunov candidate is not easy for a
nonlinear system and also there is no need of any specific attractor to prove convergence.
Firstly, we consider the system (5.11), the virtual dynamics of the system (5.11) is given
by

67 = (0 — K1)6T, + 00Ty

6Ty = — 00Ty + sin®(y1 )63 (5.13)

(5?3 = Kgéfl —+ COS2(y2>6TQ + (6 - Kg)éfg



Let the squared vector-valued norm, defined by (4.1), assuming the matriz P as diag(1)

be: ||0||? = [672, 673, 6T3] . Its derivative along the trajectories of (5.13) is given by

%(551)2 = 2(0’ — Kl)(ﬁf + 20’(551652
< (30 — 2K))6T2 + 0073
d . _ . _
27 (072)" < (=2 + [sin®(y1) )75 + | sin® (1) 073
d s —2 2 —2 2 —2
5(51’3) < |K2|5.l’1 + |COS (yg)‘diﬂQ + (26 — 2K2 + ‘Kgl + ’COS (y2)|)5l'3

From the above inequalities, we obtain the quasi-monotone non-decreasing (off-diagonal

entries mon-negative) comparison system, w = Gw, where

(30 — 2K3) o 0
G = 0 (I sin®(y1)| — 2n) [ sin®(y1))|
| 5| [cos®(y2)] (28 = 2K + [ K| + | cos® (1))

We select the gains Ky = 10 and Ky = 40 to make the above matriz G Hurwitz (con-
tracting) and —KC > 0. Hence, the original dynamics (5.11) is contracting. In a similar
way, the dynamics (5.12) can be proved to be contracting. Thus, the system (5.11)-(5.12)
is an interval observer for the system (5.9). The simulation results are shown in Fig.
5.1 and with and without disturbance with values: 3 < x1(0) < 4.5, —10 < x5(0) < =5,
4 < a3(0) <7, 2(0) = [4,-7,5]", d(t) = 0.25sin(t), d = —0.25 and d = 0.25. Figure 5.2
shows the simulation results with disturbance d(t) = 0.25sin(t) and measurement noise
v(t) = [—0.2,0.2] present in the outputs as yy = x1+v(t) and y» = v1 —x3+v(t). Interval
observers work well under the effect of unknown measurement noises, however the bound

of the noises must be known.

Example 5.6 Consider the following self-excited nonlinear oscillator ( [112])
1 = xo + d(t)
Ty = —wisin(x,) — pxo + ky arctan(kq(z; — x3)) + d(t) (5.14)
T3 = wolxy — x3) + d(t)

with outputs y; = =1 and ys = 1 — x3, where x = [a:l,xg,xg]T € R? is the state vector,

d(t) is the unknown disturbance with d < d(t) < d. Parameter values are given as:

wy =wy =40,k; = 5,ky = 10 and p = 1. We write the above system (5.14) in the form

&= Ax+ f(y) + Bd(t) (5.15)



< _ 111 _1__
| | | |

Y RN I A [ E—
| | | | |

0.2 0.3
1(a) Time(sec)

0.5

005 01 015 02 0.25
1(b) Time(sec)

0.3

20

L
| | |

0.05 0.1 0.15
1(c) Time(sec)

0 0.2

0
AR :
. |
10 |
I
| | | L) il il ) —
0 0.5 1 1.5 2 0 0.5 1 1.5 2
2(a) Time(sec) 2(b) Time(sec)

60

™ 40

20 ¢

0.1

0.2
2(c) Time(sec)

0.3 0.4

Figure 5.1: Interval observer for system (5.9) (1(a)(b)(c) with disturbance and 2(a)(b)(c)

without disturbance)
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Figure 5.2: Interval observer for system (5.9) with disturbance and measurement noise

with
0 1 0 0
A=10 —p 0 |. fly)= |—wlsin(ys) + ki arctan(kay)
wy 0 —we 0

and B = [1,1,1]". It is observed that the system matriz A is Metzler but not Hurwitz

matrix. Now, we design an interval observer as follows:

T=A7+ K(y—79)+ f(y) + Bd

t=Ar+K(y—y)+ fly) + Bd

(5.16)
(5.17)
0 0
. In a similar
1 0 —1

(5.18)

K, 0
where K = | 0 0 1s the gain matriz and y = Cx, C =
0 —K
way, we consider first the system (5.16), the virtual dynamics of the system (5.16) is given
by
6T = — K 07 + 0Ty
6Ty = — poTy

5%3 = (CUQ + Kg)éfl — (w2 -+ KQ)(SE;;



Let the squared vector-valued norm, defined by (4.1), assuming the matriz P as diag(1)

be: ||0T||? = [673, 673,073 ". Its derivative along the trajectories of (5.18) is given by

d

a((gfl)2 = - 2K15§% ‘|‘ 2(5515?2
< (1 —2K,)072 + 07>

d

E(5@)2 < —2p075

d

E<5f3)2 S |w2 + K2|($E? + (—2(,02 — 2K2 + |(AJ2 + KQD(SE%

From the above inequalities, we obtain the quasi-monotone non-decreasing (off-diagonal
entries non-negative) comparison system, w = Gw, where
(1-2K;) 1 0
G = 0 —2p 0
lwo + Ko 0 (—2wy — 2K5 + |wy + K))

We select the gains K1 =5 and Ko = 100 to make the above matriz G Hurwitz (con-
tracting) and —KC > 0. Hence, the original dynamics (5.16) is contracting. Similarly,
the dynamics (5.17) can be proved to be contracting. Thus, system (5.16)-(5.17) is an
interval observer for the system (5.14). The simulation results are shown in Fig. 5.8 with
2 <21(0) <5, 1 <my(0) <4, 3<23(0) <8, 2(0) =[4,2,6]", d(t) = sin(t), d = —1 and
d=1.

Example 5.7 Consider the modified self-excited nonlinear oscillator
T = x9 +d(t)
iy = —wisin(r) — pry + ky arctan(ky(v; — x3)) + d(t) (5.19)
Ty = wors + d(t)

with outputs y; = x1 and Yy, = x1 — x3, where r = [xl,asg,xg]T € R? is the state vector,

d(t) is the unknown disturbance with d < d(t) < d. Parameter values: wy = wy = 40, k; =

5,ke =10 and p = 1. We write the above system in the form
&= Ax+ f(y) + Bd(t) (5.20)

with
0 1 O 0
A=10 -1 0|, f(y) = |—wisin(y1) + ki arctan(kqy»)
0 0 wo 0



and B = [1,1,1]".
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Figure 5.3: Interval observer for system (5.14)

The system matriz A is Metzler but not Hurwitz matriz. Now, we

design interval observer as follows:

K,
where K = | 0
0

T=AlyT+K(y—7) + fly)+ Bd (5.21)
&= Aly)z+ K(y—y) + fly) + Bd (5.22)
0
10 0
0 1s the gain matriz and y = Cz, C = . We consider
1 0 —1
K,
first the system (5.21) and obtain the comparison system, w = Guw, where
(1-2K;) 1 0
G= 0 —2 0
|K2’ 0 (2W2—2K2+ |K2|)

We select the gains K1 = 5 and Ko = 100 to make the above matriz G Hurwitz

(contracting) and —KC > 0. Hence, the original dynamics (5.21) is contracting. In a

similar way, the dynamics (5.22) can be proved to be contracting. Thus, the system (5.21)-

(5.22) is an interval observer for the system (5.19). The simulation results are shown in
Fig. 5.4 with 2 < 21(0) < 5, =20 < 25(0) < =5, 3 < 23(0) < 8, x(0) = [4,-10,6],
d(t) = 0.5sin(t), d = —0.5 and d = 0.5.
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Figure 5.4: Interval observer for system (5.19)

Example 5.8 Consider a model of an electromechanical system ( [113])

T = xo + d(t)
To = by — ag sin(xy) — agxs + d(t) (5.23)
T3 = bou — azrs — agxs + d(t)

with output y = x1, where v = [x1, T2, 73]" € R3 is the state vector, d(t) is the unknown

disturbance with d < d(t) < d. Parameters values are by = 40,b; = 15,a7 = 35,a, =

0.25, a3 = 36 and aq = 200. We write the above system (5.23) as follows

&= Az + f(y,u) + Bd(t) (5.24)
-1 1 0 1
with A=10 —025 15 |, f(y,u) = |—35sin(y)
0 —36 —200 40u

and B = [1,1,1]". It is observed that the system matriz A is not a Metzler matriz, but a
Hurwitz matrix.

We design control uw to make the system (5.23) to be asymptotically stable using
vector-based contraction theory. To start with, consider the system (5.23) with d(t) = 0,



let the input to the first subsystem be xo = —x1 to obtain the subsystem 1, = —xy to be
exponentially stable. Let the deviation variable be q; = x9 + x1 to transform the system

into the structure

Ty =q — 21

6_71 = bl.%‘g — Sin(iUl) + 075(]1 — 075371

Let us select the control xs = L((JL1 sin(zy) — 2.75¢; + 0.75x1) to obtain the subsystem

by
G1 = —2q1 to be exponentially stable. Let us again select the deviation variable as qo =
x3 — sin(z) + % — %xl to transform the system into

I =q — T

@1 =¢q2—2q (5.25)

. 6.25 a; 5.5 2.75
Go = bou — (az + ——)xy — ayws — — cos(xy)ry — —x1 + ——qo

Let the squared vector-valued norm, defined by (4.1), assuming the matriz P as diag(1)
be: ||6xq4]|2 = [022,0q3,0q3]". Its derivative along the trajectories of the virtual dynamics

of (5.25) is given by

d
%(5331)2 < — 62t +6q
d
a(&h)Q < —35¢; +9q5
d 6.25 55
—(0q2)* = 20¢5(bodu — (ag + ——)dxy — asdxs — ——0x,
dt by b,
2.75
— ﬂ(— sin(xy)xedzy + cos(x1)dxs) + ——0dg2)
by by
We select
1 6.25 5.5 2.75
du=—((as + —)0z2 + asdxs + —0dz1 + ﬂ(_ sin(xy)z20xy + cos(xy)dxs) — ——0qs
by by b, b, b,
— a4q2)

to obtain the following linear comparison system

Wy = — wi + Wy
ZUQ: —3w2+w3

wg = — 2a4w3



to be quasi-monotone non-decreasing (off-diagonal entries non-negative) and contracting.
Hence, the system (5.23) with d(t) = 0 is contracting and thus the system trajectories
converge to indeed an equilibrium point (origin) with the obtained control u (obtained by

integrating ou),

1 6.25 5.5 2 2.75
w= = ((a3 625 6ty (22— 2660001 + 2 cos(wr)rs + Das + 220 sin(z)
b(] b1 b1 bl bl bl
B 2.75 )
_bl xIs ).

Now, the interval observer is formulated using time-invariant transformation as dis-
cussed in [57] to transform the system matriz into a Metzler matriz. And, from Theorem
5.4, the formulated interval observer is asymptotically stable with the control u(y,T). We
compare the performance of the interval observer with the control designed in [57] and
the proposed control using state bounds from the interval observer itself and the system
outputs considering d(t) = $sin(t), d= -4 and d = §.

From Fig. 5.5, it can be noticed that the convergence time is less in the case of the
proposed method as compared to the method in [57]. Moreover, it does not require the

Lyapunov candidate function formulation to show the asymptotic stability of the interval

observer.

5.4 Conclusion

An interval observer for a class of nonlinear systems considering inputs, outputs, and
disturbances has been designed by the exploitation of the generalized contraction theory
known as vector-based contraction theory. Dynamic output feedback control has been
designed using state bounds from the constructed interval observer to prove it to be
globally asymptotic stable. In the end, examples are illustrated to show the efficacy of

the theoretical results.
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Figure 5.5: Interval observer for system (5.23) using (a) method in [57] and (b) proposed
method



