Chapter 3

Vector Control Lyapunov function
based stabilization of nonlinear

systems in arbitrary time

3.1 Introduction

Vector Lyapunov functions were first introduced in [44] to relax certain strict conditions of
scalar Lyapunov functions [4-6]. In particular, it is worth observing that the components
of vector Lyapunov functions need not be all positive definite and that the derivative of
a vector Lyapunov function does not have to be necessarily negative or negative semi-
definite to guarantee the stability of the studied systems. Hence, these functions enlarge
the class of Lyapunov functions to analyze system stability.

In this chapter, a general framework is developed to analyze the arbitrary time
stability of the equilibrium point of nonlinear systems using vector Lyapunov functions.
Specifically, we formulate a vector comparison system in such a way that it is arbitrary
time stable and after that we relate these stability features with the stability features of
the original system using differential inequalities and comparison principles. Besides, we
design robust universal arbitrary time convergent controllers for the large-scale systems
that are robust to bounded disturbances. Moreover, in order to reduce the dimension
of the comparison systems, we discuss the aggregation procedure of comparison systems
which provides a simple and efficient way to derive control for the class of underactuated

systems. The control of these underactuated systems is a very challenging problem as



they represent a surface vessel or underactuated ships for which there is no actuation
provided in the sway axis. In the end, the efficacy of the theoretic approach is verified
using as example an underactuated system.

Now, we consider a nonlinear time-varying scalar differential system

—(e”-1) :
Tt i to <t <ty

t= —é(tx):= (3.1)

0, otherwise
where x € R, v € Ry, ty is the initial time and ¢, > ¢y is a prescribed time. It is easy
to prove existence and uniqueness of the solutions of this system and to see that &(t) =0
and z(t) = 0 for all ¢ > ¢, [42]. This system is the building block to establish the main

results of this chapter.

Remark 3.1 Note that t, does not depend on any system parameter. In fact, t, itself
15 an independent parameter, which is explicitly prescribed in advance. Theoretically, one
can choose any arbitrarily small value of t,. However, we recall that due to the inherent
dynamics of practical systems (in particular, the actuator dynamics), these systems usually

impose restrictions on assuming arbitrarily small values of t,.

The further part of the chapter is organized as follows. Section 3.2 provides the
results of the arbitrary time stability of nonlinear systems by the exploitation of vec-
tor Lyapunov functions. Robust universal arbitrary time controllers that are robust to
bounded disturbances are designed for large-scale systems in Section 3.3. In addition, we
discuss the aggregation procedure of comparison systems in order to apply the derived
results effectively on underactuated systems. An illustrative example with the simulation

results is given in Section 3.4. Finally, conclusions are drawn in Section 3.5.

3.2 Arbitrary time stability analyzed via vector Lya-
punov function

In this section, we derive results by using vector Lyapunov functions to analyze the

arbitrary time stability of nonlinear systems.

Theorem 3.2 Consider the system (2.2). Suppose that there exist a smooth vector func-

tion V= [V1,Va,...,V,]T : D — S, where p <n, S C RZy,0 € S and a vector r € RE,



such that r"V (x) is a positive definite function, and there exists a control input 7(t,x)

such that

!

Viz)f(z,7(t,x)) << My, (¢, V(z)), z€D (3.2)

where ©p(t,V(2)) = [¢(t, Vi(@)), -, ¢t Vi(@))]", ¢ is the function defined in (5.1),
M € RP*P 4s Metzler and Hurwitz, and such that y'M << —y' for all non-negative

vector y € RP. Besides, suppose the following vector comparison system

n(t) = Mo (t,n(t), nlte) =m0, for allt>t, (3.3)

admits a unique solution n(t) € REy. Let 2(t) be any solution of (2.2) with 7(t, ) which
satisfies (3.2), such that V(x¢) << noy. Then, the solution x(t) = 0 is arbitrary time stable

for v > p.

Proof: Let us consider the comparison system (3.3). Observe that M ®,(t,7) is a
quasi-monotone non-decreasing function of 7 uniformly in ¢. As a consequence, the solu-
tions to (3.3) are non-negative when 7y € RZ [102]. Now, let us consider the Lyapunov
function v = 5"y, n € RY,. Its time derivative along the trajectories of (3.3) is given
by © = 2n"(t)M®,.(t,n(t)). Then, from the definition of ¢(-) in (3.1), it follows that
v = 0 for all t > t,. Now let us perform an analysis in the time interval [to,t,). Since

n"M << —nT, it follows that
o < =20 ()@, (¢,n(t)), for all t € [to,t,). (3.4)

Let us introduce the function Mazx defined by Maz(y) = T{nax }yl Observe that the
ie{l,....p

inequality (3.4) implies that

0 < =2m @)@t m(t)), -0 < =2mp()o(E, (1)) (3.5)

because yo(t,y) > 0 for all y € R and t € [ty,t,). Suppose that at any particular instant
t € [to,ta), Max(n(t)) = n(t). Then

@I < pm(t)* = v(t) <pm(t)?* = \/ <n1 (3.6)

Now using (3.5)-(3.6) and noting the fact that —y1d(y1) < —y20(y2) when yo <y, it is

easy to obtain v < —2\/§¢ (t, \/%) Let us introduce the function: w = \/g. Then,
when v(1n9) > 0, the inequality v(n(t)) > 0, is satisfied for all ¢t € [ty,t,). We deduce



W = 2\}@1} < _wj/ﬁ%w) < —d>(;,w)7 for all t € [tg,t,). From the definition of ¢(-), it follows

that w < %, v =~/p, for all t € [ty,t,). Using the fact that v = 0 for all ¢ > ¢,
we deduce that w = 0, for all ¢ > t,. Note that for v/ > 1 (i.e., v > p), the dynamics
of w is arbitrary time stable [42]. Consequently, the dynamics of v is also arbitrary time
stable which implies that the solution 7(¢) = 0 is arbitrary time stable. Then from the
results of Lemma 2.12; we conclude that the solution x(t) = 0 is arbitrary time stable
for v > p. Note that a similar analysis can be carried out to show the arbitrary time of
convergence in the cases when Max returns variables other than n;. Let us observe that
in the scalar case, i.e., p =1, V reduces to V; and M is a constant m such that m < —1.
Then, the condition in (3.2) reduces to V] (z)f(x,7(t,x)) < m¢(t,Vi(x)), x € D, which
directly ensures that for v > 1, the dynamics is arbitrary time stable. This completes the

proof. O

Remark 3.3 It is important to discuss about the matriz M that satisfies y' M << —y'
fory € RY,. This property implies that M is Metzler and Hurwitz. Let us see some
ezamples of M. The given condition leads to y' (M + I) << 0, which can be alternatively
written as (M" + Iy << 0. One obtains, by selecting M = X, (A + Iy << 0 which
holds for all X < —1. Although several other possibilities exist for M, above ones are the

simplest.
Theorem 3.2 is generalized as follows:

Theorem 3.4 Consider the system (2.2). Let us suppose that there exist a smooth vector
function V.= [Vi,Va,...,V,]T : D — S where p < n, S C R%,,0 € S and a vector

r € RY, such that vV (x) is a positive definite function, and there exists T(t,x) such that

/

Vi(x)f(z,7(t,x)) << Q(t, V(z)), xze€D,t>t (3.7)

where Q) € C[Rsq x S, RP| is a quasi-monotone non-decreasing function of V- uniformly in

t with Q(t,0) = 0 for all t > ty. Besides, suppose the following vector comparison system

(1) = Qt,n(1)), n(to) = 1o (3.8)

admits a unique solution 1(t) € R, and arbitrary time stable. Let x(t) be any solution
of (2.2) with 7(t,z) which satisfies (3.7), such that V(xo) << n9. Then, z(t) = 0 is

arbitrary time stable.



Proof: Let us assume that U C H is an open and bounded set such that 0 € U and
U C S. Hence, U is compact. Since, the function v(-) is assumed to be continuous,
then, from the Weierstrass result, v(-) has a minimum on 9U and « = min,cop v(n) > 0.
Suppose that 0 < f < a and Dg = {n € U : v(n) < F}. From the classical Lyapunov
stability and positive definiteness of v(-), one can state that if € > 0, there exists 6 > 0
such that the ball, Bs € Dg C H and ||n(t)|| < € ¥Vt > to, |m]] < 6. The above
analysis establishes the boundedness of the solution 7(t). Now, we analyze the scalar
case and the vector case one by one. First let us consider the scalar case, i.e., p=1. In
this case, we have V' = V] and we replace Q(¢,V (z)) by —¢(t, Vi(z)) in (3.7) to obtain
Vi(x)f(z,7(t,z)) < —¢(t,Vi(x)). Due to the continuity property of Vi(:), there exists
dy > 0 such that Vi(zg) < 6, V||zo|| < d2. Next, we replace Q(t,n) by —¢(t,n) in (3.8)
to obtain 77 = —¢(t,n), whose solution is denoted by n(t) = n(t,n0). Let us choose the
initial condition:

no = Vi(xg) € B, l|lzol| < 02 (3.9)

Let us consider a scalar Lyapunov candidate function v(n) = n* whose time derivative
along the trajectories of (3.8) is © = 2y = —2n¢é(t,n). This implies that v = 0 for
all t > t, and v < —2|n|¢(t,|n|) for all t € [to,t,). Noting the fact that \/v(n) = |n],
we can write 9(n) < —2/v(n)é(t, /v(n)). Let us consider w = /v(n), then, when
v(ne) > 0, the inequality v(n(t)) > 0 is satisfied for all ¢t € [to,t,). We deduce that
W= —+—0(n) < —¢(t,w) for all t € [ty,t,). We also see that @ = 0 for all ¢ > ¢, leading

2+/v(n)
tow = 0 for all t > t,. Consequently, v(n(t)) = 0 for all ¢ > ¢,, from which it follows that

n(t) =0, for all t > t,, ny € Bs. (3.10)

Note that the conclusion (3.10) can be reached directly by observing that n = —¢(t,n)
converges to the origin in arbitrary time t,. Now, by using the comparison principle [97],

for the considered initial condition (3.9) we have:
Vi(z(t)) <n(t), no € Bs, t€0,00). (3.11)

From (3.10)-(3.11), it follows that Vi(z(¢)) = 0 for all t > ¢,, ||zo|| < d2. Consequently,
x(t) = 0forallt > t,. Thus the solution x(t) = 0 is arbitrary time stable. Now we consider
the vector case, i.e., p > 1. Note that the vector comparison system (3.8) is assumed to

be arbitrary time stable, then it guarantees that the equality in (3.10) is also valid in



the vector case of (3.8). Further, we notice that "V (x) is positive definite. Now, since

.....

we deduce that d'V(z) is also positive definite on € D. Recalling the continuity
property of V(-), there exists d > 0 such that ||V (zo)| < 0, V|xo|]| < 2. Let us
choose 19 = V(xg) € By, for all ||zg| < d2. Then from Lemma 2.12, it follows that
V(x(t)) << n(t). Utilizing (3.10), d"V (z(t)) < d'n(t) =0, Vt >t, and since d'V (z(t))
is non-negative, it follows that d' V (z(t)) =0, V ¢t > t,. Since d'V(-) is positive definite,
we conclude that x(t) =0, Yt > t,, V ||xo|| < 02. Therefore, xz(t) = 0 is arbitrary time

stable. This completes the proof. U

3.3 Robust arbitrary time stabilization of large scale
nonlinear systems

Let us consider the following nonlinear dynamical system consisting of p subsystems in-

terconnected to each other with bounded non-vanishing disturbances:
ai(t) = Fy(x(t)) + Hi(x(t)) (ui(t) + Dy(t)), (3.12)

where F; : R" — R™ with F;(0) = 0 and H, : R” — R"*™ are the continuous functions,
for i = 1,...,p, u; € R™ is the control input, x = [z1,x9, - ,:cp}T € D C R™ with
n=mny +ng+ -+ n,, is the state and || D;(t)|| < Dy, is the disturbance which persists

even when x has converged to zero. Furthermore, u(t) € RP, where p = my+ma+---+m,,.

Theorem 3.5 Consider the system (3.12). Suppose that V = [Vy,...,V,|" : D — S with
Vi : R" — R is a smooth vector Lyapunov function (VLEF), where S C R%(,0 € S and

r € RY, is a vector such that v'V (z) is positive definite and

/

Vilz)Fi(r) << Qi(t, Vi), @€ Ry i=1---,p

where R; = {x € R", 2 # 0 : V; (x;)H;(x) = 0}. Let, the proposed universal robust control

u(t) =7(t,x) = [r (t,2),7) (t,z),... ,TJ(t,:L‘)]T

- <Kisign(\/i/ (x;)) + Ay AQMJ(@bi(I)), bi(z) #0

it x) = (3.13)



where A = a;(x) — Qi(t, Vi(x,)), as(x) =V, (z))Fy(x), bi(x) = V; (2;)Hy(x), i =1,--- ,p,
Q € C[R>o x S,RP] is a quasi-monotone non-decreasing function of V' uniformly in t with
Qi(t,0) =0 for allt > ty, and K;, i = 1,2,--- ,p, is a constant gain. Besides, suppose

the following vector comparison system

1(t) = Q,n(t)), n(te) = 1o (3.14)

admits a unique solution n(t) € RL and arbitrary time stable. Then, the solution x(t) = 0

of system (3.12) is arbitrary time stable in the time t, and this stability is robust to bounded

disturbances.
Proof: Let us consider the functions: a;(x) = V;(2;)Fj(x) and bj(z) = V; (z;)H(x).
Simple calculations give, for ¢ =1 to p:

Vi(z:) = ai(z) + bi(z)us (t) + bi(z)Di(t) (3.15)

First case: b;(z) # 0. Using the proposed universal robust control (3.13), Equation
(3.15) becomes, when H;K; > |H;|Do;

V(i) << Qilt, Vi)

Second case: b;(x) = 0. Control 7;(t,z) = 0. This choice ensures that V; (z;) Fj(z) <<
Qi(t, Vi(z:)).

Thus, the derivative of VLF along the solutions of system (3.12) with the constructed
control u(t) satisfies W(:EZ) << Q;(t, Vi(z;)), when H;K; > |H;|Dy;. Since, it is assumed
that the comparison system (3.14) is arbitrary time stable. Then from Theorem 3.4, the
solution z(t) = 0 of system (3.12) is arbitrary time stable in the time ¢, and this stability
is robust to bounded disturbances when the control (3.13) is selected. O

It should be noted that the control structure (3.13) is motivated by the Sontag’s
universal formula [103].

Aggregation of comparison systems

In order to make the results derived above simpler and more elegant, especially
for the case of underactuated systems, we aggregate comparison systems to reduce their
dimension. For this, we can apply the following aggregation procedure for the linear

systems:

= Ax+ Bt (3.16)



where z € R”™ is the state vector, 7 € RP is the control input and A, B are constant
matrices with appropriate dimensions. We use the transformation as z = Tz to convert
the system (3.16) into the aggregated model: 2 = Dz 4+ G7, where z € R™ is the state
vector, T = [|;xn IS @ non-square matrix with m < n and the matrices D and G are
D = TAT YTT")'and G = T B [104] under the assumption that 7 is a full rank
matrix which possesses a pseudoinverse [105]. It is also assumed that x € N(T) if and
only if z = 0, where the nullspace N(7) is defined as N(7) = {z : T = 0}. In a similar

way, we can aggregate the nonlinear system of the form
T = f(x,7) (3.17)

where x € R" represents the state, 7 € R? is the control and f is a smooth nonlinear
vector field. Let us apply the transformation z = 7z, where 7 is a full rank matrix that
possesses a pseudoinverse to convert the system (3.17) into 2 = F(z,7), where z € R™ is

the state vector with m < n and F(z,7) = T f(T 'z, 7).

3.4 Simulation example
In the following example, we borrow the model of the surface vessel described in [106].

Example 3.6 Consider the underactuated model of the surface vessel which defines the

relation between earth fixed and body-fixed motion

T cos(¢p) —sin(¢p) Of |u 10 0f |r
s| = |sin(¢) cos(¢) O |v| —k |0 1 0] |s (3.18)
¢ 0 0 1| |q 00 of [0

where 1, s denote the ship position and ¢ represents the orientation of the ship. u,v are
the velocities of the surge and sway respectively, q is the angular velocity of the ship and
k is a positive constant. Furthermore, the dynamic motion of the ship [107] considering

matched bounded disturbances due to environmental forces can be described as
Mt — Maysvg + Dyyu = 1 + dy(t)
MQQ@ + Mlluq + DQQU =0 (319)

Ms3G + (Maz — My1)uv + Dssq = 1o + da(t),



where My, Moo, M3s denote the entries of mass inertia matriz, D11, Do, D33 are the en-
tries of damping matrix and 71, 75 denote the controls in the surge and yaw direction. Since
there 1s no control in the sway axis, the system is an underactuated system as there are
three degrees of freedom and two controls. The disturbance d;(t) is supposed to be bounded:
|d;(t)| < doiyi = 1,2 for all t > 0. The model parameters are considered those in [108]
My = 1.956, My = 2.405, M33 = 0.043, D1 = 2.436, Doy = 12.992 and D33 = 0.0564.

We apply the aggregation procedure as discussed in Section 3.3. Let us apply the

transformation as z = Tx with

230400 . 2
= 7x:[r7si¢7u7vﬂq} 7z:
005021 2

to transform the system (3.18)-(3.19) into

21 = 0.137921(2 cos(0.1667z5) + 3sin(0.1667z9) — 4.98) + 0.066725(3 cos(0.16672,)
— 25in(0.166725)) + 0.0109325 — 0.4482kz; + 2.044(y + dy (t))
sy = —0.5975525 — 0.103521 20 + 23.26(75 + da(t)).
(3.20)

We design controls 11 and 1o using vector Lyapunov theory to make the solutions
of the system (3.20) converge to the origin in arbitrary time. Let us consider the vec-
tor Lyapunov function, V. = [Vi,Vo]T with Vi = (21 + 22)% and Vo = (21 — 20)%. It
is easy to check that r'V s positive definite, where v = [1,1]7. The derivative of
Vi along the trajectories of (3.20) is given by, Vi = 2(z + 2) (31 + 22) for all t €
[to,ta). Let us choose: 2.04471 + 23.267y = —0.137921(2 cos(0.1667z3) + 3sin(0.166725) —
4.98) — 0.066722(3 cos(0.166723) — 2sin(0.166725)) — 0.0109323 + 0.4482k2; + 0.5975525 +
0.10352129 — ¢1(t, 21 + 22) — Ky sign(z1 + 22), where ¢1(t,.) is the function defined in (3.1)
with v = 7v,. Then, when Ky > 2.044dy; + 23.26ds2,

. —2nVT(e = 1)
Vi < :
eVVi(t, —t)

In a similar way, when Ky > 2.044dy; — 23.26dy2,

o =27/ Tha(eVVr — 1)
Va < ;
eVVa(t, —t)




with

2.04471 — 23.2675 = —0.13792, (2 cos(0.166725) + 3sin(0.16672;) — 4.98)
— 0.066725(3 cos(0.166725) — 25in(0.166725)) — 0.0109322 + 0.4482kz; — 0.5975525

—0.10352120 — ¢ao(t, 21 — 22) — Kasign(z; — 22),

where ¢s(t, .) is the function defined in (3.1) with vy = o and Ky, Ky are positive constants.
For all t > t,, the designed controls 7y and 1o will maintain the dynamics (3.20) at the
origin, hence, Vi =0 for all t > t,. Now, let w; = \/V;,i = 1,2, then i; = Q\Lﬁ <

—i(e®i-1) —i(e™i—1)

D) Thus, the comparison system constructed over t € [t,t,) is w; = i ()

For allt > t,,w; = 0, for v = 1,2. The comparison system is quasi-monotone non-
decreasing and arbitrary time stable in time t, with v; > 2 and v5 > 2 as p = 2. Hence, it
follows from Theorem 3.2 that the origin of the original system (3.18)-(3.19) is arbitrary
time stable. The simulation results are shown in Figure 3.1 and Figure 3.2 with K; =
40,k = 10,71 = 72 = 50, d;(t) = sin 10t and dy(t) = 0.05sin 10t with arbitrary time t, = 3

sec, and t, =5 sec, respectively.

3.5 Conclusion

We presented the generalized control design approach to stabilize nonlinear systems in
arbitrary time. We have shown that it is robust to bounded disturbances by using the
framework of vector Lyapunov functions and comparison systems. We designed control so
that the comparison system is arbitrary time stable. After that, we relate these stability
conditions with that of the original system by employing comparison principles. Further-
more, we aggregated the comparison system to reduce its dimension in order to make the
proposed approach efficient and straightforward, specifically for underactuated systems.
Finally, we assessed through an example accompanied by simulations the efficacy of the

mathematical results.
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Figure 3.1: System state (3.18)-(3.19) at arbitrary time t, = 3 sec
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Figure 3.2: System state (3.18)-(3.19) at arbitrary time t, = 5 sec



