Chapter 2

Preliminaries

Throughout this thesis, we utilize the following notations and definitions. We denote
p<<qforp=I[pi,po--,pa) andq=[q1, G2, , ], if p; < g foreachi=1,2,... n.
Similarly, p << ¢ is denoted if p; < ¢;. []" represents transpose. Given z € R", the
Fréchet derivative of V' € RP at 2 is denoted by V'(x). C[E, F] denotes the set of the
continuous functions from the nonempty set E to F where £ C R¥, and F' C R'. For the
set U € R™, U and OU denote the closure and the boundary of this set, respectively. A
square matrix M is known as a Metzler matrix if its off-diagonal entries are non-negative.
B > 0 means that its components are non-negative (i.e., b;; > 0, i # j), where B is a
real matrix. The notation (x,y), for x,y in R", denotes the usual inner product z'y.
||| is the usual Euclidean norm of z in R™. ||éz||, is a vector-valued norm of dx € R™

T € R”, we denote

as defined in the equation (4.1). For a vector = [z1,xq, -, Zy]
the diagonal matrix diag(xy, 2o, ,z,) by diag(z). Let d = [dy,dy,--- ,d,|" € R"
Corresponding to the diagonal matrix diag(dy, ds, - - - , d,), the vector d can be represented
by diag(d)1, where 1 is the n-tuple column vector [1,1,---,1]". For any € R*, z and

T denote the lower and upper bounds of z, respectively. The set-valued signum function

sign(z) : R - R, z € R is defined as

(
-1, if ©<0,
sign(z) = < [—1,1], if z=0
1, if >0.

\

Definition 2.1 (Quasi-monotone non-decreasing function [94,95]). Let E C R™ and let
e=ley, e, e, be an element of E. A function Q = [Q1,Q2,--+,Q,]" € C[E,R"|



is called quasi-monotone non-decreasing on E if for every i € {1,2,--- ,n}, Q; is non-

decreasing in ey for allk=1,2,--- i—1,0+1,--- . n.

Definition 2.2 (Cone [96]). A nonempty set K C R"™ is called a cone if for each x in K

and a non-negative scalar X\, the vector A\x is in K.

In the rest of the article, we assume that any cone K under consideration possesses
the properties that K is a closed and convex set, K N (—K) = {0}, and K°, the interior
of K, is nonempty. It is to be noted that a cone K induces a partial order relation on R”
defined by z <<iy <— y—z € K.

The adjoint cone of a cone K, denoted K*, is defined by K* = {¢ € R"|(¢,x) >
0 for all z € K}. It is noteworthy that if 9K denotes the boundary of the cone K, and
Koy = K\ {0}, then (sce [96]), v € 0K <= (¢,z) =0 for some ¢ € K.

2.1 Comparison functions

We provide some definitions of comparison functions that will be helpful in better under-

standing of the stability notions.

Definition 2.3 [97] A function ¢ : Rsg — Rsq is known as a class K function, if it is
continuous and strictly increasing with ¥(0) = 0. It is known as a class Ko function, if

it is a class K function and ¥ (r) — 0o as r — oo.
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Figure 2.1: (a) Class K function (¢(r) = tan™!(r)) (b) Class K, function (¢(r) = r?)



To study finite-time, fixed-time and arbitrary time cases, we consider generalized

functions [30].

Definition 2.4 A function ¢ : R>g — R is known as a generalized class K function, if

it 1s continuous with ¢(0) = 0 and satisfies

@(r1) > (r2), if o(r) >0, 11>

o(r1) =¢(r2), if o(r1) =0, 11 >
Definition 2.5 A function A : Rso X Rsg — R is said to be a generalized class KL
(GKL) function, if for each fixed t > to, the function A(r,t) with respect to r is a gener-
alized class IC function and the function A(r,t) with respect to t is continuous and tends

to zero ast — T, T < oo, for each fized r. If T is some arbitrary time, then A is called
arbitrary time GKL (AGKL) function.

2.2 Stability notions

Consider the nonlinear time-varying system

T = f(t,z,0), x(ty) = xo (2.1)

where x € D C R” is a state vector, o € RP represents constant system parameters to be
tuned, f: Rs>o x R™ — R” is a nonlinear vector field such that f(¢,0,0) = 0 for all t > ¢,
that is, origin x(t) = 0 is an equilibrium point of system (2.1). The following definitions

describe finite, fixed and arbitrary-time stability.

Definition 2.6 [1] The system (2.1) is known as finite-time stable at the origin if it is
asymptotically stable and any solution x(t,ty,xo) of (2.1) reaches the origin at some finite
time, that is, x(t,to,xo) = 0 for all t > to + T(to, o), where T : Rsg x R™ — R™ denotes

the settling time.

Definition 2.7 [2] The system (2.1) is known as fived-time stable at the origin if it is
finite-time stable and settling time T(ty,zo) is upper bounded by the time say, T,, > to,
that is, T'(to,zo) < Tp,

Definition 2.8 [/2] The system (2.1) is known as arbitrary-time stable al the origin if



e it is fixed-time stable

e there exists an arbitrary desired convergence time t, > to, which does not depend on

iitial conditions and system parameters and can be chosen in advance, and

o the inequality t, > t;p (weak arbitrary-time stable) can be established, where t,;
denotes the true fized time or actual time of convergence in which the system tra-

jectories reach to the origin.

We provide following definitions to differentiate among finite, fixed and arbitrary-time

stability using the generalized class KL functions.

Definition 2.9 The origin of the system (2.1) is called finite-time stable if there exists
a class GKL function A with A(r,t) = 0 when t > T(r), where T(r) is continuous with
T(0) = 0 such that ||z(t)|| < A(||z(to)|],1)-

Definition 2.10 The origin of the system (2.1) is called fized-time stable if it is finite-

time stable and sup,cg_ T (r) < oo.

Definition 2.11 The origin of the system (2.1) is called arbitrary-time stable if there
exists a class AGKL function A, and o as a class Koo function such that ||z(t)| <
Alllz(to)ll, ta = t0), ¥ £ € [to, ta), ¥ [lz(to)]| < a(c).

Now, let us consider the forced nonlinear system
T = f(z,7), z(ty) =x9, t€I (2.2)

where state v € D C R", 7 € R™ is the control, f : D x R™ — R" is a smooth nonlinear
vector field such that f(0,7) = 0, that is, origin z = 0 is an equilibrium point of system
(2.2) when control 7 is applied and [ is the largest interval of existence of a solution z(t)
of (2.2).

The following result is a fundamental comparison principle for nonlinear systems in

the vector Lyapunov function framework.

Lemma 2.12 /98] Let us consider the system (2.2). Suppose that the smooth vector
function W : D — 1 C R, is such that, for a specific 7, W' (z) f(z,7) << Q(W(x)), x €
D, where @ : Il — RP is a quasi-monotone non-decreasing continuous function, such



that n(t) = Q(n(t)),n(te) = no, admits a unique solution n(t) defined over [ty,00). If
W(zo) << o, mo € REy, then W(x(t)) << n(t) for all t > ty, where x(t) is the solution

of the system (2.2) when control T is applied.

2.3 General conditions in interval observer design

Consider a general nonlincar system

where z € R"™ is a state vector, y € RP is the system output, d(t) € R! is a locally
Lipschitz bounded disturbance, that is, d(t) << d(t) << d(t), d(t) € R, d(t) € R,
f:iRso xR" x Rl — R™ and ¢ : R — RP are locally Lipschitz nonlinear functions. The

initial condition is unknown but bounded between two values, z(ty) << z(tg) << T(to).

Now, if the following system

£ = h(t, 2(1),y(t), d'(t)) (2.4)

with initial condition zy = G(to, To,z,), d = (d,d) and bounds for x: T = H(t, 2), z =

H(t,z) (where h,G, H, H are Lipschitz functions with appropriate dimensions), z € R

follows two conditions:

o Framer property: For any set of initial conditions zg,z, and Z, in R" satisfying

Ty << x9 << T, the solutions of system (2.3)-(2.4) follows
a(t) = H(t,2(t)) << a(t) << T(t) = H(t,2(t), Vt>to
with initial conditions zy and G(to, To, Z)-

e Convergence property: when d(t) = 0, then the norm of the error |e(t)|| = ||Z(t) —

x(t)]] or ||z(t) — z(t)|| converges exponentially to zero.

Then, it is called an interval observer for the system (2.3).

2.4 Graph theory

Now we define some notions of graph theory [99]. An undirected connected graph with

weights is represented as G(X, D, B), where X = {x1, z,...,z,} denotes the set of nodes,



D C X x X denotes the set of edges and B = [b;;],x» denotes the adjacency matrix with
weights consisting of positive elements b;;. d(x;) indicates the number of nodes connected
to the node z;. The n xn matrix A = diag(d(x;)) is known as the degree matrix. Now the
Laplacian of graph G is n X n matrix which can be represented as L, = A — B. A graph is
said to be connected if there exists a path to each node or in another way there exists at
least one spanning tree of the graph. A graph G generated by the switching signal s(t) is
said to be o—jointly connected [100] if there exists 0 < oo, such that the graph G with
set of vertices V(G) = V(G;) and the set of edges D(G) = D(Gsq,)) U -+, D(Gsqy)) is

connected for all 1 > 0, where t;,--- |} are the switching time instants in [t;, ¢, + o].

Definition 2.13 [99] The agents in multi-agent systems are said to reach consensus if

each agent lies in the set
A={z eR" | z; =2;, i,5€{1,2,--- ,n}}.

Definition 2.14 [101] Suppose the heterogeneous multi-agent system has n number of
agents out of which m number of agents (m < n) are denoted by third-order dynamics
and remaining agents are denoted by second-order dynamics. The multi-agent system with

heterogeneous nodes is said to reach a common value (consensus) if we have

hmHTZ(t) - T](t>|| = 07 Za] € ]n
t—o00

lim [|5;(t) —s;(t)[| = 0, ¢,j €I

t—00

lim lgi(t) — g;(8)| = 0, i, € I

for all initial conditions assuming that each agent communicates all the states with its
neighbor. The variables v, s and q denote the position, velocity and acceleration of the
agents. The symbols I, and I, are the sets defined as I,, = {1,2...,m} and I, =
{1,2,...m,m+1,... ,n} respectively.



