Chapter 2

Preliminaries

Throughout this thesis, we utilize the following notations and definitions. We denote $p \le \le q$, for $p = [p_1, p_2, \dots, p_n]^{\top}$ and $q = [q_1, q_2, \dots, q_n]^{\top}$, if $p_i \le q_i$ for each $i = 1, 2, \dots, n$. Similarly, $p \ll q$ is denoted if $p_i \ll q_i$. $[\cdot]^{\top}$ represents transpose. Given $x \in \mathbb{R}^n$, the Fréchet derivative of $V \in \mathbb{R}^p$ at x is denoted by V'(x). C[E, F] denotes the set of the continuous functions from the nonempty set E to F where $E \subseteq \mathbb{R}^k$, and $F \subseteq \mathbb{R}^l$. For the set $U \in \mathbb{R}^n$, \bar{U} and ∂U denote the closure and the boundary of this set, respectively. A square matrix M is known as a Metzler matrix if its off-diagonal entries are non-negative. $B \geq 0$ means that its components are non-negative (i.e., $b_{ij} \geq 0$, $i \neq j$), where B is a real matrix. The notation $\langle x, y \rangle$, for x, y in \mathbb{R}^n , denotes the usual inner product $x^\top y$. ||x|| is the usual Euclidean norm of x in \mathbb{R}^n . $||\delta x||_v$ is a vector-valued norm of $\delta x \in \mathbb{R}^n$ as defined in the equation (4.1). For a vector $x = [x_1, x_2, \cdots, x_n]^{\top} \in \mathbb{R}^n$, we denote the diagonal matrix $\operatorname{diag}(x_1, x_2, \dots, x_n)$ by $\operatorname{diag}(x)$. Let $d = [d_1, d_2, \dots, d_n]^{\top} \in \mathbb{R}^n$. Corresponding to the diagonal matrix $\operatorname{diag}(d_1, d_2, \dots, d_n)$, the vector d can be represented by diag $(d)\mathbb{1}$, where $\mathbb{1}$ is the *n*-tuple column vector $[1,1,\cdots,1]^{\top}$. For any $x\in\mathbb{R}^n$, \underline{x} and \overline{x} denote the lower and upper bounds of x, respectively. The set-valued signum function $sign(x): \mathbb{R} \to \mathbb{R}, \ x \in \mathbb{R}$ is defined as

$$sign(x) = \begin{cases} -1, & \text{if } x < 0, \\ [-1, 1], & \text{if } x = 0 \\ 1, & \text{if } x > 0. \end{cases}$$

Definition 2.1 (Quasi-monotone non-decreasing function [94, 95]). Let $E \subseteq \mathbb{R}^n$ and let $e = [e_1, e_2, \dots, e_n]^{\top}$ be an element of E. A function $Q = [Q_1, Q_2, \dots, Q_n]^{\top} \in C[E, \mathbb{R}^n]$

. .

is called quasi-monotone non-decreasing on E if for every $i \in \{1, 2, \dots, n\}$, Q_i is non-decreasing in e_k for all $k = 1, 2, \dots, i - 1, i + 1, \dots, n$.

Definition 2.2 (Cone [96]). A nonempty set $K \subset \mathbb{R}^n$ is called a cone if for each x in K and a non-negative scalar λ , the vector λx is in K.

In the rest of the article, we assume that any cone K under consideration possesses the properties that K is a closed and convex set, $K \cap (-K) = \{0\}$, and K° , the interior of K, is nonempty. It is to be noted that a cone K induces a partial order relation on \mathbb{R}^n defined by $x \leq \leq_K y \iff y - x \in K$.

The adjoint cone of a cone K, denoted K^* , is defined by $K^* = \{\phi \in \mathbb{R}^n | \langle \phi, x \rangle \geq 0 \text{ for all } x \in K\}$. It is noteworthy that if ∂K denotes the boundary of the cone K, and $K_0 = K \setminus \{0\}$, then (see [96]), $x \in \partial K \iff \langle \phi, x \rangle = 0$ for some $\phi \in K_0^*$.

2.1 Comparison functions

We provide some definitions of comparison functions that will be helpful in better understanding of the stability notions.

Definition 2.3 [97] A function $\psi : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is known as a class \mathcal{K} function, if it is continuous and strictly increasing with $\psi(0) = 0$. It is known as a class \mathcal{K}_{∞} function, if it is a class \mathcal{K} function and $\psi(r) \to \infty$ as $r \to \infty$.

Figure 2.1: (a) Class K function $(\psi(r) = \tan^{-1}(r))$ (b) Class K_{∞} function $(\psi(r) = r^2)$

. .

To study finite-time, fixed-time and arbitrary time cases, we consider generalized functions [30].

Definition 2.4 A function $\varphi : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is known as a generalized class \mathcal{K} function, if it is continuous with $\varphi(0) = 0$ and satisfies

$$\begin{cases} \varphi(r_1) > \varphi(r_2), & \text{if } \varphi(r_1) > 0, \ r_1 > r_2 \\ \varphi(r_1) = \varphi(r_2), & \text{if } \varphi(r_1) = 0, \ r_1 > r_2. \end{cases}$$

Definition 2.5 A function $\Lambda: \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is said to be a generalized class \mathcal{KL} (\mathcal{GKL}) function, if for each fixed $t \geq t_0$, the function $\Lambda(r,t)$ with respect to r is a generalized class \mathcal{K} function and the function $\Lambda(r,t)$ with respect to t is continuous and tends to zero as $t \to T$, $T < \infty$, for each fixed r. If T is some arbitrary time, then Λ is called arbitrary time \mathcal{GKL} (\mathcal{AGKL}) function.

2.2 Stability notions

Consider the nonlinear time-varying system

$$\dot{x} = f(t, x, \sigma), \quad x(t_0) = x_0$$
 (2.1)

where $x \in D \subseteq \mathbb{R}^n$ is a state vector, $\sigma \in \mathbb{R}^p$ represents constant system parameters to be tuned, $f: \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}^n$ is a nonlinear vector field such that $f(t, 0, \sigma) = 0$ for all $t \geq t_0$, that is, origin x(t) = 0 is an equilibrium point of system (2.1). The following definitions describe finite, fixed and arbitrary-time stability.

Definition 2.6 [1] The system (2.1) is known as finite-time stable at the origin if it is asymptotically stable and any solution $x(t, t_0, x_0)$ of (2.1) reaches the origin at some finite time, that is, $x(t, t_0, x_0) = 0$ for all $t \ge t_0 + T(t_0, x_0)$, where $T : \mathbb{R}_{\ge 0} \times \mathbb{R}^n \to \mathbb{R}^n$ denotes the settling time.

Definition 2.7 [2] The system (2.1) is known as fixed-time stable at the origin if it is finite-time stable and settling time $T(t_0, x_0)$ is upper bounded by the time say, $T_m > t_0$, that is, $T(t_0, x_0) \leq T_m$

Definition 2.8 [42] The system (2.1) is known as arbitrary-time stable at the origin if

. .

- it is fixed-time stable
- there exists an arbitrary desired convergence time $t_a > t_0$, which does not depend on initial conditions and system parameters and can be chosen in advance, and
- the inequality $t_a \geq t_{tf}$ (weak arbitrary-time stable) can be established, where t_{tf} denotes the true fixed time or actual time of convergence in which the system trajectories reach to the origin.

We provide following definitions to differentiate among finite, fixed and arbitrary-time stability using the generalized class \mathcal{KL} functions.

Definition 2.9 The origin of the system (2.1) is called finite-time stable if there exists a class \mathcal{GKL} function Λ with $\Lambda(r,t)=0$ when $t\geq T(r)$, where T(r) is continuous with T(0)=0 such that $||x(t)||\leq \Lambda(||x(t_0)||,t)$.

Definition 2.10 The origin of the system (2.1) is called fixed-time stable if it is finitetime stable and $\sup_{r \in \mathbb{R}_{>0}} T(r) < \infty$.

Definition 2.11 The origin of the system (2.1) is called arbitrary-time stable if there exists a class \mathcal{AGKL} function Λ , and α as a class \mathcal{K}_{∞} function such that $\|x(t)\| \leq \Lambda(\|x(t_0)\|, t_a - t_0), \forall t \in [t_0, t_a), \forall \|x(t_0)\| \leq \alpha(c)$.

Now, let us consider the forced nonlinear system

$$\dot{x} = f(x, \tau), \qquad x(t_0) = x_0, \quad t \in I$$
 (2.2)

where state $x \in D \subseteq \mathbb{R}^n$, $\tau \in \mathbb{R}^m$ is the control, $f: D \times \mathbb{R}^m \to \mathbb{R}^n$ is a smooth nonlinear vector field such that $f(0,\tau) = 0$, that is, origin x = 0 is an equilibrium point of system (2.2) when control τ is applied and I is the largest interval of existence of a solution x(t) of (2.2).

The following result is a fundamental comparison principle for nonlinear systems in the vector Lyapunov function framework.

Lemma 2.12 [98] Let us consider the system (2.2). Suppose that the smooth vector function $W: D \to l \subseteq \mathbb{R}^p_{\geq 0}$ is such that, for a specific τ , $W'(x)f(x,\tau) \leq Q(W(x))$, $x \in D$, where $Q: l \to \mathbb{R}^p$ is a quasi-monotone non-decreasing continuous function, such

that $\dot{\eta}(t) = Q(\eta(t)), \eta(t_0) = \eta_0$, admits a unique solution $\eta(t)$ defined over $[t_0, \infty)$. If $W(x_0) \leq \leq \eta_0$, $\eta_0 \in \mathbb{R}^p_{\geq 0}$, then $W(x(t)) \leq \leq \eta(t)$ for all $t \geq t_0$, where x(t) is the solution of the system (2.2) when control τ is applied.

2.3 General conditions in interval observer design

Consider a general nonlinear system

$$\dot{x} = f(t, x, d(t)), \quad x(t_0) = x_0; \quad y = g(x)$$
 (2.3)

where $x \in \mathbb{R}^n$ is a state vector, $y \in \mathbb{R}^p$ is the system output, $d(t) \in \mathbb{R}^l$ is a locally Lipschitz bounded disturbance, that is, $\underline{d}(t) \leq \leq \overline{d}(t)$, $\underline{d}(t) \in \mathbb{R}^l$, $\overline{d}(t) \in \mathbb{R}^l$, $f: \mathbb{R}_{\geq 0} \times \mathbb{R}^n \times \mathbb{R}^l \to \mathbb{R}^n$ and $g: \mathbb{R}^n \to \mathbb{R}^p$ are locally Lipschitz nonlinear functions. The initial condition is unknown but bounded between two values, $\underline{x}(t_0) \leq \leq x(t_0) \leq \leq \overline{x}(t_0)$.

Now, if the following system

$$\dot{z} = h(t, z(t), y(t), d'(t))$$
 (2.4)

with initial condition $z_0 = G(t_0, \overline{x}_0, \underline{x}_0)$, $d' = (\overline{d}, \underline{d})$ and bounds for x: $\overline{x} = \overline{H}(t, z)$, $\underline{x} = \underline{H}(t, z)$ (where $h, G, \overline{H}, \underline{H}$ are Lipschitz functions with appropriate dimensions), $z \in \mathbb{R}^n$, follows two conditions:

• Framer property: For any set of initial conditions x_0, \underline{x}_0 and \overline{x}_0 in \mathbb{R}^n satisfying $\underline{x}_0 \leq \leq x_0 \leq \overline{x}_0$, the solutions of system (2.3)-(2.4) follows

$$\underline{x}(t) = \underline{H}(t, z(t)) \le x(t) \le \overline{x}(t) = \overline{H}(t, z(t)), \quad \forall \ t \ge t_0$$

with initial conditions x_0 and $G(t_0, \overline{x}_0, \underline{x}_0)$.

• Convergence property: when d(t) = 0, then the norm of the error $||e(t)|| = ||\overline{x}(t) - x(t)||$ or $||x(t) - \underline{x}(t)||$ converges exponentially to zero.

Then, it is called an interval observer for the system (2.3).

2.4 Graph theory

Now we define some notions of graph theory [99]. An undirected connected graph with weights is represented as G(X, D, B), where $X = \{x_1, x_2, \dots, x_n\}$ denotes the set of nodes,

 $D \subseteq X \times X$ denotes the set of edges and $B = [b_{ij}]_{n \times n}$ denotes the adjacency matrix with weights consisting of positive elements b_{ij} . $d(x_i)$ indicates the number of nodes connected to the node x_i . The $n \times n$ matrix $A = \operatorname{diag}(d(x_i))$ is known as the degree matrix. Now the Laplacian of graph G is $n \times n$ matrix which can be represented as L = A - B. A graph is said to be connected if there exists a path to each node or in another way there exists at least one spanning tree of the graph. A graph G generated by the switching signal s(t) is said to be σ -jointly connected [100] if there exists $\sigma < \infty$, such that the graph G with set of vertices $V(G) = V(G_s)$ and the set of edges $D(G) = D(G_{s(t_i)}) \cup \cdots, D(G_{s(t_k)})$ is connected for all $t_1 \geq 0$, where t_i, \dots, t_k are the switching time instants in $[t_1, t_1 + \sigma]$.

Definition 2.13 [99] The agents in multi-agent systems are said to reach consensus if each agent lies in the set

$$\mathcal{A} = \{ x \in \mathbb{R}^n \mid x_i = x_j, \ i, j \in \{1, 2, \dots, n\} \}.$$

Definition 2.14 [101] Suppose the heterogeneous multi-agent system has n number of agents out of which m number of agents (m < n) are denoted by third-order dynamics and remaining agents are denoted by second-order dynamics. The multi-agent system with heterogeneous nodes is said to reach a common value (consensus) if we have

$$\lim_{t \to \infty} ||r_i(t) - r_j(t)|| = 0, \quad i, j \in I_n$$

$$\lim_{t \to \infty} ||s_i(t) - s_j(t)|| = 0, \quad i, j \in I_n$$

$$\lim_{t \to \infty} ||q_i(t) - q_j(t)|| = 0, \quad i, j \in I_m$$

for all initial conditions assuming that each agent communicates all the states with its neighbor. The variables r, s and q denote the position, velocity and acceleration of the agents. The symbols I_m and I_n are the sets defined as $I_m = \{1, 2, ..., m\}$ and $I_n = \{1, 2, ..., m, m+1, ..., n\}$ respectively.